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Abstract

This paper presents our recent results in the field of surface representation based on
topological coding. In particular, we investigate a possible way to adapt to discrete
surface models some theoretical concepts as Morse theory and Reeb graphs which
bases on differential topology. Starting from a triangulated surface, our aim is to
code the relationship among critical points of the height function associated to the
mesh. We named Extended Reeb Graph (ERG) the graph representation which
can handle also degenerate critical points. The ERG gives an effective represen-
tation of the surface shape available for classification, simplification and restoring
purposes.

KEYWORDS: shape graph, discrete critical point analysis.

1 Introduction

Geometric modelling deals with the representation and manipulation of geometric
objects in a computer and it includes the theoretical and application areas of com-
puter science that deal with geometry, such as computer graphics and animation,
computer-aided design, discrete computational geometry, etc.. All development in
geometric modelling has focused on geometry, which provides a complete descrip-
tion of the (geometric) shape of a solid. The choice of a mathematical model is
mainly determined by a set of restrictive computational requirements such as rep-
resentational finiteness, constructivity and completeness, which are related to the
properties of the mathematical model. Nevertheless, there is a clear evidence that
shape information is somehow treated differently by the human brain than other
forms of information. Even if remaining in the world of geometry, indeed, we use
different levels of mental models for describing geometric objects, which provide
both high (specific) and low (generic) level shape descriptions [1]. The common
characteristics of the mental models is that they all generally refer to shape or
function, that is, they are different ways of answering questions such as ”What
does it look like?”, "What is its meaning?”. This suggests a shift in the focus
of modelling from the detailed specification of bunches of geometric primitives to
description of shapes and tools to handle these descriptions.



Topology as the study of shape properties that do not change under defor-
mation, gives a formal framework for the formalisation and solution of several
problems related to shape and shape understanding. From this point of view, it is
interesting to investigate the possible role of the new field of computational topol-
ogy, firstly introduced in [2] and followed by [3, 4], for incorporating abstraction
mechanisms in shape modelling.

Shape abstraction tools are necessary to catch the uniqueness properties which
identify shapes independently of their particular geometry because similar shapes
may occur in a variety of geometrical instances. Differential topology and geometry
have been often used for surface coding: tools such as the Euler’s equation, surface
networks, Morse theory or the Reeb are examples of techniques and measures with
an extremely high abstraction power. Applications of these tools have been studied

by Nackmann, Pfaltz, Shinagawa, Kunii [5, 6, 7].

In this paper we present the description of an high-level abstraction model
for the representation and the manipulation of three-dimensional surfaces. Such
a model adapts and extends to the discrete domain the basic concepts related
to Reeb graphs. Then the resulting representation guarantees the computational
efficiency and an effective topological coding of the object allowing a qualitative
quick comparison among objects. Research on the use of such a graph for terrain
representation has been presented in [8, 9] aimed at the definition of innovative,
effective and efficient algorithms for understanding, compression and restoration
purposes. The proposed extension does not distort the semantic meaning of the
Reeb graph and faithfully represent the surface morphology [10]. Moreover the
proposed model has been successfully extended to three dimensional closed surfaces
represented by triangulation [11].

The reminder of this paper is organised as follows: first, we present some
approaches to differential topology, critical points and topological graphs in the
computer graphics community; then, basic results of Morse theory and Reeb graph
are introduced. In section 4 the ERG representation and some examples of its
application are given; in the final section conclusion and future work are drawn.

2 Previous work

Morse theory allows coding the topological relationship among critical points and
describing differentiable manifolds using a limited number of information [12].
Generally the knowledge of the critical point configuration is considerated as one
of the simplest way to describe the perception and the oraganization of the surface
shape, [13]. Many applications of the critical point definition and Morse theory
have been proposed in computer grahics to represent implicit surfaces [3], polygonal
meshes [4] and discrete solids and surfaces modelling [7, 14]. In particular in [4]
the authors investigated on the extraction of a Morse function of the surface based
on the expansion of a wave transform. An analogous criterium of expansion on
polyedral surfaces is the wavefront propagation applied by Wood et al. [15] to
coarse mesh extraction. In particular, this method codify and eliminate the region



of the surface where the topology does not change.

The main difficulty in the application of topology-based tools is the necessity of
adapting concepts developed for smooth manifold to surface models which are only
continuos as in the case of triangulated surfaces. Several authors have underlined
the importance of these tools in different applications: under the assumption that
critical points are non-degenerate, Nackman, [5], proposed an interesting method
for coding the critical points of smooth Morse functions of two variables in a
Critical Point Graph (CPG). For geographical applications Pfaltz studied a similar
approach for discrete surfaces defining the so-called surface networks, [6]. Surface
network, moreover, have bee, used by Bajaj, [16] for driving the simplification of
meshes while preserving the topology of the shape. Falcidieno and Spagnuolo, [17],
defined a curvature-based graph corresponding to a subdivision of the surface in
simpler shaped sub-regions.

Major research on the use of topology for surface description has been pro-
posed by Kunii, Shinagawa et al., [7, 14], where a surface coding based on Morse
theory and Reeb graphs has been defined. Such a kind of model describes a man-
ifold surface by considering the evolution of the surface sections; in practice this
model is particular efficient to evidence the topological structure of the surface
and to allow a better quote recognition. The resulting conceptual sketch simplifies
the topological analysis, it is based on only few elements and it can be associ-
ated to reconstruction or generation rules which allow to restoring the original
surface. Another method to reconstruct surfaces from contours has been defined
from Giertsen et al., [18]; the topological information of this structure can be more
efficiently expressed by the Reeb graph, which allows to univocally code contour
connectivity and adjacency relationship among sections. Moreover, starting from
the notion of Reeb graph in [8] we proposed a topological structure, called ERG,
available for surface simplification and reconstruction (for details on the ERG see
section 4).

3 Theoretical background

The mathematical basis of the theories here considered concern with topology, in
particular differential topology. The idea behind the study of topology is the anal-
ysis of the properties of a shape that do not change under deformations [12, 3].
In particular any deformation is allowed so long as it is ono-to-one and bicontin-
uous, which is sufficient to prevent the deformation from cutting segments and
piercing holes. In computer graphics the topology is useful both in topological
interrogation and in topological control of the models and is called computational
topology. Often, in surface modelling, the topology and the algebraic topology
have been source for powerful shape abstraction tools as the Euler’s equation, the
Betti numbers, the surface networks, the Morse Theory and the Reeb graphs.



3.1 Morse theory

Morse theory relates to the study of the relationships between a function’s critical
points and the topology of its domain, [12]. That theory allows describing differen-
tiable manifolds using a limited number of information, for example by coding the
topological relationship between the critical points, [12]. Morse theory not only
indicates when the topological type changes but what kind of change occurs and
it is a fundamental tool in the topological analysis of surfaces (2-manifolds).

Formally, let f, f : M — R be a real function defined on a manifold M and
p = p(x,y,z) a point of M; then the relationship V f(p) = 0 defines a critical point
of the function f.

The topological type of the immersed portion of the manifold changes after
the critical points are dunked. To define the topological type of a critical point
we require 1t is non-degenerate, that is the Hessian matrix of f is non-singular at
that point (the Hessian matrix is the matrix of the partial second derivatives of
the function f). In particular a function f is called Morse if all its critical points
are non-degenerate.

An intuitively good function to study the surface shape is the height function,
that is the real function which associates to each point on the surface its elevation.
If the function f is Morse the type of the topological changes on the surface are
determined by the type of the critical points, which is given by the number of
negative eigenvalues of its Hessian. According to the number of negative eigen-
values of the Hessian the non-degenerate critical points of a surface define the 0,
1, 2 — cells. In this way it is possible to extract a topological graph based on
points, edges and faces called in algebraic topology as the CW-complez, [12]. An
important result of Morse theory, which establishes a link between the number
of critical points and the topological type of the manifold, is given by the Euler
formula: #minima — #saddles + #mazxima = 2(1 — g) = x(M) where g rep-
resents the genus of the surface. In particular, the entity x(M) is called Euler
characteristic of the manifold M.

3.2 Reeb graph

In 1946 Reeb proposed considering a topological graph defined as quotient space of
a manifold which, under opportune hypotheses, defines the skeleton of the manifold
itself, [20]. Considering, for example, the height function f associated to a manifold
M = M(z,y,z), the Reeb graph is the quotient space given by the relationship
which identifies the points z; and z; having same function values and belonging
to the same connected component of the inverse image of f. Formally:

Let f: M — R be a real valued function on a compact manifold M. The Reeb
graph of M wrt f is the quotient space of MxR defined by the relation ~, given
by:

(1, f(21)) ~ (22, [(22)) = f(21) = f(22)

and z; and z; are in the same connected component of f~'(f(z3)).



The Reeb graph is a CPG graph: in fact the Morse theory guarantees that the
surface topology changes only in correspondence of critical points, that is in the
graph representation the nodes correspond to critical points and the arcs are given
by the part of surface between two critical levels. Moreover, under the assumption
that the height function is Morse, the structure of the Reeb graph is rather simple
and represents the topological skeleton of the object. For its properties the Reeb
graph ensure an efficient topological control in the compression and simplification
problems. In figure 1 the Reeb graph of a bi-torus is shown, in this image the
mapping function is the natural height function.

Figure 1: The Reeb graph of a bitorus and some cross sections. FEach contour
determines an equivalence class which is represented in the Reeb graph by a single
point.

4 ERG representation

The straightforward application of the Reeb graph definition to a generic polyhe-
dral surface (e.g. a 3D triangulated manifold) requires at first the definition and
the extraction of the critical points, for a detailed definition of critical points for
triangular meshes see [16, 21, 22].

The possible definitions of discrete critical points, however, generally suffer of
instability in the sense that small perturbations of the vertex coordinates may
result in rather different configurations [23, 9]. Regarding that, it is necessary to
adapt the traditional surface shape classification to polyedral surfaces extending,
where it is possible, the usual definition of critical point. This is a well known
problem in the computer graphics community but it was not univocally resolved
yet. Our proposal is to describe a topological graph, we called Extended Reeb
Graph (ERG). Such a graph derives from the direct application of the Reeb graph
to degenerate as well as non-simple height functions and keeps the same meaningful
properties. The extension proposed relates also the critical area definition and it
is coherent with the common idea of critical point. In this manner the analysis
of complex handmade articles is allowed even if characterised from multiple flat
areas.

The ERG representation for 2.5D surfaces represented by triangular meshes,
for example digital terrains, has been fully described in [10, 23], and an extension



of the method to closed three-dimensional surfaces (i.e. without boundary) has
been introduces in [11].

The innovation of our method is both the way of constructing the graph and
the efficiency in dealing with degenerate situations. The proposed approach is
actually not an extension of the Reeb graph itself, but rather a full application
of its definition in the discrete domain, which does not require the height func-
tion to be Morse. The main idea is to consider critical areas instead of critical
points and identify, starting from them, the smallest area on the mesh whose be-
haviour is topologically equivalent to the critical area (influence zone). Starting
from a triangulated surface constrained to the contour levels generally critical areas
are localized by flat regions. The classification of critical areas as maxima, min-
ima and saddles is done by checking the number of non-constrained edges in the
boundary and analysing the ascending/descending direction of the surface across
the boundary, (for details in the classification see [10]). Since we do not require
the height function to be Morse we admit multiply-critical areas as volcano rims.
Multiply-connected critical areas divide the surface in an external and, at least, an
internal part and are further classified as complex minima, maxima and saddles
respectively. In particular, our definition of critical areas still satisfied an extended
version of the Euler formula presented in 3.1, for details see [9].

The concept of critical area is not able to fully describe the topologicl behaviour
of the surface around saddles, so we have introduced the notion of influence zone of
a critical area (see [10, 11, 23]). Influence zones are the starting points to identify
the portion of the mesh which defines the arcs of the ERG and are defined as the
smallest areas of the surface having the same topological behaviour as the critical
areas (the extended definition of influence zone can be found in [11]). In particular
the influence zone of a saddle area is composed by the whole part of the surface
contained in the nearest contours (generally at least 3) to the critical area itself.
In figure 2(a) we depict the critical areas of a bi-torus while in 2(b) the influence
zones are shown, in particular the influence zones of saddle areas detect the region
of the triangulation where the topology changes.

Figure 2: The critical areas (a) and the influence zones (b) of a triangulated bi-
torus.



The components of the ERG are defined as follows: nodes correspond to the
influence zones of simple critical areas and macro-nodes are used to represent
complex critical areas. Finally, the ERG ares encode the topological adjacency
among influence zones and are detected using an expanding process as described
in [11]. In figure 3 an example of the ERG extraction for a natural surface and
the simplified model built considering only the critical sections are shown. 1In
figure 4 we show the ERG represention of a three-dimensional object: a tea-pot,
in particular in 4(a) the influence zone of the critical areas are highlighted.

Figure 3: The ERG representation of a real surface (a) and the simplified trian-
gulation: the topology of the two models is the same.

(b)

Figure 4: The influence zones of a tea pot and its ERG, (a): in (b) the relations
among the critical sections are depicted

5 Conclusions and future work

The structure of the surface is detected by considering the evolution of the surface
sections and it is usable for simplification, compression, animation and manipu-
lation purposes. The ERG structure, however, it is insufficient for surface recon-
struction purposes: the reconstruction process, in fact, needs major information



about the connection of two adjacent sections. It is necessary not only know the
adjacency between the sections but detect "how” the tiling should be done and
"which” points have to be connected. To do that, could be useful to study each
section’ shape and to establish the way in which each shape converts into another
in terms of similarity. In order to detect the shape similarity among contours it
seems opportune to consider the skeleton schematisation of the external shape. In
this context the skeleton is a reduction of a shape to its minimal form and it can be
considered as a linear approximation of the Medial Axis Transformation (MAT).
In particular the MAT of a polygon is the set of centres of the inscribed circles at
least bi-tangent to the polygon edges (for a detailed MAT definition see [24]). The
high computational complexity of the MAT detection algorithm justifies the choice
of a MAT approximation; in this way it is possible to obtain an efficient descriptive
power (see [25, 26]). Then our task is the definition of a complex structure more
complete thant the ERG does, which codes the topological skeleton of the object
and, in order to favourite the reconstruction process, for each section preserves the
basic skeletal information.

Another possible application of the proposed model could be the study of the
metamorphosis (morphing) of objects. This application field needs a model that
gets out a rapid topological detection, classifies the common shape features and
preserves the low-level geometrical information. Such a representation has to allow
the transformation and modification directly on the model and give an effective
theoretical support. In fact, morphing is a technique used for the evolution and
metamorphosis analysis from one image to another. The idea is to get a sequence
of intermediate configurations which when put together with the original surface
would represent the change from one to the other. This technique has been devel-
oped for study both the object evolution (for instance to analyse a sequence of face
expressions) and the transformation between different entities. One of the most
time consuming tasks in morphing is selecting the points or lines in the initial and
final image so that the metamorphosis is smooth and natural and it is not trivial
problem to identify which edge should be mapped to which other edge (for details
see [27, 26]). The interpolation between two shapes can produce forms covering
a variety of topological types, that is the topology of intermediate models can be
different from the original ones. To investigate the maintenance of the topology
when performing a shape transformation shape recognition tools are essential and
in this context our representation model could be useful both in shape recognition
and in evolution metamorphosis process.
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