Realtime Visualization Methods in the Demoscene

Boris Burger, Ondrej Paulovi¢, Milo§ Hasan
burger@nextra.sk, twinsen@mayhem.sk, milos.hasan@inmail.sk

Department of Computer Graphics and Image Processing
Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

This paper introduces a concept of the ”demoscene” phenomenon arising mainly
among the lines of students who share interest in computer graphics and mul-
timedia creations. The paper discusses the tight relationship between realtime
visualization techniques and the subject of our focus which will be the so-called
demos and intros. These are together the most attractive production type among
the respective categories of creations the demoscene produces and also the ones
most dependent on the methods introduced in the field of computer graphics —
conceptual, mathematic or algorithmic. The authors further present their own
work in this area with emphasis on describing some of the more interesting
techniques they have invented or adapted for the sake of creating their own demos
and intros.

KEYWORDS: realtime, rendering, demoscene

1 Introduction

The demoscene is a society of computer enthusiasts, arising since the mid eighties
consisting mostly of university and high school students sharing active and usually
productive interest in computer graphics, music and related multimedia.

The concept of realtime visualization [1] has been fundamental to the demoscene
since its very beginning. It started with short one-man machine code programmed
graphic effects on 8-bit computers pushing the hardware to the limit, to today’s
demos consisting of work by several people. The people involved in making a demo
are graphic artists, together with musicians giving the demo it’s own feeling and
finally programmers utilizing plethora of visually attractive realtime techniques
and algorithms to create various effects, putting the pieces of a demo together to
create the work of art.

The sceners, which is a term the members of demoscene use to designate them-
selves, form into demogroups. As insinuated, demogroups consist of one or more

coders, graphic artists and musicians, typically from the same or close geograph-
ical location. With today’s rise of Internet, which itself acts a significant role in
the history and evolution of the scene, more and more often it happens that in-
ternational groups with members from Finland, Poland, Norway or even Japan
are formed. The other benefit of Internet lies in a fast and simple access to the
demoscene production through archives maintained around the world [2].

For the sake of meeting and competition with other scenersin a friendly atmo-
sphere there are so-called demoparties organized during the year in different parts
of the world, mainly Europe. A demoparty is an annual event, being a gathering of
people interested in the demoscene combined with competing in categories such as
demos and intros — which are in fact demos with a size limit typically set to 64KB,
4KB or 256 bytes [3]. There are categories suited for musicians and graphicians to
compete in music, pizel graphics (hand-drawn pixel by pixel), raytraced graphics
and many other, depending on the respective party. The greatest demoparties held
are Assembly [4] in Finland and The Party [5] in Denmark organized annually for
already a decade. Another well-known party is Mekka-Symposium [6] that takes
place in Germany. The number of visitors ranges from hundreds coming to smaller
"local” parties to two or three thousands visiting international events like the ones
mentioned previously.

The structure of our paper is as follows: sections 2 and 3 cover the history and
present of the demoscene from a computer graphics and programming point of
view. The rest of the article, presents three of the demoscene contributions authors
of this article participated on, discussing three selected techniques utilized in their
creation: a method for parametric representation of a rollercoaster track, creation
of light effects using center projection of an object texture onto an environment
and painting textures using implicit functions.

2 Evolution of demomaking

The roots of the demoscene date back to the era of 8-bit computers. Groups of
crackers focusing on a removal of copy-protections from computer games used to
attach a so-called cracktro in front of a game they cracked. It was a small realtime
generated visual presentation of their group. The speed of 8-bit computers was
very limited then, so these cracktros consisted often only of a scrolling text, some
really simple bitmap effects or sometimes a picture in the background.

As the time went on, standalone demos started to appear — with their con-
tent resembling cracktros, but they were not bound to a game and were already
completely departed from crackers’ activities. In those demos authors were trying
to push the limits of the current hardware creating new, original, and visually
attractive effects. Speed was the reason why all demos were programmed using
machine code back then. Effects were mostly 2D those days — scrollers, various
bitmap distortions, plasmas and other. The most used computer among sceners
was Commodore 64 [7], addressed to be the platform where the whole phenomenon
began.

Figure 1: Examples of simple effects: copper, fire, rotozoomer and a voxel landscape.
Screenshots taken from Show by Majic 12, Inconezia by Iguana, Second Reality by
Future Crew, and Airframe 64KB intro by Prime.

Sometime around the year 1986 a new groundbreaking platform for de-
mosceners appeared — Commodore AMIGA [8]. AMIGA offered hardware for re-
alizing far more complicated algorithms than before. Notably, the artistic design
became a strong element characteristic for this period.

Some time later during the era of AMIGA, a new Intel 80x86-based PC [9]
accompanied with Microsoft’s operating system MS-DOS started to establish its
position as a computer suitable for home computing. Finally it became the most
common platform among demosceners despite a great problem it possessed — most
graphic and sound hardware was not compatible with each other. Rather limited
amount of memory restricted the demo’s execution to a specific computer configu-
ration at times and that didn’t help to spread the demos and intros widely across
the scene borders.

To be able to fit into tight limitations of that day’s computer, demo program-
mers invented a noteworthy class of effects. These were realized by direct manip-
ulation of graphics hardware, circumventing the operating system such as certain
sorts of scrolling text and the so-called copper or multicolor effects. Very popu-
lar among the newly introduced techniques was rotozoomer where the computer
screen was covered by a rotating and zooming bitmap, which was a starting point
for polygon texturing routines utilized in 3D renderers later.

Figure 2: (a) A combination of 2D and 3D effects produces interesting results.
Screenshot from demo kkowboy by demogroup Blasphemy, 1998. (b) Very original
type of a tunnel effect, from demo Xtal by Finnish demogroup Complez, 1995.

The rapid evolvement of the PC platform naturally influenced the character of
demos and intros produced. Simple 3D effects appeared, displaying mostly just a
single rotating object. Depending on the hardware’s speed only the vertices used

to be rendered at first, followed by edges, and only later filled polygon surfaces.
An interesting class of 3D effects originated in rendering of landscapes, where the
landscape’s surface was typically visualized using column voxels. This is done by
casting a ray for each column of the pixel buffer. It was a simple ancestor of
realtime raytracing.

The increasing power of CPUs allowed for faster rendering of textured polygons
which opened a whole new scale of possibilities on the field of realtime rendering.
A variety of shading models used to be commonly implemented then: constant flat
shading, gouraud shading and fake phong shading. The fake phong shading effect
was achieved by taking advantage of a special texture combined with computing the
texture coordinates from orientation of the normal vectors at the mesh’s vertices.

With the end of 90’s approaching more complex algorithms saw the light of
realtime implementation in demos such as marching cubes, bump-mapping or dy-
namic shadows. In this period the low-level machine code used to be employed
mainly for the most critical parts of a program in the first place. The rest was
then programmed using a higher level language like C or rarely Pascal.

(a)

Figure 3: (a) An example of fake phong shading, as presented in demo Dope by
Compler, 1995. (b) Realtime bump mapping, from demo Solstice by Valhalla, 1996.

Even though the phong shaded, environment or bump mapped single object
scenes were very nice for the moment, they became boring later on. Thanks to
the rapid growth in processing power of CPUs, visualization of more complex 3D
scenes was able to emerge. This is how the era of demos based on scene graph
renderers started to rise.

For some time at the beginning of this new evolutionary step of demoscene,
the center of all interest when creating a demo moved to write a fast, convincing
and stable realtime polygon rasterizer for use within a scene graph renderer. With
the low-end computer processors being still not that fast to make this trivial, pro-
grammers had to spend most of their time writing optimized shading, texturing,
alpha-blending and other rasterization details in machine code to be able to render
convincing 3D scenes at interactive framerates. That is the reason why program-
mers scarcely had the time to do something else to help making a good demo.
Thus the demos produced at the beginning of this era were — though complex at
inside — mostly boring fly-bys.

At first, the vast majority of sceners ignored the appearance of Microsoft’s new
generation of Windows operating systems and continued writing demos and intros

Figure 4: (a) Cartoon rendering in it’s beginnings, screenshot from 64KB intro
Paper by groups Psychic Link and Acme, 1996. (b) Dynamic shadows, as presented
in The Fulcrum demo by the group Matriz, 1998. One of the few demos that
employed bilinear filtering of textures within software renderer at surprisingly high
framerate considering the power of low-end CPUs back then.

using the older DOS platform. Only later on, in part due to the introduction of
low-end graphics adapters with the ability of 3D acceleration the scene started
to develop demos for this operating system. Unfortunately, the quality did not
improve at once and most demos were still only simple 3D scene viewers.

3 Present trends

Demoscene is a subject to evolution since its early days. Even though the pro-
ductive sceners still casually use assembler for its advantages, compose music in
trackers, and draw graphics pixel by pixel, the mainstream is elsewhere.

The effects presented in demos are far more complex now. From simple tex-
turing tricks and rendering single object scenes we have come to implicit surface
polygonization [10], scene graph rendering, realtime raytracing [11] and radiosity,
non-photorealistic rendering [12] and a plenty of other advanced techniques, like
procedural generation of textures and geometry.

From a programmer’s perspective, the code written is no longer so low-level
than before. Concerning rendering and general visualization, the vast majority of
production does not utilize any processor specific features and is typically written
in a high level and portable language like C++ [13].

With the introduction of sophisticated and fast graphics hardware — lately
accessible to home computing — started the diversion from ”classic” pure software
rasterization methods to rendering assisted by hardware acceleration. Hence the
demos of today do not depend so much on the underlying processor architecture,
they rely on the graphics APIs (Application Programming Interface). There are
two APIs widely accepted and used today: OpenGL [14] originated by SGI and
Microsoft’s DirectX [15], the former being favorable for its elegance, overall design
and platform, or to a certain extent, programming language indepedence. On the

other hand, DirectX gained many positive improvements lately and possesses a
rich set of features, in part due to it’s tight binding to the Microsoft’s platform.

i 7 2 'R_n - .,_ir :

Figure 5: (a) Realtime raytracing in 64KB intro Heaven 7 by Fzceed, 2000. (b) Car-
toon rendering example from Gerbera by Moppi Productions, 2001. (¢) Scene graph

rendering, spherical environment mapping and implicit surface polygonization as
seen in Spot by Fxceed, 2000.

While the Microsoft’s DOS was the operating system of demoscene’s choice for
a long time period mainly due to its wide availability on low-end home computers,
this is no longer true. The programmer’s nightmare — either graphics or sound
hardware incompatibility, was largely cured by the introduction of new generation
operating systems suitable for home use. Though demoscene’s mainstream uses
Microsoft’s Win32 platform, it is not uncommon to encounter demos bundled with
binaries for multiple platforms including Linux or other Unix flavors. There is also
an increasing number of demos produced for hardware architectures like PowerPC,
Alpha and video game consoles.

Put together, the need for low-level programming fading away allowed the
programmers to concentrate on the more challenging techniques and algorithms.
Graphic artists and musicians take advantage of the new sophisticated software
and so they are able to create more professional pictures, textures, and music score.
At last, the design definitely finds its place in the PC demos and intros of today,
being a very strong element.

4 QOur work

In the following sections we present examples of our own work with emphasis on
three selected techniques we have invented or adapted through the process of their
creation.

4.1 DREAM demo

The Dream [16] demo was released in 1999 at the Fiasko demoparty held in Uherské
Hradisté, Czech Republic. There it won the first place in the demo competition. It
was a DOS executable, running also under Microsoft Windows DOS box. Unfor-
tunately we have encountered certain compatibility problems causing that Dream
does not run on every possible hardware configuration.

This demo featured several 2D effects and a scene graph renderer built on
a top of a pure software rasterizer. The rasterizer employed texturing combined
with gouraud shading using 8 bits of precision for each of the three color channels,
supported by a z-buffer with 32 bits of precision. For the sake of fast rasterization
we have utilized the MMX instruction set, which proved to be very useful when
combining the texture, shading and transparency.

Most of this demo was programmed using C++ except for the rasterization
core coded in assembler.

Figure 6: The left screenshot is an example of scene graph rendering, while the
right one shows a flight through an endless 3D grid, both featured in the Dream
demo.

4.2 EXPIRATION demo

Ezxpiration [17] was created one year after the Dream demo, and released again
at the Fiasko demoparty. The platform of our choice changed to Microsoft Win-
dows where we also benefited from hardware acceleration through OpenGL. These
choices led to a creation of a very stable production as opposed to Dream, with
no hardware compatibility problems that we know of. Ezpiration placed first out
of the other 15 contributions in the demo competition.

In the following sections we will present the behinds of two interesting parts of
our demo: train track and bouncing light sphere.

Train track

At this point we will cover the method for creation of train track models that
we’ve utilized for building up the rollercoaster part of Ezpiration.

The primary goal we set up was to design a method that would allow us to
create and manipulate the track shape with ease and at the same time provide
simple ways of placing vehicles — in our case a locomotive followed by the train’s
waggons — onto the track.

Two basic ways suggesting themselves were to let the work be done by a human
3D artist in a modelling tool or to take a more challenging approach of describing

Figure 7: Screenshots from the rollercoaster part of Ezpiration.

the track’s shape in a mathematical way, possibly as a parametric spline and
building the track’s 3D mesh along the spline.

Although the former alternative of leaving the work up to an artist has the
advantage of better control over the appearance of the track’s mesh and the pos-
sibility of giving the model a kind of an artistic touch; it suffers from two rather
unsatisfying properties. Modifications to the track’s shape require the artist to
make changes to the work already done, which may take time and a considerable
effort with the number of modifications increasing. The second fact concerns the
problem of placement of the vehicles onto the track. Clearly there is no way that
would produce naturally looking results, without additional work for the 3D artist
to maintain the animation paths that would capture the track’s shape and orienta-
tion. These disadvantages led us to taking a more in-depth look at the qualities of
the latter alternative mentioned, hence describing the track in a parametric way.

Parametric track representation

Here we’ll present some basic observations and formulate requirements that the
parametric representation of a track must meet.

As a first observation, it’s clear that what our representation must capture is
not only the track’s shape, but also its orientation varying along, to be able to
properly build the final mesh and to allow simple vehicle placement.

Concerning only the shape, there exist plenty of successful methods applicable
for describing it, such as straight lines, Bézier curves, B-splines or arcs. The track
in Expiration was built using segments based on variations or little modifications
of arcs and straight lines. While being not so flexible as Bézier curves or B-splines
or even NURBS, they still have a number of properties favourable to our problem.
In the real world the railway’s or tram’s tracks are not arbitrary, they are mostly
straight and their turns resemble arcs. Another rather practical fact is that straight
lines and arcs can be evaluated at even distances by simply uniformly substituting
for the parameter — as opposed to Bezier curves or B-splines, where evaluation
at even distances would require approximation — which is useful for quick vehicle
placement and mesh generation.

Track segment

Let us describe the track more formally. As already said, our formalization
must parametrize shape and orientation. Since we are going to build the track from
segments, some simple means of joining the segments together will be required.
With the neccessity of segment joining in mind, to describe the track’s location and
orientation at each parameter value, we have chosen homogeneous 4 x 4 matrices
consisting of only rotation and translation.

Let’s define the track segment’s parametric representation as:
S [0, 1] — R4><4

with [0, 1] denoting the interval of real numbers between 0 and 1 inclusive and
Rix4 denoting the group of 4 x 4 matrices representing rigid body transforms of
the Euclidean 3-space in homogeneous form, effectively being just a set of all
matrices representing rotation and translation of the 3-space. Thus:

dy Uy Ty Da
dy uy Ty py
dZ uz TZ pz ’
0O 0 0 1

s:t —

where d = (d,, d,, d,)" is a directional vector pointing in front of the track’s
orientation, u = (uy, uy, u,)” represents the up vector, and r = (ry, ry, r,)7 is the
vector to the right of the orientation; clearly the (d, u, r) triple must be orthonormal
for the matrix to represent rigid body transform. Finally, p = (ps, py, p.)7 is the
position of the track.

Function s captures the track’s segment’s position and orientation at every
parameter ¢ in the interval [0, 1], with s(0) representing the beginning of the track
segment and s(1) being the end of the track segment. Thus by projecting off the
rotational part of the matrix and concerning just the translation we could get a
parametric vector function describing the segment’s shape.

Figure 8: A segment with the direction, up and right vector functions.

To avoid more complicated joining of segments, we will assume that for every
segment s it holds that:

s(0) =

O O = O
O = O O
o O O
_ o O O

Obviously, function s could be used as a guide for building up the 3D mesh
around the track segment, but we can also utilize it for the vehicle placement,
since with function s we know everything about the position and orientation of
the track segment at any desired parameter value ¢.

As an example, this is a turn right by 90° degrees:

sin(¢(t)) 0 —cos(i(t)) R(1+ cos((t)))

—cos((t)) 0 sin(y(t)) Rsin(1)(1))
0 1 0 0
0 0 0 1

with 9 (t) = m — 5t and R being the radius of the turn.

Entire track

The entire track 1" consists of a sequence of track segments sy, s9, ..., s, with
their respective geometric lengths lq, ls, ..., l,. Now we can define the entire track
as a sequence of (segment, length) pairs:

T = {(si, li) }i1,

where every s; is a function of the form:
si(t) = (di(t) wit) ni(t) pi(t)).

Now we’ll define a knot sequence tqg, tq, t, we’'re about to use in the defini-
tion of the entire track evaluation function afterwards. Every knot ¢; will represent
a parameter value for the evaluation function at the joint point of two successive
track segments.

; {0, ith=0
k= 1 k .
Tength(T) izt biy 1<k <mn

With length(T) we denote the geometric length of the entire track, more pre-

cisely:

length(T) =Y _1;.

=1

Finally, using the knot sequence given we will bring in the function S that
represents the joining of successive track segments, being a function evaluating the

entire track’s position and orientation along, with S(0) describing the beginning
of the track, and S(1) being the end of its last segment.

S [0, 1] — R4><4

S(tl,l)sz(t:t;_l) , Jd1<i<n:te (tifl,ti]
51(0), otherwise (¢t = t)

Camera views

There were two sorts of camera views utilized within the rollercoaster part of
the Ezpiration demo: cameras focused on and moving next to one of the trains,
and free, unfocused cameras giving views of a major part of the entire track.

Each of the two were accomplished by employing spherical linear interpolation

of quaternions [18], more precisely:

sin((1 — t)8) + ¢ sin(t6
slerp(t, qo, q1) = 2 (1= 9)6) + ¢ sn(t6)

sin 6
with 6 being the angle between the unit quaternions ¢y and ¢;.

The unfocused camera views were realized by simply interpolating two fixed
camera positions and orientations during a predefined time period, while the other
sort of camera views focused on a moving train were slightly more complicated to
do, and we are going to describe the method used shortly.

Let’s say that the train we would like to focus our camera on is situated some-
where between S(t.) and S(t;), for some ¢, < t,. We could simply choose a param-
eter value u such that ¢, < u < ¢, and use the S(u) value as a coordinate space
basis useful for placing our camera at S(u) * (Cy, Cy, C,, 1)" for some position C
and targeted at the point written in the last column vector of S(u) matrix, which
effectively is track’s position at parameter value u. This way the camera would fly
next to the train, but with its motion precisely copying the track’s shape, which
looks much too artificial to be convincing.

We will avoid the artificial look of previosly described approach using quater-
nion interpolation. Analogously to the function S we could define another function:

Q:10,1]—H

that would capture the track’s orientation all along using unit quaternions instead
of matrices.

By spherical linear interpolation of quaternions Q(t.) and Q(t,), for exam-
ple ¢mia = slerp(%, Q(te), Q(ty)) we would get an orientation that resembles the
track’s orientation as the train moves. It wouldn’t be an exact copy but a harsh
approximation depending on how we choose the t, and ¢, parameter values. That
would give a more natural look to the camera views generated analogously to the
technique described before, after conversion of ¢,,;4 to matrix M.

We could further place the camera not at a fixed position relatively to the M
basis, but let this placement be a function of time, placing the camera at M xC(t),
and same with the camera’s target.

Bouncing Light Sphere

This effect appearing at the end of Ezpiration was achieved by center projection
of the surface texture of a projecting object on its environment utilizing texture
mapping [19]. In the method presented, the projecting object is restricted to pos-
sess such a shape where it is possible to calculate an intersection with a ray easily.
On the other hand, the environment around the projecting object is allowed to be
rather complicated. For better results, the environment mesh should by sufficiently
tesselated which would help eliminating the effect of non-linearity of center projec-
tion in the plane of projection. That’s why the two planes in the demo are actually
grids. During the rendering, both the object and its environment are represented
as a triangle mesh.

For the projecting object we choosed an wunit sphere initially located at the
origin o = (0, 0, 0) of the 3D space. We define a function 7 : R?> — R? to express
the texture coordinates across the sphere surface, to be more precise 7 : P — (u, v)
for any point P on the surface.

The effect of projecting the sphere’s surface on the environment was realized
during an extra rendering pass, where texture of the sphere was mapped onto
the environment and texture coordinates for each of environment’s vertices were
calculated according to position and rotation of the sphere in the following way.

Sphere

Environment

Figure 9: (a) Screenshot from demo. (b) Obtaining a point on the sphere surface.

Let the sphere’s animated position and rotation be expressed by some transfor-
mation 7. The whole scene is transformed using T}, to relocate the sphere back
to its initial position and rotation at the origin of coordinate space for making
the further calculations easier. So, for each vertex V = (zv, yv, 2y, 1)7 of the
environment the following vector is found:

N~
L
<
<
- o oo

Thanks to the sphere’s position and radius chosen, the intersection point of a ray
R(t) = TV +t * @ with the sphere’s surface can be found rapidly:

Vs =

Finally, this chosen vertex V', texture coordinates are then 7(Vs) and these
same coordinates are used during an extra pass of environment rendering with the
sphere’s texture.

4.3 SYMBOLIC EXPRESSION 4KB intro

Symbolic Expression [20] was presented at Fiasko 2001 in Czech Republic. Four
kilobytes is not much, and there are usually two ways to go — either extensive size
optimization or an elegant idea. This intro is an example of the second approach.
The intention was to create a few colorful 2D texture effects using OpenGL, taking
advantage of hardware acceleration. While analyzing possible solutions, one could
note that in fact any 2D effect can be thought of as a single function assigning a
color triple (r, g,b) to every screen coordinate (z,y) at time 7:

62R3%R3 6(x7y77—):(ragab)

In many cases, this function can be decomposed into e = t o m, where the m
function is a mapping from screen coordinates (and time) into texture coordinates
and the ¢ function specifies the texture:

m: R* — R? m(z,y,7) = (u,v)
t:R* — R t(u,v) = (r,9,b)

In theory, the whole demo could be written as a single effect function. This
function could be defined as an algebraic expression involving the variables z,y
and 7 — hence the name of the intro.

These ideas are very simple to implement. The texture and mapping functions
for different effects can be written directly in the C language. The textures are
evaluated and sent to OpenGL at the initialization of the intro. The screen is
subdivided into small squares and the mapping function is evaluated at every
corner of the grid in a given time moment 7. Each square is filled with a textured
OpenGL quad primitive. The alpha-blending feature of OpenGL allows for several
"summed” effects on the screen — the intro uses three to six layers.

The only question that remains unanswered is how to define the mapping and
texture functions. As for the mapping, it can be defined as a composition of several
functions such as affine transforms, ” caleidoscopic” mapping

cal(z,y) = (min([z, [y[), max(|z], |y[)),

Figure 10: Screenshots from the intro.

sine distortion, e. g.
sd(z,y,7) = (ax + bsin(y + 7), ay + beos(z + 7)),

or anything that comes to mind and looks good. To define the texture functions,
the intro uses functional representation (F-rep) [21]. A function f : R? — R defines
the 2D set {(z,y)|f(z,y) > 0}. By combining linear, quadratic or other curves with
the functions min and max (as intersection and union), different 2D shapes can be
described by very few lines of code. With the help of a noise function and different
colors, we get the actual RGB texture functions.

5 Conclusion

This paper introduced the demoscene community phenomenon with its history
and present trends with emphasis on bindings to computer graphics and computer
programming. The authors further presented some of their own work in this area,
describing several methods they used during the creation of the discussed demos.

In the end we would like to give our thanks to all the reviewers for their valuable
advices, helping to improve the quality of our paper.

References

[1] MOLLER, T. - HAINES, E. 1999. Real-time Rendering. A K Peters, Ltd.,
1999, second edition. ISBN 1-56881-101-2.
http://www.realtimerendering. com.

[2] The scene.org demoarchive. http://www.scene.org.
[3] 256 byte intros. http://wuw.256b.comn.
[4] Assembly. http://www.assembly.org.
[5] The Party. http://www.theparty.dk.

(6] Mekka-Symposium. http://ms.demo.org.

[7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

Commodore C-64 computer. http://www.c64.org.
AMIGA computer. http://www.amiga.com.

Intel x86 processor series.
http://developer.intel.com/design/processor.

BLOOMENTHAL, J. Polygonization of implicit surfaces. Computer Aided
Geometric Design, 5(4) pp. 341-355, Nov 1988.

WALD, I. - SLUSALLEK, P. State-of-the-art in interactive ray-tracing. In
State of the Art Reports, EUROGRAPHICS 2001, pp. 21-42, Sep 2001.

GOOCH, B. — GOOCH, A. A. 2001. Non-Photorealistic Rendering. A K
Peters, Ltd., 2001. ISBN 1-56881-133-0.

STROUSTRUP, B. 2000. The C++ Programming Language Special Edition.
Addison-Wesley, 2000. ISBN 0-201-88954-4.

OpenGL Architecture Review Board. 1999. OpenGL Reference Manual 3rd
edition. Addison-Wesley, 1999. ISBN 0-201-65765-1.

Microsoft DirectX. http://www.microsoft.com/directx.

PAULOVIC, O. - BURGER, B. - PLACHY, P. — RUTTKAY, L. 1999.
Dream.
ftp://ftp.no.scene.org/scene.org/parties/1999/fiasko99/demo/
dream.zip.

BURGER, B. - PAULOVIC, O. - PLACHY, P. - RUTTKAY, L. 2000.
Expiration.
ftp://ftp.no.scene.org/scene.org/parties/2000/fiasko00/demo/
expirati.zi%p.

DAM, E. B. - KOCH, M. — LILLHOLM, M. Quaternions, interpolation
and animation. Technical Report DIKU-TR-98/5, Department of Computer
Graphics, University of Copenhagen, July 1998.

HAEBERLI, P. - SEGAL, M. Texture mapping as a fundamental drawing
primitive. In Fourth FEurographics Workshop on Rendering, pp. 259-266, Jun
1993.

HASAN, M. 2001. Symbolic expression.
ftp://ftp.no.scene.org/scene.org/parties/2001/fiasko01/indk/
symbl.zip.

PASKO, A. — ADZHIEV, V. — SOURIN, A. - SAVCHENKO, V. Function
representation in geometric modeling: concepts, implementation and applica-
tions. The Visual Computer, 11(8), 1995.

