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Abstract

Software based filtering techniques often do not satisfy performance requirements
of real-time applications. Therefore various hardware-based solutions have been
introduced to the computer graphics community. In this paper we review methods
that exploit the texture hardware features of consumer graphics cards for filtering
purposes. We compare the texture-based filtering techniques to relevant existing
solutions in qualitative and performance issues.
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1 Introduction

One of the fundamental tasks of computer graphics, image and signal processing
is how to process the sampled data to get the desired result. The one-, two- and
three-dimensional datasets are represented by discrete samples must fulfill certain
conditions of sampling theory. Sampling theory is dealing with two fundamental
tasks - sampling and reconstruction. Sampling describes how dense the original
function should be sampled to be exactly described by its discrete representation.
Reconstruction theory describes how to get the continuous function from its dis-
crete samples [12]. The reconstruction process is defined as a convolution of the
discrete sampled function with a reconstruction kernel. This kernel could be con-
tinuous, but in practice we also use discrete filters of high sampling resolution. The
convolution sum between the sampled function and filter kernel is given by:
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where g(x) is the original function, f[i] its sampled representation and h(z) the
reconstruction filter of width m. If the original function was band-limited before
it was sampled we could perfectly reconstruct it using the sinc function as the
filter kernel. The problem of the sinc filter that makes it unusable in practice is its
infinite support.



2 Related work

Therefore several approaches have been introduced to perform high-quality re-
construction, based on approximation of the sinc on a limited interval. Keys [8]
derived a family of cardinal splines suitable for reconstruction purposes, classifying
the Catmull-Rom spline as numerically most accurate. Mitchell and Netravali [9]
derived another category of cubic splines called BC-splines that are very popular
as reconstructions kernel as well. They have classified various types of these splines
according to the B and C' parameters and determined boundaries of their admis-
sible values. Theu8l et al. [14] classified various windowing functions that limit
the sinc extent to a particular interval, showing the Kaiser, Blackman and Gauss
windows with best properties in the frequency domain. Moller et al. [10] presents
a general framework for cardinal and BC-splines classification in spatial domain.

Although current graphics chips are equipped with a lot of features, the prob-
lem of the insufficient precision of the current hardware remains. Therefore, there
are just few approaches to use the hardware for filtering. The methods are mostly
dealing with image processing filtering methods such as the algorithm introduced
by James [7]. This approach exploits the texture hardware for image processing
convolution. The only method using hardware for high resolution filtering for recon-
struction purposes is proposed by Hadwiger et al. [2, 3, 4]. This general framework
for hardware-based filtering also exploits the texturing hardware the filtering pur-
poses. The image processing convolution by James can be considered as a subset
of this general framework.

Beside these methods another approach was proposed by Hopf and Ertl [5]
using OpenGL Imaging Subset [11] and texture hardware to extend the natively
supported 2D convolution to 3D. A year later they introduced non-linear hardware-
accelerated image processing with erosion and dilation operators [6].

The reason why we do not use the OpenGL Imaging Subset is insufficient per-
formance on consumer hardware, as well as the limitation to image processing
tasks.

3 Hardware based filtering using textures

Graphics chips are designed to perform the primitive mathematical per-fragment
operations for all fragments simultaneously. This fact is exploited in all texture-
based filtering techniques [2, 3, 4, 7]. These algorithms are based on the distribution
principle used in splatting rendering solutions as well [15]. Instead of gathering all
input sample contributions within the kernel width neighborhood of single input
sample, hardware solutions use different evaluation order. This distributes all single
output sample contributions to all relevant output samples. We show the hardware
based distribution filtering principle on a tent filter example. The input sample
function is stored in one texture the filter kernel in another one. The kernel texture
is scaled to cover exactly the contributing samples. The number of contributing
samples is called kernel width. To be able to perform the same operation for all
samples in one time, we have to divide the kernel into several parts to cover always



only one input sample width. Lets call such parts filter tiles. The tent filter is of
width two - there are two samples contributing on the output resampling points
between them. Instead of taking the whole filter kernel, we take first the left tile
of it. As already mentioned this is scaled exactly to the width between two input
samples. To compute the “left” contribution of each input sample we shift the
input texture to the left by one half of the sample distance. After this each input
sample covers exactly the left tile of the filter kernel. Now we have the input
function in one texture and the kernel tile of the input texel width in another
one. The kernel texture is repeated to cover the whole input function. We set the
numerical operation between these two textures to multiplication and render it to
the framebuffer. This subresult is the left tile contribution of each input sample to
the output resampling points. This is done in a single rendering pass. We repeat
this process with the right tile, set the framebuffer blending function to addition
and render the other contribution to the framebuffer again. Framebuffer stores the
result of the filtering process that took two rendering passes. The distribution of
the left and right tile contribution is illustrated in figure 1.

input samples input samples

Figure 1: Distribution of left (a) and right (b) contributions on the resampling
points.

3.1 Filtering algorithms

The general filtering algorithm uses two textures simultaneously. In the case when
the hardware is able to use more than two textures in a single rendering pass,
we can perform more filtering passes in one rendering pass. This increases the
processing perfomance in some cases almost linearly and leads also to qualitatively
better results due to exploiting the hardware internal precision for the addition
as well. The precision of the framebuffer is 8 bits, while the internal precision of
the best consumer cards of today is up to 12 bits. All the algorithms described
below can be to expanded to take advantage of more available texture units or
they can be combined together to achieve optimal results. Each algorithm has its
own notation - the first three letters identify the filtering algorithm and the rest
describe the number of used texture units within the rendering pass.



e Standard algorithm is in fact identical with filtering approach shown on
the tent filter example and is denoted as std-2z. It uses general filter kernel
without exploiting any filter characteristics.

e Symmetric filter kernels could be used for reduction of the hardware
memory consumption. Instead of storing whole kernel, we just store a subset
and generate the desired kernel tile by mirroring the existing parts. The
algorithm does not have any performance influence, therefore we do not
use any special notation, it is used for memory saving purposes, which is
especially significant in the 3D case.

e Separable filter kernel allows us to store the filter kernel in lower dimen-
sional parts, that are multiplied on-the-fly producing the desired filter kernel.
The texture traffic is much lower, which has significant impact on the perfor-
mance, but it involves more texture units than the standard case. We denote
this algorithm by sep-3z.

e Pre-interleaved monochrome input algorithm is exploiting the per chan-
nel dot product pixel shader feature. This method assumes monochrome in-
terleaved textures as input. Each pixel stores its own value in the R channel,
the other three channels are reserved for the next three pixel values toward
the right from the current one. The filter kernel stores the sampled filter in
the same style. This allows to compute four contributions to the current out-
put sample accessing only one input sample. The notation for this algorithm
is dot-2z, or combined with separable kernels spd-3z.

3.2 High resolution filtering vs. image processing

The filtering process discussed till now was a generalisation for all convolution
based filtering methods. However in the special case of image processing filtering,
where the input and output sample grid is exactly the same, we can use the James
algorithm. Instead of using texture tiles for representing the filter kernel, we use
color values. Image processing filters are very rough approximations of the contin-
uous ones. They represent each part or tile only by one value, therefore we can
substitute the filter texture with color values. The reason for using color values
instead of textures is saving the texture traffic and number of texture units, which
could be used to fold more filtering passes into a single rendering pass.

The “dot” algorithm can be used for image processing task as well, but the algo-
rithms exploiting filter kernel properties are irrelevant, because the whole image
procesing filter is stored in a lookup table in just a couple of float values.

4 Applications

This section reviews the possible application areas of the hardware based filtering
approach. Firstly we are going to mention the high resolution filters applicability
and then some image processing areas. The biggest importance of the hardware



filtering principle is its generality - it is possbile to use any type of filter to achieve
high-quality results in real-time.

4.1 Surface textures

The first application area of high resolution filtering is surface texturing. We use
higher order filters of width four, namely cubic B-spline, Catmull-Rom spline and
Kaiser windowed sinc of width four. Using such filters is especially effective, when
the input texture is sampled at low frequency. Reconstructing it using hardware
native linear reconstrucion results in visible artifacts. Software based higher order
reconstruction would not have sufficient filtering performance. The typical low tex-
ture resolution representatives are lighting effects, such as lightmaps [1]. We show
the results of various filter types in figure 2. The performance of the state-of-the-art
graphics cards using various filtering algorithms is shown in the tables 1 and 2.
The tested texture is of 64 x 64 resolution.

# pixels | std-2z (16) | std-4z (8) | dot-2z (4) | dot-4z (2) | sep-3x (16) | spd-3z (4)
60k 25 105 190 275 55 190
180k 25 o7 125 108 55 188
260k o0 36 80 60 46 150
900k 25 15 28 19 22 70
1200k 20 18 28 13 15 29

Table 1: Framerates of NVidia GeForce3 surface texturing, using different filtering
algorithms. In brackets is the number of rendering passes.

# pixels | std-2z | std-4z | dot-2z | dot-4z | sep-3z | sep-6z (8) | spd-3x | spd-6z (2)
60k 24 46 90 167 24 46 90 167
180k 24 34 71 78 24 46 71 83
260k 17 19 45 45 24 46 50 62
900k 9 9 20 19 23 35 26 27
1200k 8 9 16 15 16 24 55) 32

Table 2: Framerates of ATI Radeon 8500 surface texturing. In brackets is the
number of rendering passes.

Figure 2: Surface textured teapot using tent, cubic B-spline, Catmull-Rom spline
and Kaiser windowed sinc filters (from left to right).



4.2 Solid textures

In this case we are dealing with the same higher order filters as in the 2D case,
however they are three-dimensional. This texturing approach is used in cases, when
the two-dimensional description does not provide acceptable results. Some exam-
ples are marble and wood materials. To be able to store more 3D textures in the
hardware memory, we have to store them in low resolution. To obtain high-quality
results from such datasets, higher order filtering must be performed. Another ap-
plication area of growing importance is volume rendering. To avoid the linear
reconstruction artifacts, the kernels of higher order are involved again. The tables
3 and 4 show the performance of various algorithms on a 128 dataset. This dataset
is shown in figure 3 comparing tri-linear to tri-cubic interpolation.

# pixels | std-2z (64) | std-4z (32) | dot-2z (16) | dot-4z (8) | sep-4z (64) | spd-4z (16) ‘
60k 19 21 64 66 21 76
180k 6.5 6.8 20 20 14 20
260k 4.2 4.5 11 11 8.7 34

Table 3: Framerates of NVidia GeForce3 solid texturing.

# pixels | std-2z (64) | std-4z (32) | dot-2z (16) | dot-4z (8) | sep-4z (64) | spd-4z (16)
60k 23 26 71 71 29 90
180k 4.2 4.5 15 16 30 30
260k 2.8 2.3 8 9 18 40

Table 4: Framerates of ATI Radeon 8500 solid texturing.

Figure 3: Solid textured teapot using tent and cubic B-spline filters (from left to
right).

4.3 Animated textures

High-quality reconstruction is even more important when using animated textures
than in the static case. Linear interpolation produces much more visible artifacts,
because the underlying interpolative grid, already stronly visible in the static case,
appears as static layer beneath the moving texture. Higher order filtering like
cubic interpolation completely removes such artifacts. This effect is most visible
in animations with rotating objects. We divide the animation into the following
three types according to their generation stage.



e Pre rendered animation means the frames are computed in a preprocess-
ing step. To be able to perform real-time animation, we have to store all
frames as textures, which has extreme requirements on the hardware mem-
ory capabilities. Therefore we store them in lower resolution and reconstruct
them using higher order filters.

e Procedural CPU animation produce frames generated on-the-fly. Each
frame, which is generated is transferred to the graphics hardware and dis-
played as a mapped texture. The transfer and generation stage are the most
time-consuming operations. Generating and transfering lower resolution tex-
tures significantly improves the performance.

e Procedural GPU animation is similar technique as procedural CPU but
has one advantage among the other ones. The frame produced in graphics
hardware does not need to be transferred to graphics memory, because it
is already stored there. However such animations are much more limited in
the generation stage than CPU generated animations. The reason of low
resolution sampling is the same as in the previous case.

We show the difference between tri-linear and tri-cubic filtering on a pre-
rendered animation frame of variable texture resolution in figure 4.

Figure 4: Prerendered animation frames from the space combat game Parsec [13]
(top column) filtered with tent (middle) and cubic B-spline filter (bottom).

4.4 Derivative filtering

The previous applications used various function reconstruction filters. The gen-
erality of the filtering algorithm allows us to implement derivative reconstruction



on hardware basis as well. This will make possible to compute, e.g., gradients
on-the-fly, which are mostly computed in a preprocessing step in real-time appli-
cations. Although the simplest software solution - central differences - computes
gradients in a short time, it produces visible staircase artifacts. This effect will be
completely removed by using higher order high resolution kernels for the derivative
reconstruction.

4.5 Smoothing

In our high resolution filtering implementation we have used filters of fixed width
of four. The image processing filtering is extended to filters of arbitrary width. The
typical filters of variable width are smoothing operators used for noise reduction
in the way of cutting off the high frequencies of the image. We use two types
of smoothing filters - averaging and Gaussian filter. The second one is based on
the Gaussian lobe function that describes the noise distribution probability. The
table 5 shows performance of the smoothing process on an image of 512 x 512
resolution. Filtering with kernels of width seven and higher results in strong visible
summation artifacts. Therefore we are using quality improvement algorithms that
provide acceptable results, but the framerates are about half of that from the
benchmark table.

kernel width | img. subset std-1z std-2z std-4z dot-1z dot-2x dot-4z
3 3.26 | 120.00 | 180.00 | 185.00 | 275.00 | 307.00 | 314.00

5) 2.86 50.00 74.00 75.50 | 118.00 | 169.00 | 155.00

7 2.48 28.00 40.50 41.70 90.00 | 131.15 | 121.00

9 1.95 17.00 25.90 26.40 50.00 73.66 76.45

11 - 12.00 17.55 17.99 41.48 61.30 99.96

13 - 8.20 12.61 13.55 26.86 41.75 43.15

15 - 6.24 10.03 10.05 22.39 36.68 35.40

17 - 5.00 7.66 7.96 16.76 28.17 | 25.27

19 - 3.95 6.30 6.61 15.02 23.42 24.12

Table 5: Framerates of NVidia GeForce3 smoothing operation, using different filter
kernel width.

4.6 Edge detection

The second type of image processing filters are edge detectors. These are appli-
cable in almost all pattern recognition and computer vision areas, that involve
almost always real-time performance. This is hard to achieve in software solutions,
without exploiting any hardware. Our implementation uses two types of edge de-
tector - Sobel and Laplacian operator. The Sobel filter approximates the first order
derivatives and the Laplacian second order derivatives. The Laplacian filter uses
only one convolution mask for the filtering process and is faster than Sobel. Its
disadvantage is that it describes only the magnitude of the edge response. The



Sobel filter consists of two or more kernels - for each dimension at least one. These
filters are of more variations, the benchmark table 6 shows filtering performance
on an image of 512 x 512 resolution for all of them. The Laplacian filter has two
variations with low weight values and high. This has the impact on the resulting
edge visibility. Similar to Laplacian, the Sobel filter is also presented with low and
high weight values. The next Sobel clones use more than two filter kernels to im-
prove the edge detection process. Also these are of acceptable performance. The
results of the edge detectors using imaging subset and texture based filtering is
shown in figure 5.

edge detector | # kernels | img. subset | std-1z | std-2z | std-4z
Laplace low 1 3.18 | 125.00 | 165.00 | 190.00
Laplace high 1 3.18 | 77.00 | 118.00 | 120.00
Sobel low 2 1.38 | 65.00 | 106.00 | 133.00
Sobel high 2 1.38 | 66.50 | 97.00 | 94.50
Sobel high 2x2 0.70 | 35.30 | 50.00 | 51.15
Sobel high 4 x 2 0.35 | 16.91 | 23.30 | 24.10

Table 6: Framerates of NVidia GeForce3 edge detection, using different edge de-
tecting operators.

Figure 5: Edge detection using Laplacian low and high, Sobel low, high, high 2 x 2
and high 4 x 2 edge detector variations (from left to right). Upper image is filtered
using OpenGL Imaging Subset and below is corresponding texture based filtering
result. The resulting colors are inverted.

4.7 Artistic rendering

Beside these fundamental convolution based operation, there are other arbitrary
filters used in the desktop publishing area. We show that exploiting graphics hard-
ware and combining various features, we are able to implement non-photorealistic
rendering techniques at real-time performance. The artistic techniques discussed
below are shown in figure 6.

e Painting with enhanced edges is a technique, that combines the result
of edge detectors and smoothing in the pixel shader to create customizable



painting-like results. If we turn off the smoothing we get the original image
with enhanced edges, which can be used for pattern recognition purposes as
well.

e Filter combination on a pre-masked image assumes a segmented image
on the input. We use the alpha channel as segmentation masks. We filter the
image more times using various kernels and combine it together using the
alpha test of the source image.

e Pointilism painting uses a randomly generated noise mask for the stencil
test. The generation of the noise mask is the only part of the process done on
CPU. What we do is, we combine the original input image with a smoothed
one to create a pointilism-like effect.

e Anisotropic filtering uses non-symmetric kernels to simulate one-
directional brush strokes.

Figure 6: Various artistic rendering techniques - painting with enhanced edges
(a), filter combination on a pre-masked image (b), pointilism painting (c) and
anisotropic filtering (d).

4.8 Post filtering

All the image processing filters mentioned above are possible to integrate in var-
ious applications. The idea of post filtering is to integrate such filtering directly
into particular process that generates images, but instead of transferring them
immediately to display, we process them with our image processing filters. This
could be considered as “screen space” processing. The typical application is for ex-
ample integrating non-photorealistic rendering technique in a standard renderer,
or to filter the output from a CCD camera for video surveillance purposes. These
examples are shown in figure 7.



Figure 7: Built-in real-time post filtering techniques.

5 Conclusions

We have presented a framework for texture based filtering with arbitrary filters.
The framework shows possibilities to use higher order high resolution filter for re-
construction purposes, as well as simple image processing operators applicable in
pattern recognition or computer vision. Exploiting graphics hardware makes pos-
sible to perform filtering tasks in real-time. The software implementations of such
tasks are still far from real-time. We present an alternative to natively supported
linear interepolation. To remove artifacts of linear filtering, we use higher order
filtering techniques of real-time performance. The image processing operations can
be performed at about 100 frames per second, which can strongly reduce the time
consumption in, e.g., automatic person identification.

However, in some cases we still have problems with hardware shortcomings like
framebuffer range and precision. The precision of 8 bits forces us to include quality
improvement algorithms, that unnecessarily consume processing time.
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