Comparison of Stripification Techniques

Petr Vanécek!
pet@students.zcu.cz

Centre of Computer Graphics and Data Visualization
Department of Computer Science and Engineering
Pilsen, Czech Rep.

Abstract

Triangle surface models are nowadays most often types of geometric objects de-
scription in computer graphics. Therefore, the problem of fast visualization of this
type of data is often solved. One of popular approaches is stripification, i.e., a
conversion of triangle surface into strips of triangles. This enables to reduce the
rendering time by reduction data size and by avoiding of redundant lighting and
transformations computations.

This paper describes the comparison results of classic STRIPE and greedy
SGI based algorithms for stripification.

KEYWORDS: strip, triangle, mesh compression, OpenGL, computer graphics.

1 Introduction

In various computer graphics applications such as CAD, digital cartography,
medicine, etc., triangle models are often used to visualize surfaces and volumes.
The speed of high performance rendering engines on triangular meshes is usu-
ally bounded by the rate at which triangulation data is sent into the machine.
To draw independent triangles we need to transmit three vertices per triangle to
the graphic system, but we can minimize the data by an ordering the triangles so
that consecutive triangles share an edge. Using such an ordering, called triangle
strip, the first triangle is defined by three vertices and the following triangles by
only one additional vertex. This reduces the rendering time by avoiding redundant
data transmission to engine and redundant lighting and transformation compu-
tations. As the datasets in practice are usually huge, substantial speedup and/or
data compression [8] may be achieved in this way.

The triangle strip primitive is supported in many graphics libraries such as
Irix-GL or OpenGL. In Fig. 1 a sequential triangle strip is shown. In this case each
triangle is described by ith, (i + 1)st, and (i + 2)nd vertices of the strip. Using the

1 This work was supported by the Ministry of Education of The Czech Republic - project
MSM 235200005.

sequential strip, the transmit cost of n triangles can be reduced from 3n to n + 2
vertices.

There also exists a situation where the triangle adjacency does not allow a
sequential encoding. In Fig. 2 we have to break the strip, add an inverted edge
4' 4 and continue with the rest of sequence. This inverting operation is called swap
and strips using these swaps are called generalized strips.

2 4 6 2 4 6

1 3 5 7 1 3 45 7
Figure 1: The order of vertices Figure 2: The order of vertices
to send is 1,2,3,4,5,6,7. to send is 1,2,3,4,4’ swap/4,5,6,7.

The swap had been implemented as a one-bit attribute in GL. For better porta-
bility it was decided to not support it in OpenGL and one more vertex is sent to
the engine instead. This means that an empty triangle appears. Although the swap
costs one vertex, it is still cheaper to use the swap instead of starting a new triangle
strip that costs two vertices.

Due to importance of this topic, many algorithms already exist. Because the
computing of an optimal set of triangle strips is NP-complete [5], some heuristic is
necessary. This means that each method has its own advantages and disadvantages.
In this paper we want to explore and compare some of the existing algorithms.
Using this knowledge, we want to develop our own stripification algorithm in the
future.

There exist several different criteria of strip quality, such as number of strips,
number of vertices, locality of the strip etc. The locality criteria are mainly useful
if level-of-detail clipping of geometric models in complicated scenes is expected.
As, at present, we solve only static visualization of simple scenes, we concentrated
on number of strips and number of vertices criteria.

In Section 2, some of existing methods for non-hierarchical meshes are shown.
In section 3, we describe the SGI based algorithms into more details [1]. Another
OpenGL speed-up technique that can be combined with strips is presented in
section 4. Experimental results are published in section 5. Conclusion and future
work are discussed in section 6.

2 State of the Art

Many works on constructing triangle strips were presented. Arkin et al. [4] show
that testing whether a given triangulation of point set or polygon is Hamiltonian
(i.e. the dual graph of triangulation contains a Hamilton cycle) can be done in linear

time. They prove that related problem of computing a Hamilton triangulation is
NP-complete for polygon with holes.

Akeley et al. [1] have developed an algorithm, known as tomesh or SGI algo-
rithm, that converts a fully triangulated mesh into triangle strips. The algorithm
tries to build triangle strips which do not divide the remaining triangulation into
too many small parts. The strip is starting in the triangle with the least number of
neighbors. Then a greedy heuristic is adding neighboring triangles with the least
number of neighbors. If more triangles has the same number of neighbors, the
algorithm looks one step ahead. As this algorithm is one of the most often used,
we decided to pick it for implementation. Therefore, more details are presented in
Section 3.

Other method for stripification is STRIPE [6, 7]. It is public free and it is
used by many authors for comparison. We will also use it as one of method, to
be able to compare our future algorithm to some other (indirectly). The main
idea of this algorithm is base on a fact that there exists a lot of models that
are not fully triangulized (i.e., contains quadrilateral faces). These faces are often
arranged in large rectangular regions called ”patches”. In the first pass (called
”Global algorithm”) the algorithm analyze these patches and stripify them. For
remaining triangles a ”Local algorithm” is used. The local algorithm is based on
the same idea as the SGI algorithm.

A method based on a spanning tree duality is presented in [12]. This algorithm
constructs a spanning tree in the dual graph of the triangulation. Then it partitions
the tree into a set of paths, corresponding to Hamiltonian triangulations, and
greedily decomposes the corresponding Hamiltonian strips into sequential strips.
Finally it concatenates short strips into longer strips using a set of postprocessing
heuristics.

The tunneling algorithm [11] can be used for both static and continuous level-
of-detail (CLOD) meshes. It uses the dual graph representation. There are two
different edges in this representation — ”strip edge” that is a part of strip and
“non-strip edge”. The tunnel in the dual graph is a sequence joining two ends of
strips and alternating between strip and non-strip edges. By changing the strip
edge for non-strip edge and vice versa, the number of strips is reduced by one.

3 SGI-based Algorithm Implementation

In this section some details about SGI-based stripification algorithm will be ex-
plained. The SGI tomesh was developed for generic triangle strips. Because it was
designed for GL which supports a swap command, it doesn’t try to avoid the
swaps. This is no problem for the GL library because you need to send only one
bit per swap. But for OpenGL library it is one vertex per swap. This means that
the generalized strip containing n triangles could be encoded with more than n+ 2
vertices.

3.1

Basic Algorithm

The basic algorithm consists of several steps:

1.

2.

If there are no more triangles in the triangulation then exit.

Find the triangle ¢ with the least number of neighbors (if more than one
exists, choose arbitrary).

Start a new strip.

. Insert the triangle ¢ to the strip and remove it from the triangulation.

If there is no neighboring triangle to triangle ¢ then go to 1.

Choose a new triangle ¢’, neighboring to triangle ¢, with the least number of
neighbors. If there is more than one triangle ¢’ with the same least number of
neighbors, look one level ahead. If there is a tie again, choose ¢’ arbitrarily.

7. t+t'. Go to 4.

The effectiveness of the second step is crucial for the algorithm complexity. The
best possible complexity is a linear function of the number of triangles n. If the
first step is implemented as a sequential search then the algorithm complexity is
close to O(n - s), where s is the number of triangle strips. To avoid this growth of
complexity, some extra-structures have to be used (lists, priority qeue, etc.).

3.2

Choosing next triangle

Because step 6 — i.e., choosing next triangle — is a heuristic and has the most
significant impact on the strip quality, we decided to try some other heuristic
functions and study the influence on the results. We have tested these heuristics:

. Choose the next triangle randomly (thereinafter RN).

. Choose the triangle with the least number of neighbors.

If more than one exists, choose arbitrary (thereinafter LNRN).

Choose the triangle with the least number of neighbors.
If more than one exists then look one level ahead (original heuristic - there-
inafter LNLN).

Choose the triangle with the least number of neighbors.
If more than one exists then choose the one that does not produce a swap
(thereinafter LNLS).

The first heuristic is very easy to implement. It should be fast, but it does not
reflect the main idea of the algorithm — not to break the existing triangulation into
many small parts. The second heuristic is more complex than the first one, but still
more simple than the original one. The result should be better (less fragmented
triangulation) than in the first case. The last heuristic is about the same complexity
as the original (third) one. Instead of trying to look ahead when a tie occurs, a
test for a swap is made. This heuristic should give more strips than the original
one, but probably less vertices.

4 OpenGL Speedup

While using the OpenGL library, some other speed-up improvements could be
done. Few years ago, new extensions had been added to OpenGL system. These
extensions are working with vertex arrays and indices to these arrays. If not using
these extensions, three vertices (3*3 coordinates) are needed to define each triangle.
For two triangles 3*3*2 coordinates are needed, etc. In fact, the vertex coordinates
are shared by more than one triangle (e.g.,in Delaunay triangulation one vertex
is shared by approximately 6 triangles). The reduced data size should be twice
smaller than the original size. Original size is ¢ x 3 vertices * 3 coordinates = 9 x t,
while reduced size is v * 3 coordinates + t * 3 indices, where t is the number of
triangles and v is the number of vertices. Because in a usual triangle model the
number of vertices is about twice smaller than the number of triangles, the reduced
size is £ x 3+t 3 = 5t.

It’s also possible to use these extensions in combination with triangle strips.
The reduced data size while using triangle strips and OpenGL extension should be
about 6 times smaller than the classic method (three times smaller using triangle
strips and twice smaller using the extension).

5 Experiments and Results

All versions of the algorithm from section 3 were implemented in Borland Delphi
5.0. It has been tested on 25 models from data sets from [9, 10, 2]. Experiments
have been performed on a PC AMD Duron 850MHz with 256 MB of RAM and
Geforce 2 MX graphic card, running on MS Windows 2000 system. The imple-
mentation was compared to one of the best known publicly available algorithm -
STRIPE (http://www.cs.sunysb.edu/"stripe/) with default settings. The times of
I/O operations have been excluded from measurements.

Tables 1 and 2 show comparison of the classic OpenGL rendering method,
extensions, triangle strips and triangle strips combined with extensions. Table 1
shows the frame rate and Table 2 shows the ratio of tested method frame rate to
classic method frame rate. To be able to make one triangle strip per mesh even
for large data sets, we decided to use artificial data (i.e., planar rectangular grid).
In these two tables we want to show the advantage of using triangle strips and
OpenGL extensions.

of triangles ok | 19k | 44k | 79k | 124k | 179k | 244k | 318k | 403k

classic 138 | 56.2 | 28.7 | 18.7 12 85| 6.2 5.2 | 4.2
extension 124 | 97.7 | 53.5 33 21| 15.5| 11.5 97| 1.7
strips 111 | 75.5 | 72.5 | 45.5 | 30.5 | 22.7 17| 142 | 11.5

extension + strips | 99.5 | 142 | 82.5 | 66.7 | 45.2 | 39.7 | 31.2 | 26.3 22

Table 1: Frame rate - comparison of classic calls, extensions, triangle strips and
extensions + triangle strips. All values are in frames per second.

of triangles bk | 19k | 44k | 79k | 124k | 179k | 244k | 318k | 403k
classic 1 1 1 1 1 1 1 1 1
extension 090174186 |1.76 | 1.75| 1.82 | 1.86| 1.86 | 1.84
strips 0.80 | 1.34 | 2.53 | 2.43 | 2.54 | 2.67 | 2.76 | 2.73 | 2.76
extension + strips | 0.72 | 2.53 | 2.87 | 3.57 | 3.77 | 4.67 | 5.06 | 5.06 | 5.28

Table 2: Ratio - comparison of classic calls, extensions, triangle strips and exten-
sions + triangle strips. Values are computed relatively to the classic method.

Extension speedup is close to theoretical bounds (about 1.85 for larger data
sets). The difference is probably caused by the border of the grid, where the ver-
tices are used only three times. The speedup while using triangle strip is a bit
smaller (about 2.7 for larger data sets) than expected. This difference could be
caused by the swaps that are needed to cover the grid. While using the combina-
tion of both methods, the speedup is close to the theoretical expectation (strips
speedup * extension speedup). This measurement also affirms the theory that the
speed is not bounded by the rendering process itself but by the rate at which the
data are transmitted into the graphical processor.

Table 3 shows the information about data sets used in tests presented below.
We have chosen eleven models that are often used in other papers and are available.

| model | # vertices | # polygons || # | model | # vertices | # polygons
1 | sphere 146 288 || 7 | bunny 35947 69451
2 | 12 961 1800 || 8 | bell 213373 426572
3 | elipsoid 2452 4900 || 9 | hand 327323 654666
4 | cow 2905 5804 || 10 | dragon 437645 871414
5 | demi 9138 17506 || 11 | happy 543652 1087716
6 | teeth 29166 58328 buddha

Table 3: Set of testing models.

Next tables show a comparison of the SGI based method with all four modi-
fications and the STRIPE algorithm. Table 4 shows the number of strips in the
models. For bigger models, the behavior of all modifications of SGI is the same as
we expected. RN method is the worst one and LNLN gives the best results. Ex-
cept the ellipsoid (3), STRIPE is worse than the SGI LNLN method. For bigger

data the STRIPE algorithm was too slow and we got incorrect output (the same
behavior as reported e.g. in [11]).

model 11 2| 3 4 5 6 7 8 9 10 11
method

RN 17190 | 26 | 185 | 812 | 4083 | 2406 | 18103 | 38259 | 62911 | 78192
LNRN 2122 3110|412 | 1319 | 927 | 10578 | 10983 | 20617 | 25685
LNLN 1115124 | 981|336 | 1068 | 648 | 8094 | 9381 | 17401 | 21555
LNLS 1 (13|48 | 158 | 452 | 1776 | 1291 | 11680 | 15780 | 26639 | 33187
Stripe 2118 | 1101|385 | 1255 | 917

Table 4: The number of strips needed for model.

In Table 5, the number of vertices after stripification is shown (for graphic
interpretation see Fig. 3). The LNLS method is better than the original method.
STRIPE algorithm is worse than LNLN and LNLS method (except ellipsoid (3)).

model 1 2 3 4 5 6 7 8 9 10 11
method
RN 366 | 2.8k | 6.3k | 7.7k | 24k | 89k | 92k | 598k | 1.0M | 1.3M | 1.7TM
LNRN | 363 | 2.6k | 5.3k | 7.7k | 23k | 85k | 92k | 591k | 944k | 1.3M | 1.6M
LNLN 335 | 2.5k | 5.1k | 7.6k | 23k | 82k | 86k | 584k | 886k | 1.2M | 1.5M
LNLS 313 | 2.4k | 5.1k | 7.1k | 22k | 76k | 82k | 543k | 823k | 1.1M | 1.4M
Stripe | 363 | 2.5k | 5.0k | 7.6k | 23k | 84k | 91k

Table 5: The number of vertices needed for model.

The comparison of time is presented in Table 6 (for graphic interpretation see
Fig. 4). Although the condition in RN method is short, the time is worse than
the other methods. This is probably caused by bigger number of strips and bigger
number of vertices which increase the number of other decisions. The fastest is
method LNRN. The STRIPE algorithm seems to be very slow (four and more
times slower than any other method).

|model [1] 2| 3| 4] 5] 6] 7] 8] 9] 10 11]

RN 0] 20 41| 40 | 120 | 511 | 581 | 3385 | 4967 | 7851 | 9915
LNRN [0] 10 30| 50| 130 | 450 | 591 | 3375 | 4697 | 6960 | 7992
LNLN | 0] 20 30| 40 | 130 | 471 | 371 | 3435 | 4787 | 7080 | 8002
LNLS [0 | 10 40 | 40 | 131 | 461 | 581 | 3475 | 4917 | 7281 | 8312
Stripe | 0 | 120 | 7621 | 220 | 551 | 1963 | 3585

Table 6: Time needed for stripification in milliseconds.

One of the reasons why the STRIPE seems to be so bad is that STRIPE is
constructed for data sets that are not fully triangulized, but our testing models

are fully triangulized. This is a bit unfair, because only the local algorithm is used.
The reason why we decided to use STRIPE as a testing method is that many other
authors use it and so we are able to compare our method to them indirectly. We do
not know why the STRIPE fails on bigger data, but it is not only our experience.
The same behaviour is mentioned also in other papers ([11, 3] and even the authors
of STRIPE [6] are testing the algorithm on small data only). We briefly checked the
code of STRIPE and we found some non-optimal parts of code that slow STRIPE
down.

We have also tested the length of strips. The typical histogram obtained by
LNLN method is shown on Fig. 5 (dragon). As you can see, in a typical model
most of the strips is quite short but there exists a limited number of strips that
are much longer. We have tried to normalize the histogram by cutting the long
strips to avoid breaking the triangulation, but the effect was different than we
expected: both the number of triangles and the number of vertices increased as we
have decreased the maximum length of a strip.

From these results, a conclusion can be done that from SGI-based method,
LNLN provides the smallest number of strips while LNLS needs the smallest num-
ber of vertices. The difference in rendering time while using a model stripified by
LNLN and LNLS method is less than 1%. RN and LNRN modification provided
slightly worse results. The STRIPE algorithm gave relatively bad results although
it is widely used as a comparative standard in stripification papers.

Number of Vertices
1800000
1600000 4| RN
= LNRN

1400000 LMLMN
7]
S 1200000 { | LMLS
= —— STRIPE
£ 1000000 A
LT
(=]
L 800000
sl
§ 600000

400000 A

200000 o

O "; : T T T T T
0 200000 400000 00000 800000 1000000 1200000
number of triangles

Figure 3: Number of Vertices.

Runtimes

12000
—&— RN
10000 4 |5 LNREM
—A— LMNLIM
—_ —— STRIPE
£
s G000
£
4000
2000
O 4 T T T T T
8] 200000 400000 500000 S00000 1000000 1200000
number of triangles
Figure 4: Runtimes.
r 3
0
o
=
)
w
@
(@]
L
o
=
[TR—
o
{5
QD
0
E
3
prat .
Dragon: 871414 triangles
1 e N e R T T R TR TR 1 1 o
Triangle strip length

Figure 5: Typical histogram of length of strips using LNLN method.
The Dragon model has 17401 strips.

6 Conclusion

We have implemented several versions of the so called SGI method and compared
them to an existing and often used algorithm - STRIPE. We wanted to get some

ideas about the stripification — whether it is useful, what is the typical behaviour,
etc. We will use this experience in the future as a theoretical base for our new
intended stripification algorithm.

References

[1] K. Akeley, P.Haeberli, and D.Burns. tomesh.c. C Program on SGI Develope’s
Toolbox CD, 1990.

[2] University of West Bohemia CCGDV. Data archive. http://herakles.zcu.cz/
research /mve/download.php.

[3] M.V.G. da Silva, O.M. van Kaick, and H. Pedrini. Fast mesh rendering
through efficient triangle strip generation. In WSCG’2002, pages 127-134,
2 2002.

[4] E.M.Arkin, M.Held, J.S.B.Mitchell, and S.S.Skiena. Hamiltonian triangula-
tions for fast rendering. Visual Comput., 12(9):429-444, 1996.

[5] F. Evans, S. Skiena, and A. Varshney. Completing sequential triangulations
is hard. Technical report, Department of Computer Science, State University
of New York at Stony Brook, 1996.

[6] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast
rendering. In Roni Yagel and Gregory M. Nielson, editors, IEEE Visualization
’96, pages 319-326, 1996.

[7] F.Evans. Stripe, 1998. http://www.cs.sunysb.edu/ stripe/.

[8] Martin Isenburg. Triangle strip compression. Technical Report TR00-003,
University of North Carolina at Chapel Hill, 2000.

[9] Stanford Computer Graphics Laboratory. http://graphics.stanford.edu/
data/3Dscanrep/.

[10] Georgia Institute of Technology. Large geometric models archive. http://
www.cc.gatech.edu/projects/large_models/.

[11] A. James Stewart. Tunneling for triangle strips in continuous level-of-detail
meshes. In Graphics Interface, pages 91-100, June 2001.

[12] Xiang, Held, and Mitchell. Fast and effective stripification of polygonal surface
models (short). In SODA: ACM-SIAM Symposium on Discrete Algorithms (A
Conference on Theoretical and Experimental Analysis of Discrete Algorithms),
pages 985-986, 1999.

