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Abstract

In this paper we introduce, analyze and compare seve-
ral methods, which may be used for morphing three-
dimensional models represented by point clouds. Our
methods consider only the local geometric information ex-
pressed by the point locations in 3D space. No additional
topological information is required. The presented meth-
ods allow the morphing between two models represented
by point clouds.
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1 Introduction

The representation of geometric models by large sets of
point samples (a.k.a point clouds) constitute one of the
canonical data formats for scientific data visualization. We
can acquire point clouds from the measurement of some
physical process. Point clouds can represent surfaces, vol-
umetric or iso-surface data. The availability of the mod-
ern 3D scanners brings the possibility to acquire point sets
representing the surface of the analyzed solid, that contain
millions of sample points.

Point cloud can be for some applications better repre-
sentation than widely used boundary representation. This
holds mainly for very complex models, such as fractal
surfaces. It is generally good idea to store these object
as point clouds, because the algorithms for conversion to
the surface representation (such as polygonal mesh) are
very computationally involved and require great amounts
of main memory. One reason for the inefficiency of bound-
ary representation is that highly detailed models contain
a large number of small primitives, which fill lesser area
than a pixel when they are projected and displayed.

Point cloud is the unstructured set of point samples. One
point sample is elementary object, specified by its location
in 3D space, normal vector, color, transparency and size.
Single point sample can be visualized as a small sphere or
a point (pixel). As presented in [2], [4] and [5], a point set
representing the surface of a model can be rendered as a
solid textured surface.�
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2 Morphing

The morphing between two solids is the animation, during
which the solid smoothly changes its shape from one shape
to another. Our goal is implement and analyze several
methods, which may be theoretically applicable to mor-
phing between two point clouds. The methods should be
independent of the topology of the models (should con-
sider only the locations, possibly normals of the point sam-
ples) and should be able to perform morphing between two
different-sized point clouds.

The fundamental principle underlying all introduced
methods is the finding of the mapping
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where � is the point set of the first (source) model and� is the point set of final (destination) model. The ac-
tual morphing is the result of the motion of the individ-
ual points on the path between two points ����� � and� ��� ��
 � ��� ��� ����� . In reality the situation is slightly
more difficult, because one point of the source set can be
assigned to multiple points of the destination set and vice-
versa. Therefore the morphing can be expressed by the set
of point couples � ��� � � � 
 � � �! "� � � �#
 � � � ��$ . The
morphing can be performed by the computing of the loca-
tion of the points % � of transition solid, % � �'& � � � 
 � � 
)( � ,
where ( �
*,+ 
.-0/ is the progress of morphing. If we choose
the straight motion paths, the function & will be simple lin-
ear interpolation. The resulting number of points involved
in morphing is equal to the cardinality of the set � . There-
fore the whole problem with morphing can be reduced to
the finding of the suitable relation � .

The assignment process can be based on various crite-
ria. Probably the most commonly used criterion will be
that the total distance, which the individual points travel
during the morphing, is minimal. In this case the finding
of mapping � is equivalent to the solving of the optimiza-
tion problem
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where E � � � 

� � � is the real-valued nonnegative metric func-

tion. In the simplest case, where the paths between source



and destination points are lines, the Euclidean distance be-
tween source and destination points is the appropriate can-
didate for the metric E � �0� 


� ��� . The metric can depend also
on the additional attributes of point samples, such as the
orientation of both normal vectors.

The trivial algorithm, which finds all possible assign-
ments and chooses the optimal solution based on the opti-
mization criterion, is unusable because of its exponential
computational complexity. Where this algorithm can be
used for finding the assignment between small point sets
(max. 10 points), the models represented by point cloud
contain thousands, possibly millions of sample points. We
can find the assignment by incorporating the algorithms of
artificial intelligence (searching in the state space), genetic
algorithms, or space partitioning (clustering). This report
introduces several methods based on clustering.

3 Clustering

The idea of clustering is to group the points into a smaller
number of clusters and find the mapping � between the
two sets of clusters. The motivation behind the use of clus-
tering is basically to reduce the problem size, solve the
morphing on the higher level (cluster level) and then de-
scend to the lower level. This approach is based on “divide
and conquer” programming technique.

Clustering is one of generally used methods for the sim-
plification of the point-sampled geometry. In the process
of clustering the unstructured point cloud is divided to
several smaller, spatially compact subsets (clusters). The
clusters can be in the next step of simplification replaced
by single point samples, whose size will reflect the size of
replaced cluster. Two methods of clustering are clustering
by incremental region-growing and hierarchical cluster-
ing. In our implementation we will use the latter method.
This method is suitable for our needs, because it organizes
the point cloud by creating the hierarchy of the subsets of
point cloud. All implemented methods are based on the
methods for efficient point cloud simplification from [1].

The hierarchical clustering is based on the partitioning
of the point cloud. The recursive algorithm divides the
point cloud � to several smaller point clouds (clusters).
The result of the algorithm is tree, whose nodes repre-
sent point sets. The root represents the point cloud � ,
the leaves represent the terminal clusters (which are fur-
ther indivisible and whose size is smaller than the speci-
fied limit or which contain only one point). The presented
algorithms will be shown on the hierarchical clustering us-
ing binary space division (BSP tree). Other similar data
structures, such as octrees, can be also used [4].

The hierarchical clustering using binary partition per-
forms recursive division of point cloud to two parts by the
split plane. The split plane is determined in most cases
by the anchor point (usually the center point - centroid of
the point set) and the normal vector. The choice of normal
of the split plane has great impact on the quality of the

morphing. The division algorithm is then applied to two
resulting point sets. The cluster is divided only if its size
is larger than the specified limit. In the text below, several
possible methods for the finding of the normal of splitting
plane are shown. As the anchor point of the splitting plane
we will choose in most cases the centroid of the point
set. For the covariance analysis is the centroid the only
plausible choice; for the other methods we could use also
other points, such as the center of bounding box/bounding
sphere of the point set.

3.1 Orthogonal Clustering

In this straightforward algorithm the normal of split plane
is chosen alternately in the direction of � , � and � axis,
depending on the depth of divided cluster in the binary
tree (see figures 1 and 2).

Figure 1: (a) Orthogonal clustering. 2D for illustration.
(b) First 4 steps in 3D. The thickness of line indicates the
level of BSP tree.

Figure 2: BSP tree for figure 1 (a). Normal vector of the
split plate is shown for every inner node.

This method is very easy to implement. The disadvan-
tage of this method is that the point cloud is split by or-
thogonal cuts, which can be visible during the morphing.
For the reduction of this undesirable phenomenon we can
apply a random noise function to the normal vector of the
split plane.

3.2 Bounding Box Division

This method is based on the division of the (axes-aligned)
bounding box of the point cloud. The parameters of the
bounding box are computed from the coordinates of all
point samples and the bounding box is split into two equal



halves by the plane perpendicular to its longest axis. This
method does not necessarily involve the computation of
the centroid for each cluster (the anchor point for the split-
ting plane can be chosen as the center of the bounding
box), but we must find the dimensions and location of the
bounding box. The bounding box can be specified by two
points in 3D space, representing the lower front left and
upper back right corners. This method leads to decent re-
sults, compared to orthogonal clustering. However, the
method is more computationally expensive than the for-
mer method, since the finding of the corners of the bound-
ing box takes several times (roughly twice) more time than
the finding of the centroid.

3.3 Covariance Analysis

The normal vector of the split plane can be found using the
covariance analysis of the neighborhood of the centroid
of the point cloud. The covariance analysis allows us to
estimate various local surface properties, such as normal
vector of approximation surface or surface variation. The
covariance matrix � of the point cluster � is defined as
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where
�

is the centroid of point set � . Since
�

is
symmetric and positive semi-definite, all eigenvalues � � ,1 � � + 
�-2
�� $ are real-valued and the eigenvectors � � ,1 � �0+ 
.-2
�� $ form an orthogonal basis. The eigenvalues� � measure the variation of point set along the direction of
the corresponding eigenvector.

If we assume that �������! ��"� G , the plane�$# � � � 
 �%� � +
minimizes the sum of squared distances to the neighbors
of

�
. If � is the set of points representing the surface,

then the normal �&� of this plane is the approximation of
the normal of this surface in

�
, and the plane is the pla-

nar approximation of the surface in the neighborhood of
�

(tangent plane). The eigenvalue �'� expresses in this par-
ticular case the variation of the surface along the normal� � , or by other words it estimates how much the points of
surface deviate from the tangent plane. For more detailed
description see [1].

The normal vector of the split plane will be defined by
the centroid of � and the largest eigenvector of the covari-
ance matrix of � (which is � G ). The point cloud is always
split along the direction of greatest variation, see the fig-
ure 3.

The drawback of this method is increased computa-
tional complexity (although the asymptotic complexity re-
mains the same). Besides the centroid we must evaluate
the coefficients of covariance matrix

�
(since the matrix

is symmetric, there are six coefficients), find the roots of
characteristic polynomial of

�
and finally compute the

eigenvector corresponding to the largest eigenvalue.

Figure 3: (a) Clustering based on the covariance analysis.
2D for illustration. (b) First 4 steps in 3D. The thickness
of line indicates the level of BSP tree.

4 Assignment of Points

The trees ( : and ( ? created by the clustering of starting
and final point-cloud model in the next stage serve as in-
put for the algorithm for the generation of assignments� �'� � � � 
 � � � $ . The algorithm is pretty straightforward:
in each step will be assigned one cluster from ( : to some
cluster from ( ? . In the beginning the roots of both trees are
assigned one to another and the assignment is put to the or-
dinary queue. In the next step, the assignment �*) : 
+) ? � is
extracted from the queue. If any of the clusters ) : , ) ? is
a leaf, the assignment is put again to the queue, else the
children of ) : and ) ? are examined, assigned to each other
and these assignments are put to the queue. This step is
repeated until the queue contains only the assignments of
type �,) : 
+) ? � , where at least one of ) : or ) ? represents a
leaf in the corresponding tree (terminal cluster). For an
example of possible assignment see the figure 4.

Figure 4: An example of the assignment of points

The way clusters are assigned to each other depends on
the chosen metric function. Since we have defined the met-
ric E only between two points (which will be in our case an
Euclidean distance between two points, E � � 


� � �  � � �  ),
we have to extend the definition, so it could be applicable
also to clusters. The metric E �,- 
�. � between two clusters- ��( : , . �/( ? is defined as E � %!0 
 %'1 � , where %'0 and %'1 are
centroids of clusters - and . respectively. Let us assume
that both trees are regular with the same degree 2 (every
internal node has exactly 2 children). During the finding
of assignments of children of source node ) : to the chil-



dren of destination node ) ? we seek such permutation � of2 elements, which minimizes the following expression:58 ���  EHG � �0� 
 � � 9 � A � 

where ) : ��� �  
 � G ����� ��5 $ and ) ? � � �  
 � G �����

� 5 $ ; �0�
and

� � are children (subclusters) of nodes (clusters) ) : and) ? . This can be most easily done by trying all 2 � possibili-
ties and choose the optimal. While 2 will be usually small
(2 for BSP tree, 4 for quadtree or 8 for octree), this rather
brute-force approach is an acceptable solution.

The algorithm presented above generates the set of as-
signments �	�H� � �,) : 
+) ? � $ , where ) : and ) ? are clusters
from source and destination point clouds respectively. We
need to generate the assignment of individual point sam-
ples. This can be done by replacing the assignments be-
tween clusters by the sets of assignment between points.
The assignment ��
 

� � ��� � , where 
 � �,-  
+- G ����� -�� �and � � �*.  
�. G ����� .�� � , will be replaced by the set of �
assignments �*- � 
�.�� � , where � ������� ��� 
�� � . Assuming
that ����� , this set can be described as mapping of the
set � onto the set 
 . The actual mapping we can choose
deliberately or we can apply some criteria based on metric
function. The only important feature of this mapping is
that it should be uniform in the sense that the number of
points from � assigned to individual points - �#� 
 should
be for all points - � approximately the same. The situation
can be simplified if we set for the clustering algorithm the
maximum limit for the cluster size to 1, so the assignments
between clusters will be always of type - �! or  � - .
4.1 Linear Interpolation

By computing the set � of the assignments between indi-
vidual point samples we have reduced whole rather com-
plicated problem with point cloud morphing to the triv-
ial problem of morphing between the assigned point pairs.
Considering the straight paths between assigned points� �0� 
 � ��� , we can get the coordinates of the points of transi-
tion point cloud % � using the linear interpolation

% � � & � � � 
 � � 
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where ( is the progress of morphing. This can be applied
not only to the coordinates, but also to other properties of
point samples, such as color (red, green and blue compo-
nents), transparency or size. With the normal, the situa-
tion is slightly more difficult. The interpolation of indi-
vidual components of the normal is not optimal, because
during the interpolation the length of normal and the angu-
lar speed of vector rotation is not constant (as it should be).
The first problem can be solved by the subsequent normal-
ization of normal vector. The better (and slower) solution
is to rotate the normal vector instead the interpolation of
the components. In most cases, however, the differences
between results of methods which use interpolation with
normalization and rotation are negligible.

Another possible solution is to use the polar coordinates
for normals, so instead of coordinates we have to store the
angles (since all normals are unit vectors, we do not have
to store the length of vector). The linear interpolation of
angles will yield correct results. During the rendering the
angles have to be transformed back to the normals. This
method will give the same results as the rotation of vectors
and is faster and less memory expensive (we have to store
two angles instead of three components of normal).

5 Implementation and Testing

For the purposes of testing we have developed an applica-
tion that can load two point cloud models, perform the nec-
essary data preprocessing, perform the hierarchical clus-
tering, generate the assignments between point pairs and
visualize the actual morphing process. Our application
was written in C++ using OpenGL and Qt 2.3.0 and com-
piled by MSVC 6.0 under Windows. Some data structures
and the format of input files were adopted from the exist-
ing application QSplat [6] (a visualization system for point
cloud models).

The implemented methods for morphing between mod-
els represented by a point cloud have been tested on twenty
pairs of models. For some of the pairs the computation
times of the process of finding of the assignment of points
have been measured. The asymptotic complexity of the
orthogonal clustering, the clustering based on the covari-
ance analysis and the computation of the assignment of the
points have been calculated.

The orthogonal clustering and the axes-aligned bound-
ing box division have the $ � 2 
&%('*)

G 2 � complexity. The
clustering based on the covariance analysis have also the
$ � 2 
+%('*) G 2 � complexity, they differ only in constant. The
computation of the assignment of the points has the $ � 2 �
complexity.

The measured durations for the tested pairs of models
are given in the table 1. Three pairs of models were tested:
the sphere and the Stanford bunny (both models have the
same number of points), the African mask and the Christ-
mas star, and finally the lion and the dinosaur. The mea-
sured times correspond to the fact that the asymptotic com-
plexities of all tested clustering methods differ only in con-
stant.

We have decreased the computational complexity and
the total time spent by finding the assignments by allowing
to store the once found assignments of points to file and
then load it again.

The progress of morphing of the tested pairs of models
using various clustering methods is shown on the figures
6-10 (morphing of the sphere to the bunny), figures 11-15
(morphing of the African mask to the Christmas star) and
the figures 16-20 (morphing of the lion to the dinosaur).
Besides four tested clustering methods (orthogonal clus-
tering, orthogonal clustering with random noise, bounding
box division, covariance analysis) there is also shown for



Models sphere-bunny mask-star lion-dinosaur� �����
35 285 54 773 183 409� �����
35 285 75 782 56 195

�
	��
2s 7s 16s

� 	���

2s 7s 16s

���������
7s 25s 73s

�����
20s 78s 302s

Table 1: Measured times

the sake of comparison the case when the assignment of
points is chosen randomly.

In the table 1,  �   is the size of the point cloud of the
source model and  � G  is the size of the point cloud of
the destination model. The values (���� , (
����� , (
�������
and (
��� are the times spent by computing the assign-
ment of the points for the morphing using the orthogo-
nal clustering, orthogonal clustering with random noise,
axes-aligned bounding box division and covariance analy-
sis respectively. The values were measured on system with
processor Athlon 1GHz and 256MB RAM.

6 Discussion

In this section we will discuss the problems that provides
the implemented methods. The main problem is the occa-
sional occurrence of cracks in the model during the mor-
phing. The cracks occur because of the space partitioning
and the non-convexity of the shape. Our opinion is that
this problem can not be eliminated only on the assumption
of the sum of squared distances as the criterion of qual-
ity. This criterion is usable only for convex shapes. In a
convex shape every surface point can be connected with
every other surface points with a line without intersecting
the surface of the shape. If a convex shape is divided by a
split plane then the results are always two convex shapes.
On the other hand a non-convex shape can be divided by a
split plane to any number of convex or non-convex shapes
and this is the main reason for the occurrence of cracks,
see figure 5.

Alexa et al. have presented in [3] methods for trans-
formation of a non-convex B-rep shape to a convex shape.
The 3D manifold objects are homeomorphic with a sphere,
so the unit sphere is the convex shape on which the non-
convex shapes should be transformed. Those methods can
be adapted for the point cloud representation.

One class of shapes are the star shapes. For a star shape
exist at least one point $ inside the shape which can be
connected with every boundary point of the shape with
a line without intersecting the surface of the shape. The
point $ is called origin. If the coordinate system is trans-
formed to be the origin $ in its center and the coordinates
of each boundary point normalized then the star shape has
been transformed to the unit sphere. The main problem is
to find whether a shape is a star shape or not and find the

Figure 5: (a) The source shape. (b) The target shape. A
crack will occur because of the non-convexity of source
shape.

origin $ , especially for point cloud representation where
no information about the surface is included.

Second class of shapes are non-convex non-star shapes.
This class of shapes can be transformed to unit sphere us-
ing the barycentric mapping. The barycentric mapping
uses a simple idea that every point is placed in centroid of
its neighbors. The shape should be down-sampled until it
is a convex shape. The coordinate system should be trans-
formed to be the centroid of the shape in its center, then
the coordinates of the points should be normalized, and the
down-sampled points should be up-sampled on unit sphere
respecting the idea of barycentric mapping.

In this case the paths can not be lines. The paths
should depend on function which transforms the non-
convex shape to unit sphere.

These problems are rather non-trivial ones and the fu-
ture work will be focused on these particular problems.

7 Conclusion

For convex or just a little bit non-convex models gives the
best results the morphing based on the orthogonal cluster-
ing. The generally best method for non-convex models can
not be chosen. The testing has proved that the results of all
methods depend on the shapes of the source model and the
target model.

These methods are not usable for high-quality morph-
ing, so the methods have to be improved. The sum of
squared distances can not be used as only criterion of qual-
ity for non-convex shapes. Non-convex shapes have to be
transformed to convex shapes.

7.1 Features
� Point cloud morphing allows morphing between two

point clouds representing geometric models with dif-
ferent topologies that can not be transformed easily
one to another (i.e. sphere to toroid) and even for
models, for which there is no clear notion of surface
(e.g. vegetation).



� Cracks occur in the model during a morphing because
of the space partitioning and the non-convexity of the
shape.

7.2 Future Work
� Transform the shapes to the unit sphere before the

clustering.

� Incorporate the topological information to algo-
rithms.
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Figure 6: Example of morphing between model of sphere and model of Stanford bunny (random assignment).

Figure 7: Example of morphing between model of sphere and model of Stanford bunny (using orthogonal clustering).

Figure 8: Example of morphing between model of sphere and model of Stanford bunny (using orthogonal clustering with
random noise).

Figure 9: Example of morphing between model of sphere and model of Stanford bunny (using axes-aligned bounding box
division).

Figure 10: Example of morphing between model of sphere and model of Stanford bunny (using covariance analysis).



Figure 11: Example of morphing between model of African mask and model of Christmas star (random assignment).

Figure 12: Example of morphing between model of African mask and model of Christmas star (using orthogonal cluster-
ing).

Figure 13: Example of morphing between model of African mask and model of Christmas star (using orthogonal clustering
with random noise).

Figure 14: Example of morphing between model of African mask and model of Christmas star (using axes-aligned
bounding box division).

Figure 15: Example of morphing between model of African mask and model of Christmas star (using covariance analysis).



Figure 16: Example of morphing between model of lion and model of dinosaur (random assignment).

Figure 17: Example of morphing between model of lion and model of dinosaur (using orthogonal clustering).

Figure 18: Example of morphing between model of lion and model of dinosaur (using orthogonal clustering with random
noise).

Figure 19: Example of morphing between model of lion and model of dinosaur (using axes-aligned bounding box divi-
sion).

Figure 20: Example of morphing between model of lion and model of dinosaur (using covariance analysis).


