
Realistic Materials for Virtual Real-Time Environments

Marc Boßerhoff∗

André Nicoll†

Computer Graphics Group
Bonn University
Bonn / Germany

Abstract

Bidirectional Texture Functions (BTF) can be used to ren-
der realistic surfaces without the need of modeling details
in geometry. For efficient, real-time rendering on current
graphics hardware it is necessary to find good approxima-
tions for the BTF data, because the full data is too large
to be rendered. We will compare two approximations,
the Polynomial Texture Map (PTM) and the Per-Pixel-
Lafortune-BRDF. To use larger samples, we use texture
synthesis methods based on BTF analysis with the BTF
samples and compare the results obtained with different
settings and materials. We combine these approaches with
a rendering method that provides real-time rendering on
large surfaces, but does only need little more memory than
for the small samples.

Keywords: Image Based Rendering, BTF, real-time ren-
dering, texture synthesis, appearance

1 Introduction

The objective in virtual environments is to create a most
realistic representation of reality. To achieve this, we can
model the complete geometry as good as possible and use
raytracing-methods to simulate the radiation-exchange of
all the surfaces. Due to restrictions of graphics hardware,
this approach is not possible in real-time hardware in the
moment and triangle based approaches use too much tri-
angles to be rendered in real-time hardware.

To achieve the ability to render models in real-time, we
must approximate geometry in less detail, but then we
loose much of the highly detailed reflection information
of realistic surfaces. To restore as much information as
possible, we use a representation for the surface materials,
which is not very memory-consuming, and can be com-
puted in graphics hardware in real-time.

To use the capabilities of the latest generation graph-
ics hardware, we decided to implement the Polynomial
Texture Map [10] and the Per-Pixel-Lafortune-BRDF [6],
to verify their suitability for realistic real-time environ-
ments. This means, that they must be efficient to compute

∗bosserho@cs.uni-bonn.de
†nicoll@cs.uni-bonn.de

in graphics-hardware and have a small visual error, com-
pared to the original surface.

To gather the reflection information of real surfaces we
use an image-based way. We take shots of real surfaces for
a great set of varying light- and view-directions which are
evenly spread over the hemisphere, at least 6000 images.
We use our automated photo laboratory for this. The ma-
terial is mounted on a movable robot and the light-source
and the camera rotate around the robot. This procedure
takes at least 12 hours to complete. These stacks of im-
ages are used as BTFs to fit the models for one view slot
to represent a reflectance field.

Another problem with BTF samples is that they are
taken from real world samples with limited sizes and that
large samples need huge amounts of memory. Simple
tiling of the measured samples usually leads to visible bor-
ders, so we decided to try texture synthesis algorithms to
overcome this problem. For synthesizing BTFs instead of
textures, we found the approach of Tong et al. [15] useful
who use a BTF analysis before the synthesis.

We will show that we can use the combination of both
ideas for a rendering algorithm that provides real-time ren-
dering of large approximated BTFs. We also found that
we can take advantage of the synthesized BTFs to render
BTFs much larger than the samples, but only need addi-
tional memory for a small coordinate map.

2 Related Work

2.1 Representation

For rendering realistic materials we have to simulate the
four-dimensional BRDF(ωi, ωe) for every point on the sur-
face. But such a truly realistic simulation will exceed the
capacities of modern graphics hardware.

With very simple geometries, texture- and bumpmap-
ping yield good results for simple materials, but for more
complex materials we will need the ability to change the
appearance for varying light and view conditions. Early
approaches simulated a single BRDF for the whole mate-
rial (Ward [16] or Lafortune [6]). Kautz and McCool [4]
approximated the BRDF by two functions, whose results
are stored in textures and were combined by the graphics
hardware. McCool [12] improved this method by homo-



morphic factorization, to give the user more control over
the quality. These methods where improved by [13], [14]
and [7] to BRDFs, lit by prefiltered environment maps, but
their models are currently not capable for real-time render-
ing of BTFs.

For fixed viewpoint the polynomial texture map (PTM)
by Malzbender et.al. [10] is very suitable for varying light
conditions and can be easily computed in hardware, a rea-
son why we implemented this method. Chen et al. [2] pre-
sented methods for surface light fields based on factorisa-
tion methods.

As the 6-dimensional BTF was introduced by Dana et
al. [3], it was possible to render materials under varying
light and view conditions. Due to the big amount of data
in a BTF, it is needed to compress the data in specific mod-
els. But there are only few published. Kautz and Seidel [5]
proposed a factorisation of the pixel wise BRDF in two di-
mensional functions whose coefficients are stored in tex-
tures to be computed with hardware supported operations
and dependent texture lookups. McAllister et al. [11] pub-
lished an approach with pixel wise Lafortune-BRDFs to
approximate the BTF. This approach is perfect to reach
the capacities of current graphics hardware, so we decided
to implement this model as well.

2.2 BTF Synthesis

Several algorithms for 2D-texture and BTF synthesis were
published in the past. A basic idea for texture synthesis
using fast search for useful pixels in the sample was given
by Wei and Levoy. [17]. They also give an approach to
synthesize textures directly on surfaces. [18]

Their basic idea for synthesizing on surfaces was used
by Tong et al. [15] for synthesizing BTFs on surfaces. For
fast search for candidate pixels, they used thek-coherence
synthesis as an extension of the Ashikhmin’s synthesis al-
gorithm for natural textures [1] instead of the methods pro-
posed by Wei and Levoy. The initial BTF analysis using
textons is described in [8].

A method for very fast texture synthesis is the Jump
Map [19] that uses a random selection between precalcu-
lated candidate pixels.

Wei and Levoy also introduce a hierarchical approach
for texture synthesis that uses all previously synthesized
layers for calculating the distance function [17], but Tong
et al. use a different approach that uses the pixels of the
next lower resolution layer as preset to the output of the
current layer. [15]

3 Representation

3.1 Polynomial Texture Map

The Polynomial Texture Map assumes a fixed front-view
of the material-covered surface and thus requires less im-
ages, approximately 60 to 80. To approximate the reflec-

tion function of the surface, it uses a biquadratic polyno-
mial whose coefficients are fitted per texel :

L(x, y, lx, ly) = a0(x, y)l2x + a1(x, y)l2y
+a2(x, y)lxly + a3(x, y)lx + a4(x, y)ly + a5

L is the resultant luminance or color-value andlx, ly are
the projection of the light-vector into the local coordinate
system of the texture. It is possible to fit two different
types of PTMs. We can either fit each color channel sep-
arately to keep the effect of changing colors for varying
light directions or we can assume, that the color will be
nearly constant under varying light directions and fit only
the luminance value and modulate it with a base-color.

R(x, y) = L(x, y) ∗ Rbase(x, y)
G(x, y) = L(x, y) ∗ Gbase(x, y)
B(x, y) = L(x, y) ∗ Bbase(x, y)

The RGB-Fit will need 18 coefficients, 6 per color-
channel. The luminance-fit will come along with 9 co-
efficients, 6 for the luminance and 3 for the base-color.
The fitting algorithm uses a singular value decomposition
(SVD) to solve the following system of equations, which
leads to the minimal least squares error. The SVD can be
computed once and be applied per pixel.

l2x0
l2y0

lx0 ly0 lx0 ly0 1
l2x1

l2y1
lx1 ly1 lx1 ly1 1

...
...

...
...

...
...

l2xN
l2yN

lxN
lyN

lxN
lyN

1




a0

a1

...
a5

 =


L0

L1

...
LN


L0, . . . , LN is the color- or luminance-data which is mea-
sured per pixel of varying light directions.lx0, ly0 is the
projection for the first light-direction to the local texture
coordinate system,lx1, ly1 the projection of the second
and so on. The model is very simple and not capable of
approximating highly specular materials and hard shad-
ows, but yields good results for nearly diffuse materials.
The reason is the polynomial model which can only con-
tain one specularity due to mathematic restrictions and the
low number of coefficients. As we are using images to
fit the model, effects like self-shadowing (only soft shad-
ows), sub-surface scattering and interreflections are pre-
served due to the characteristics of the material.

3.2 Lafortune-BTF

Another approach is the Lafortune-Model which was in-
troduced by Lafortune et al. [6]. It is a generalization of
the cosine lobe model [9] and is usable for varying light-
and view-directions. The reflection-function for the model
is written as follows :

fr(u, v) =
M∑
i

[Cx,iuxvx + Cy,iuyvy + Cz,iuzvz]
ni



(ux, uy, uz) and(vx, vy, vz) are projections of the light-
and view-direction into the local texture coordinate sys-
tem.Cxi , Cyi , Czi , ni are the parameter which must be fit-
ted whereni is the specular exponent andM is the number
of lobes. This model is much more flexible than the PTM,
as it allows to increase the number of lobes to the needs of
a material, to get a good fit with a small error. If a mate-
rial is more specular the number of lobes will increase and
exceed the limits of actual hardware, so we must limit the
maximal number of lobes.

Like the PTM, we can also fit two models, a RGB- and a
luminance-model, doing the same modulation with a base-
color like the PTM. As we have no linear equation sys-
tem to solve, a non-linear approximation is needed to fit
the measured BTFs to the Lafortune-model. We use the
Levenberg-Marquardt-method as it is easy to use for fit-
ting arbitrary functions and it is perfect for our needs. Us-
ing the RGB-model we have 24 coefficients, 8 per color
channel with 2 lobes per channel. The luminance-model
does not support color changes of the surface for varying
light- and view-directions but allows much more lobes (up
to 7), to approximate more specular materials with less er-
ror. In contrast to the PTM the Lafortune-BTF supports
effects like specularity at grazing angles, off-specular re-
flection, retro-reflection and anisotropy.

4 BTF Synthesis

The BTF synthesis consists of two steps. First, the BTF
sample is analyzed using k-means clustering to increase
the synthesis speed and reduce memory usage. The syn-
thesis then uses the data from the previous step to generate
a larger BTF. Tong et al. used theirk-coherence synthesis
directly on surfaces [15]. We used theirk-coherence syn-
thesis, however we only needed to synthesize a 2D-BTF
and do not synthesize directly on a surface. This simpli-
fied our implementation.

We also tried the Jump-Map synthesis proposed in [19]
to produce fast synthesis results, but with our materials
the results show too many visible artifacts. Thus, we will
only mention the common map with precalculated nearest
neighbors that can be used for both methods.

4.1 Analysis

A BTF can be regarded as 2D-texture where each
pixel (x, y) is not a color value, but approximately a four
dimensional BRDF(θv, φv, θl, φl). In a sampled BTF, one
has a number of images for each light and view direction.
These stacked images form the BTF sample and give a
high dimensional vector for each pixel. We used approxi-
mately 6000 images for our BTF samples. For the synthe-
sis, a distance function between the BRDFs of two pixels
must be found.

Tong et al. suggest the application of 3D-texton anal-
ysis to a BTF sample [15]. Each pixel of each image is

filtered with n Gaussian filters. So the dimension of each
vector is multiplied by n. However, we omitted the fil-
ters because the results for our materials are much better
without these filters and we save memory and computation
time. As figure 2 shows, the application of filters destroys
the fine structures of the BTF.

Figure 2: Synthesis results with filters (left) and without
filters (right).

To decrease the number of vectors, we apply k-means
clustering to the vectors. This algorithm assigns the in-
dex (called texton)ti of a cluster center to each pixel and
stores the mean vector (called appearance vector)vi for
each center. The dot products then are calculated only be-
tween the appearance vectors. We usually used between
1000 and 2000 cluster centers.

Tong et al. define the dot product between two textons
as the dot product of their appearance vectors:ti · tj :=
vi · vj . The squared euclidean distance between two pix-
els pi, pj with assigned texton indicesti, tj now can be
calculated as

dist(pi, pj) = ‖ti − tj‖2 = ti · ti − 2 · ti · tj + tj · tj

To increase synthesis speed, we precalculate the dot prod-
uct between each pair of textons and store them into a ma-
trix M.

To further decrease computation time in the analysis
step, one can select a few hundred representative images
with the Gaussian filters from above to calculate a vector
for each image and cluster these images [15]. The final
synthesis results are only slightly worse if they are differ-
ent at all, and the time for analysis is reduced. For exam-
ple, the precalculation for a 64x64 sample takes about an
hour if all BTF images are used, but we need only about
10 minutes for selection of 150 imagesandprecalculation
on this selection.

Our BTF analysis can be summarized as follows:

• Optional: Select representative images.

• Apply k-means clustering to the BRDF vectors of the
pixels.

• Calculate the dot products between the appearance
vectors from clustering.



Figure 1: Fitting results for spherical angles (0,0), (25,0), (50,0). Left 3 images are the PTM models and the right 3
images are the Lafortune-BTF.

4.2 k-coherence synthesis

Suppose, one has already synthesized a part of the output.
Now, to synthesize the next pixelp0 in scanline order, we
want to find pixels0 in the input sample that is the best
match for a new pixel. To find this pixel, we use a set
of pixelsN(p0) = {p1, ..., pn} in the neighborhood ofp0

to find a neighborhoodN(s0) = {s1, ..., sn} of s0 in the
input sample with minimal distance betweenN(p0) and
N(s0). The border of the output is initialized with random
pixels from the sample.

In order to avoid time consuming search in the complete
sample for each output pixel, we used thek-coherence
synthesis [15] and also tried the Jump Map [19]. The idea
of both methods is to find, for each pixel in the sample, a
number of (for example 10) pixels with the most similar
neighborhoods. For small samples up to 128x128 this can
be done by simple brute force search in the sample using
the following algorithm:

For each pixel p with neighborhood N(p) do

• For each pixel q with neighborhood N(q) calculate
dist(N(p), N(q)) and store the coordinates of the
m best pixels q1, ...qm.

• To support the Jump Map: Calculate a probability
for each q1, ...qm depending on the distance. [19]

With these m nearest neighbors for each pixel, a small
candidate set for the best pixel can be built during the syn-
thesis. We search only these candidates for the best match.
The number of candidates depends on the value ofk and
the neighborhood size:

• k = 1: Each pixelp ∈ N(p0) has a texture coordi-
nate in the sample. The neighborhoods of these pix-

elss1, ..., sn at these coordinates form the candidate
set. [1]

• 2 ≤ k ≤ m: For each pixels1, ..., sn found in the
sample as ink = 1, we addk − 1 nearest neighbors
to the candidate set.

Figure 3: Candidate set fork-coherence synthesis. The
blue areas are the candidates fork = 1. Fork = 3 for each
of these candidates the two most similar neighborhoods
are added as additional candidates (green).

We haven chosen a data independent implementation
for the synthesis algorithm, so we can use it for both BTF
and texture synthesis. The sample data must provide a dis-
tance function between two pixels that are selected using
their coordinates. This works, because the synthesis result
contains only values from the original sample.

Hierarchical synthesis To improve the synthesis re-
sults, especially to better preserve the structure of a ma-



terial, we have implemented a hierarchical synthesis. For
each image of the sample BTF an image pyramid is build,
where each layer has half the resolution of the previous
layer. We perform the analysis on each layer independent
from the other layers. For the synthesis, the output is also
an image pyramid with the same number of layers as the
input. The first layer is synthesized without modification.

For the next layers, we use the information from the
layer with the next lower resolution: To one quarter of the
pixels in the current layer, we assign the sample texture co-
ordinates of the corresponding pixel in the previous output
layer, multiplied by 2 because of the lower resolution. Be-
cause the lower resolution sample was created by bilinear
interpolation, we will find a similar pixel at these coordi-
nates in the current layer. These pixels now will be omitted
in following synthesis. After the synthesis of the missing
pixels, the synthesis is again performed on the previously
omitted pixels to reduce visible errors. Our method is a
2D adaptation of the hierarchical synthesis on surfaces by
Tong et al.

Figure 4: Hierarchical Synthesis with two layers.
(a) Lower resolution after synthesis. The pixels of the out-
put have texture coordinates in the sample. (b) Higher res-
olution before synthesis. The texture coordinates from the
lower layer are transformed to the higher resolution and
used as already synthesized pixels.

Using large BTFs for rendering One purpose of our
BTF synthesis was to have large BTFs for rendering a
scene. We take advantage of the fact, that the used syn-
thesis method does not generate pixels with new values,
but used only pixels from the small sample to generate the
result. Thus, the key for saving memory is to store only
the coordinates to the BTF sample in a coordinate map as
synthesis result instead of copying the large vectors from
the pixels of the BTF sample to the output. So we can use
large BTFs without needing several gigabytes of memory.
Of course, for rendering an additional level of indirection
is necessary.

Results The results of our synthesis depend on the
structure of the input and on the values fork and the neigh-

Figure 5: Samples we used for our results. From left
to right: Proposte 64x64, Corduroy 64x64, Knitted wool
128x128. First row: view and light vector orthogonal to
the plane. Second row: view and light from small angles
above the plane.

borhood size. Larger neighborhoods, higher neighbor-
hoods, and hierarchical synthesis generally improve the
results. However, for materials with irregular structures,
for example many natural materials as in [1], lower values
for k can be better. Figure 6 shows the results for proposte
with different settings for these values.

For materials with very complex structures like knitted
wool the synthesis results are currently not very good for
certain light and view angles, but we obtained good results
with more simple materials. One problem that could lead
to the problems with small viewing angles is that the orig-
inal sample images must be taken from small angles and
have in one direction a very small resolution that is only
interpolated to a higher resolution. This is hardly taken
into account by the distance function and might lead to the
visible sample borders. Figure 7 shows synthesis results
with different materials and light and view angles.

Size k Neighborhood size Time
256x256 1 2 1.9 s
256x256 3 2 2.7 s
256x256 6 2 3.7 s
256x256 6 3 13.6 s
512x512 6 2 13.4 s

Table 1: Synthesis time with 3 layers.

Table 1 shows the time for the BTF synthesis with three
layers with different output sizes and values fork without
the time for calculating the texton map. Due to the precal-
cualtion of the dot products, the sample resolution and the
number of selected BTF images have no effect on the syn-
thesis time. The timings where obtained on a Pentium 4,
2.4 GHz without special code optimizations for Pentium 4.



Neighborhood size 1, one layer: The structure is not reproduced.

Neighborhood size 2, one layer: Visible errors in the
reproduction.

Neighborhood size 2, three layers: Very few errors, especially
for k = 5.

Figure 6: Synthesis results for proposte with different pa-
rameters. Left column:k = 1. Right column:k = 5

5 Combination

The combination of the BTF approximation and BTF syn-
thesis yields a method for fast rendering of large BTFs. We
use the synthesis to generate a coordinate map from a BTF
sample and the PTM- or Lafortune-Model to render the re-
sult of the synthesis in real-time. For the synthesis process
it is not necessary to know which model we will use for
real-time rendering, as the synthesis uses the original BTF
sample, but does not use the fitted sample. Also, the PTM-
and Lafortune-fitting works directly on the original BTF
sample. So the rendering can also be used without the syn-
thesis. Because the synthesis result is a texture coordinate
map to the BTF, we will need a texture lookup to render
the result. This step can easily be integrated in the render-
ing step as an additional texture lookup. If we do not use
the synthesis, we simply omit this step and do a lookup
directly into the PTM- or the Lafortune-BTF. As we can
use one texture unit to sample from the coordinate map
and the other units to sample from our rendering models,
it is possible to render large textures using the small BTF

Proposte: Good results for all angles.

Knitted wool: Good results for views from top but visible tiling
for small angles.

Corduroy: Reproducing the structure causes problems for all
views.

Figure 7: Synthesis results for different materials. Left
column: view and light vector orthogonal to the plane.
Right column: view and light from small angles above the
plane.

sample with only one additional texture lookup. Therefore
the rendering works in real-time.

6 Results

Due to the rendering models we achieved a very good
compression of the original BTFs as we are using only one
view slot. We got the following results :

The fitting was done on a AMD 1.3 GHz. For render-
ing we will need the ATI Radeon 9500/9700 series, as
they support Pixel Shader 2.0. They support operations
to make real-time rendering of the Lafortune model pos-
sible. The PTM is possible on earlier graphics hardware
like a GeForce2, but it is much easier to implement in the
newer, as we have floating-point color registers, need no
scaling and biasing and can use the full range of 32-bit
floats. This leads to a better quality due to the absence of
rounding errors.

As we have no quantitative error measure to compara-



Image size Type Memory Fitting time
256x256 BTF 58 MB -
256x256 PTM-RGB 6 MB 22 sec
256x256 PTM-Lum 3 MB 15 sec
256x256 LaF.-Lum-2 Lobes 2.8 MB 112 sec

Table 2: Memory consumption of the different models

ble the visual quality, we can describe only our subjective
impression. As described the PTM is limited by their poly-
nomial model and can gather only one specularity. But the
fitting method with SVD is very stable if we clamp small
eigenvalues to zero. The result offers no visual artifacts.

The Lafortune-model in contrast is very scalable due to
the fact, that we can add as much lobes as we want (7 if
we want real-time single pass rendering) and the sharpness
of the specularity can be determined with the exponent in
the sum. But we experienced some difficulties with the fit-
ting method. It is very slow and leads to visual artifacts
if the sampling grid is not small enough. As we have a
stack of images with discreet light and view vectors, the
sampling over the hemisphere is often not evenly spread
and the Levenberg-Marquardt-method produce visual ar-
tifacts. So we have to interpolate between the images to
generate more light and view vectors and provider a better
sampling grid.

7 Conclusions

BTF approximation functions can be used for realistic
real-time rendering in current graphics hardware. While
the PTM has problems with many structures (for example
hard shadows), the Per-Pixel-Lafortune-BRDF produces
better results. Modified approximation functions could
lead to even better results.

As we have only one view slot, the limits of our models
are not exhausted. The quality of the fitted data is good,
as long as we use a single view slot. More view slots will
lead to many visual artifacts and exceed the limits of the
model.

But it is possible to fit every single view slot, and store
the result as a texture stack in a 3d texture and select the
appropriate texture for the viewing direction, and render it
with the method for a static view direction.

The successful application of texture synthesis to BTFs
allows the rendering of large BTFs still in real-time and
without memory problems, but the quality of the results
with the k-coherence synthesis depends on the used ma-
terial. However, with better synthesis methods, for ex-
ample using a distance function better than the euclidean
distance, it should be possible to produce good results
for more difficult materials, too. As long as a synthesis
method is based on copying pixels from the original sam-
ple, our coordinate map can be used for memory efficient
rendering of large BTFs.

The implementation of our rendering framework allows
to implement new methods easily, as it supports many ba-
sic functions for model-fitting. It is possible to invent new
models and combine them with the texture synthesis for
real-time rendering.

References

[1] Michael Ashikhmin. Synthesizing natural textures.
In Symposium on Interactive 3D Graphics, pages
217–226, 2001.

[2] Wei-Chao Chen, Jean-Yves Bouguet, Michael H.
Chu, and Radek Grzeszczuk. Light field mapping:
efficient representation and hardware rendering of
surface light fields. InProceedings of the 29th an-
nual conference on Computer graphics and interac-
tive techniques, pages 447–456. ACM Press, 2002.

[3] Kristin J. Dana, Bram van Ginneken, Shree K.
Nayra, and Jan J. Koenderink. Reflectance and tex-
ture of real world surfaces. InIEEE Conference
on Computer Vision and Pattern Recognition, pages
151–157, San Juan, Puerto Rico, June 1997.

[4] Jan Kautz and Michael McCool. Interactive render-
ing with arbitrary BRDFs using separable approxi-
mations. InTenth Eurographics Workshop on Ren-
dering, pages 281–292, 1999.

[5] Jan Kautz and Hans-Peter Seidel. Towards inter-
active bump mapping with anisotropic shift-variant
BRDFs. In 2000 SIGGRAPH/EUROGRAPHICS
Workshop On Graphics Hardware, pages 51–58, In-
terlaken, Switzerland, 2000. ACM Press.

[6] Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E.
Torrance, and Donald P. Greenberg. Non-linear ap-
proximation of reflectance functions. InProceedings
of the 24th annual conference on Computer graph-
ics and interactive techniques, pages 117–126. ACM
Press/Addison-Wesley Publishing Co., 1997.

[7] Lutz Latta and Andreas Kolb. Homomorphic factor-
ization of BRDF-based lighting computation. InPro-
ceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 509–516.
ACM Press, 2002.

[8] Thomas Leung and Jitendra Malik. Representing and
recognizing the visual appearance of materials using
3d textons. pages 29–44, June 2001.

[9] Robert R. Lewis. Making Shaders More Physically
Plausible. InFourth Eurographics Workshop on Ren-
dering, number Series EG 93 RW, pages 47–62,
Paris, France, 1993.



[10] Tom Malzbender, Dan Gelb, and Hans Wolters.
Polynomial texture maps. InProceedings of the 28th
annual conference on Computer graphics and inter-
active techniques, pages 519–528. ACM Press, 2001.

[11] David K. McAllister, Anselmo Lastra, and Wolfgang
Heidrich. Efficient rendering of spatial bi-directional
reflectance distribution functions. InGraphics hard-
ware 2002, pages 79–88, Saarbrucken, Germany,
2002. Eurographics Association. ISBN:1-58113-
580-7.

[12] Michael D. McCool, Jason Ang, and Anis Ah-
mad. Homomorphic factorization of BRDFs for
high-performance rendering. InProceedings of the
28th annual conference on Computer graphics and
interactive techniques, pages 171–178. ACM Press,
2001.

[13] Ravi Ramamoorthi and Pat Hanrahan. Frequency
space environment map rendering. InProceedings
of the 29th annual conference on Computer graph-
ics and interactive techniques, pages 517–526. ACM
Press, 2002.

[14] Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre-
computed radiance transfer for real-time rendering
in dynamic, low-frequency lighting environments.
In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
527–536. ACM Press, 2002.

[15] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang,
Baining Guo, and Heung-Yeung Shum. Synthesis of
bidirectional texture functions on arbitrary surfaces.
In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
665–672. ACM Press, 2002.

[16] Gregory J. Ward. Measuring and modeling
anisotropic reflection. InProceedings of the 19th an-
nual conference on Computer graphics and interac-
tive techniques, pages 265–272. ACM Press, 1992.

[17] Li-Yi Wei and Marc Levoy. Fast texture synthesis
using tree-structured vector quantization. InPro-
ceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 479–488.
ACM Press/Addison-Wesley Publishing Co., 2000.

[18] Li-Yi Wei and Marc Levoy. Texture synthesis over
arbitrary manifold surfaces. In Eugene Fiume, editor,
SIGGRAPH 2001, Computer Graphics Proceedings,
pages 355–360. ACM Press / ACM SIGGRAPH,
2001.

[19] Steve Zelinka and Michael Garland. Towards real-
time texture synthesis with the jump map. InEuro-
graphics Workshop on Rendering 2002, Pisa, Italy,
June 2002.


