
Dynamic Simulation in a Driving Simulator Game

Szabolcs Deák

s8554dea@hszk.bme.hu
Computer Graphics Group at the Department of Information Technology

Budapest University of Technology and Economics
Budapest / Hungary

Abstract
Driving simulations are a good example of applications
that utilize a dynamical model in a simulated
environment. Such simulations can be decomposed into a
graphical model responsible for rendering a specific
space-configuration of entities within a virtual world and
a dynamical model responsible for determining the
evolution of this configuration over time. This paper
wishes to address some important aspects of building
these two models, with emphasis on their cooperation.

Keywords: virtual reality, vehicle dynamics,
computer games, terrain modeling, numeric integration,
dynamical modeling

1 Introduction

1.1 On Virtual Reality
The creation of convincingly realistic virtual worlds is
without doubt one of the ultimate goals of computer
graphics. The virtual world in question could be
considered convincingly realistic if the resolution of its
presentation were higher than that of the corresponding
sense of human perception. Even though we are far from
achieving this goal today, it is nonetheless a valuable and
challenging experience to take part in maintaining the co-
evolution of hardware and software towards the final
goal of virtual reality.

There are two different aspects of creating virtual
reality from the viewpoint of computer graphics. One of
them is the realism of each rendered view of the world
(often called a frame) as a stand-still image and the other
is the realism of motion represented by a sequence of
frames. While the field of computer graphics is
concerned mainly with the former problem, a virtual
world of interest would preferably be interactive and
therefore require proper modeling of motions. As
motions in the real world depend on the laws of

Newtonian dynamics, it is straightforward to incorporate
an element – a physical model – that represents an
applicable partition of the laws of physics into the virtual
world. Unfortunately dynamical simulation of numerous
concurrent phenomena cannot be achieved on reasonable
hardware, thus the main goal of many applications is to
model only one (or few) aspect of the physical world in
detail. Such applications, that contain a virtual world, are
interactive and present a detailed dynamical model of an
entity in question, are commonly called simulators in
computer entertainment. This paper addresses some
issues of creating such applications.

1.2 Simulating Driving
There is a growing home industry of writing driving
simulations today [1]. This fact can be related to two
factors. Home computers are becoming powerful enough
to simulate vehicle dynamics in real-time without the
need of writing bit-by-bit optimized code. Also vehicle
dynamics is doubtlessly a field of wide interest among
the laymen of driving, even more so with the
professionals.

Apart from sheer entertainment a driving simulation
is probably the best choice to represent the benefits of
simulators in general: it is easily adaptable as a teaching
and/or testing tool that driving students and racing teams
can use with greatly reduced cost and caution compared
to the real thing. Provided, of course, that the simulation
is realistic enough to be of any professional use. This is
why the professionals of vehicle dynamics also take
interest in producing specialized models for real-time
computing.

2 Aim and Scope of the Simulator

2.1 Entertainment
The driving simulation under design described in this
paper is intended for entertainment purposes on a
personal computer. This means that the quality of the

physical model does not aim to meet engineering
standards; nonetheless it wishes to be as realistic as it can
be given a certain hardware configuration, through
iterative refinement. The first goal is to design a coarse
simulation engine with sufficient flexibility and
modularity to be refined module-by-module without
disturbing the underlying structure of the software.

2.2 Platform Issues
 Although it is generally not advisable to design software
for hardware not available at the time of the intended
completion of the project, programs in the domain of
computer graphics could be regarded as an exception.
The evolution of computer graphics is so fast and we are
so far away from the intended goal of virtual reality that
any successful new attempt that aims at this goal renders
all previous ones obviously out-of-date.

Therefore an amount of foresight is necessary to
produce a piece of software with any chance of
longevity. But since the general public surely does not
have state-of-the art hardware, a well-designed program
should exhibit massive scalability in order to provide an
acceptable solution to a fairly wide range of users.
Portability also poses a design issue; the reusability of
code is a great advantage if we are to address customers
using multiple computational platforms.

Fortunately there is a graphics library designed with
many of the above-mentioned goals in mind: the
OpenGL graphics library [2]. It is very advisable to use
such a library in current attempts of creating a real-time
graphics application. OpenGL is well designed, flexible,
efficient and sufficiently platform-independent.
Unfortunately it has at least one major drawback: any
new features provided by vendors of graphical
accelerator hardware are first only available in a vendor-
specific fashion, which counters somewhat the intended
platform independence.

The programming language of the author’s choice is
C++, which is widely accepted as a tool for creating
modular, portable code with good performance.

2.3 Decomposition of the Task
The task of writing a driving simulation can be
decomposed into two partitions. One of them is to create
the graphical model of the virtual world; the other is to
create the physical model of vehicle dynamics. This
paper is focused mainly on the latter task, but there are
certain aspects of the former one that we wish to talk
about. It is important to see that the two components
have to work in concert to enhance the notion of reality
in the virtual world. Quite often this is not the case in
driving simulations, the graphical model represents only
vaguely the happenings between the car and terrain and
within the car. Upcoming simulations (such as the
awaited Colin McRae Rally 3) put increasing emphasis
on this idea, showing that the time is nearing when

personal computers reach the power sufficient to cope
with such issues.

3 Key Features of the Graphical
Subsystem

3.1 Terrain Modeling
The idea of virtual reality introduces a world where the
user can freely move in preferably all directions. Because
we intend the driving simulation to aim towards this idea,
it is not favorable to choose a world model corresponding
to the average driving simulator, which contains only the
track and its close surroundings.

Figure 1. World model of a typical driving
simulation (Rally Trophy)

Instead of this we could base the virtual world of the
simulation on terrain modeling. The most common
approach to do this is to utilize a regular grid where we
present height data at the points of the grid. Such a
height-field can be represented as a grayscale bitmap
where the whiteness of the pixels corresponds to height.

Figure 2. The height-map of the
basic terrain in the simulation

Such a height-map easily lends itself to be interpreted
as a quad patch. The main problem is that the amount of

data present in the whole map quickly becomes far too
much to render without some form of culling and Level
Of Detail (LOD) scheme as the size of the map grows to
represent larger worlds. There are many sophisticated
approaches to this problem such as SOAR [3]. These
methods require active participation of the CPU to
deliver an optimal set of triangles.

Figure 4. LOD scheme at work in terrain rendering

In an application such as a driving simulation we
wish to devote the CPU to other tasks such as the
evaluation of the physical model, so we are searching for
a method we can use to coarsely partition the terrain data
into larger blocks and then feed them to the GPU.
Willem H. de Boer describes such a method [4]. His
solution uses a quad tree structure to partition the terrain
data by recursive quartering to some predefined depth.
Multiple resolution versions are created from the smaller
terrain blocks achieved by the subdivision. The quad tree
containing the terrain data also contains the dimensions
of each referenced terrain partition in its nodes. 3.2 Spline-Based Smoothing

The described method of rendering the terrain data leaves
open the question of how to determine the height of the
terrain at an arbitrary point. Some sort of interpolation is
clearly required between the heights of the neighboring
grid points. This is the place where the interaction of the
graphical and physical models comes into play: the
vehicle dynamics model requires the height of the
underlying terrain to be determined at the contact patch
of each wheel. As real terrain changes height more
smoothly than a triangulated surface, it is reasonable to
use some higher order method of interpolation. Also, the
surface normals are needed in the dynamics model as
well as in lighting, once again in the arbitrary position of
the wheel contact patches. Figure 3. The concept behind generating a quad

tree An approximation type B-Spline surface [5] using the
grid points of the original terrain data as control points
has the required properties, it is smooth, monotonous and
its surface normals can be obtained analytically.
Introducing the trick of only evaluating one coordinate
(height) with respect to the other two (position on a
plain), the calculations of a given point can be made
efficient.

During rendering the tree is parsed, the bounding box
for each node is compared with the volume of the
viewing frustum and the node is rejected if there is no
intersection between the two. At the leaf nodes
determined to be at least partly visible, one of the
different LOD versions of the block are chosen for
display according to a complex distance metric that
incorporates the roughness of the terrain block. The
different versions are all ordered grid representations
with different powers of two resolutions. The possible
effect of cracking when two blocks of different
resolutions meet is resolved by decreasing the resolution
of the higher LOD block at its edge. This problem is
easily solvable if there is only one LOD change between
the neighboring blocks.

Figure 5. Effects of Spline smoothing. Right patch is
same as left with four times the resolution

The current solution utilizes the ideas of de Boer,
with the simplification that the more complex distance
metric is replaced by simple distance. Each LOD version
of each block is chosen for display if the distance from
the center of the block to the camera falls between two
predefined values. Once we have a smooth terrain representation it is

straightforward to use it as a basis for higher tessellation
in rendering. We can preprocess new LOD versions of
each terrain block to a level allowed by the available

RAM, and we can produce more detailed tessellation on
the fly, if required.

If we wish to incorporate roughness on the centimeter
level into the model, we can do so by introducing large-
scale detail displacement maps added on top of the
normal terrain data. These can be visualized using shader
code for bump mapping or by tessellation in the case of
extreme close-ups [6].

Apart from height and color, practically any property
of the terrain surface with local relevance can be
represented and interpolated using textures. The program
currently takes benefit of a general Spline-evaluator class
in calculating the macro and micro height variation of the
terrain, the local friction coefficient and the color of the
dust and kickup produced by the car.

It is important to state that the resolution of the
graphical representation of the terrain must be high
enough to avoid such artifacts as submerging or floating
wheels. It is also important to see that the ideas
represented here address only a small portion of the
issues encountered in designing a virtual world for a
driving simulation. Most of these issues would easily
require a separate paper each to discuss properly, such as
the representation of dense vegetation, water, shadowing,
atmospheric effects, clouds, dust, particles etc.

4 Key Features of the Dynamical
Subsystem

4.1 Basic Methods
There are two basic approaches to simulating Newtonian
dynamics, with different fields of application and
validity. One of them is the numeric integration of
equations that change rather smoothly over time and
space [7] and the other is based on calculating impulse
forces during sudden and rapid changes in motion of
bodies [8]. The latter approach is mainly used to resolve
collisions. Although it is a very important and valuable

tool in handling such cases, in a driving simulation it is
applicable only for handling the collisions of the car
body with the ground and other obstacles, which is
clearly not the foremost important task in deriving a
model for vehicle dynamics. Therefore in this paper we
wish to concentrate only on the integrative methods of
evaluating a dynamical model.

It is important to note that the integrative method of
doing a physical simulation gives only a framework, not
a physical model in itself. The impulse based collision
resolution does represent an actual physical model that
needs only parameterization to work, but its applicability
is more limited. The impulse-based method is generally
used together with an integrative model to handle special
cases. The smooth evaluation of the model is stopped
once a collision situation is found and the state variables
are updated instantly. Then the general simulation is
restarted.

Figure 6. Actual view of the terrain in the
simulation

4.2 Object Representation
The bodies in the model are considered rigid, at least for
the major part of the simulation. (Deformation due to
damage caused by collision is not handled yet, but is
intended to be in the future.) Rigid body dynamics is a
well-established field of mechanics, with the advantage
of relatively low cost of calculations (as compared to
deformable bodies).

Rigid bodies are capable of two types of motion:
linear and angular (rotational), which can be handled
independently. In accordance with this, bodies have two
sets of properties, their inertia and inertia tensors. Inertia
or mass is the property that shows how the body
responds to forces. Inertia tensors represent the spatial
distribution of the mass of the body, and show how it
responds to torques and characterize its rotation when
“left alone”. Inertia is a scalar value that is constant
unless the body gains or loses weight, such as if a body
breaks up into smaller pieces. An inertia tensor, on the
other hand, is a 3 x 3 matrix that changes with the
orientation of the object in world space (hence the name
tensor). The inertia matrix of an object in an arbitrary
orientation can be computed using the following formula
[9]:

,)()()(T
body tRItRtI =

where Ibody is the inertia tensor given in the body

coordinate system, and R(t) is the rotation matrix
representing the current orientation. There is a theorem
stating that there exists an orientation for every rigid
body where its inertia tensor can be represented by a
diagonal matrix. It is advisable to use this orientation as
the basis of the body coordinate system, for it allows us
to store Ibody as a three-vector and its inverse as the
element-by-element inverse of Ibody.

Apart from properties, each physical body in the
simulation has 4 state variables:

r(t) – position,

P(t) – linear momentum,
R(t) – orientation,
L(t) – angular momentum;
And two auxiliary state variables:
v(t) – velocity,
ω(t) – angular velocity.
Each of these variables is a three-vector except for

R(t), which is represented by either a rotation matrix or a
quaternion. The auxiliary variables are computed via the
following equations:

written in a fashion to emphasize the analogy. While

v(t) is constant in the case of an undisturbed object (that
no external force is exerted upon), that is not true of ω(t).
The respective moments are both constant under such
circumstances. The management of R(t) and I(t) is the
only real challenge in the framework, apart from them
the rest of the dynamics is pretty straightforward. This
approach is referred to as six degrees of freedom
modeling (6DOF for short) because of the three axes and
three angles of possible motion.

4.3 The Simulation Cycle
Given the above framework the real problem in creating
an adequate simulation is the physical model itself: a set
of differential equations (ordinary differential equations,
or ODE-s to be precise) enabling us to evaluate the
forces and torques governing the motion of objects in the
given time and space. The equations may depend on any
obtainable property of the object or the virtual world, but
are preferred to behave smoothly, i.e. without rapid
changes for small variations in the input space. Suddenly
appearing huge forces are almost certain to cause
problems with most types and stepsizes of numeric
integration.

Rephrasing the main idea of the previous paragraph,
we require the physical model to provide us for each
object with a (limited) number of forces (Fi) and the
points of their application to the object (ri). The effective
forces and torques result from these two simple
equations:

In practice, the physical model is generally

partitioned into many smaller modules with their effects
summed using force and torque accumulators that are
zeroed at the beginning of each evaluation step.

So far we have a state representation of the virtual
world and proper functions to evaluate the forces acting
on it in a given instant and configuration. (These

functions – or the following – seldom take the form of a
differential equation in working code, only on paper at
design time.) Now we wish to obtain the state of the
system at some later time. We have the basic equations
of Newtonian dynamics to guide us:

),()(
)()(

ttL
tFtP

Τ=

=
&

&

and also

),()(
2
1)(

)()(

tRttR

tvtr

ω=

=

&

&

),()()(
)()(

1

1

tLtIt
tPmtv

−

−

=

=

ω

the last equation being valid for the quaternion
representation of orientation as derived in [9].

It follows that to obtain valid state variables for time t
we have to evaluate the expressions:

.)()0()(

)()0()(

)()(
2
1)0()(

)()0()(

∫
∫
∫

∫

Τ+=

+=

+=

+=

dttLtL

dttFPtP

dttRtRtR

dttvrtr

ω

Unfortunately analytic integration is only possible in

very simple or special cases. The general approach is to
use numeric integration: iteratively updating the state
variables at discrete time steps. Numeric integration
works by sampling the forces in effect at least once
during each time step, and using this finite-resolution
information to calculate the resulting changes. It is to be
seen that this scheme – no matter how sophisticated an
integration method one uses – generally results in
numeric errors of a magnitude characteristic of the
method, causing numeric drift. There are certain cases
where we are bound to encounter this problem, as
mentioned above.

The most basic mode of numeric integration is
Euler’s method, which regards the force, torque, velocity
and angular velocity to be constant during the time step.
This corresponds to a first-order Taylor-series
representation of the system, thus it is called a first-order
method. State variables are updated using the following
equation:

.)(

)(

∑
∑

×=Τ

=

ii

i

Frt

FtF

.)()()(ttftfttf ∆+=∆+ &

This method is very simple, fast and easy to use.

Unfortunately it has an error of Ο(∆t2) and does not even
give correct results in its simplest form for constant
forces. The greatest problem with it is probably that it
drifts very rapidly in the case of strong undamped spring
forces and easily causes undesired explosive effects in

the physical model. Therefore it is favorable to introduce
higher order numeric integration to the physical
framework, at least as an option.

There are two widely used higher order methods of
numeric integration, one of them is the second-order
midpoint method, the other is the so-called fourth order
Runge-Kutta method (RK4) [7]. These have errors of the
order Ο(∆t3) and Ο(∆t5), and require the underlying
physical model to be evaluated 2 and 4 times
respectively. While RK4 is the virtual industry standard
for doing dynamical modeling, in the case of a computer
game the required precision is not as high as in
engineering applications. The main issue is preventing
explosive physics, and the midpoint method does an
excellent job of that: it is analytically correct for a range
of forces and greatly enhances the stability of modeled
spring forces.

The midpoint method - as derived in [7] - works by

calculating the Euler step, then using the evaluation of
the model again at the midpoint of the Euler step to
update the state variables. In a more mathematical
fashion, this procedure can be written as:

The current version of the program supports all three
types of integration with emphasis on the midpoint
method. Although the physical model does run
noticeably smoother using methods of higher order
integration, the difference is almost negligible. This fact
proves that some unrealistic effects produced by the
simulator are due solely to the vehicle dynamics model,
not the instability of numeric integration.

4.4 Constraints
So far we have said nothing about the derivation of the
underlying physical model used to determine the forces
at work in the simulation. Though not much can be said
in general, there are certain approaches, which add a

higher level to the methods described above. Constraint-
based modeling is an evolving field concerned with
forces resulting from geometric constraints in the model
[10]. Such an approach is very useful in the case of
vehicle dynamics for deriving forces in the suspension
system of the car. The actual simulation does not make
use of this method so far, but we wish to incorporate it in
the future.

5 The Model of the Car

5.1 General Properties
The main duty remains of providing the actual model
representing the car in the simulation. As stated before,
the vehicle model in a game is not required to be as
sophisticated as the one in an engineering application.
Therefore we wish to outline a basic model, which is
sufficient for running an entertaining simulation, but can
be enhanced if desired.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 7. Simulation of the same undamped spring
using midpoint (solid) and Euler (dashed) methods

The car is represented in the simulation by 5 rigid
bodies, the car chassis and the four wheels. Besides
these, logical objects exist in the simulation that only
provide forces and torques while having no mass or
shape of their own.

Figure 8. Separate rigid bodies in the model: car
body and wheels

.)
2

)(()()(tttftftfttf ∆
∆

++=∆+ &&

The car model has 6 DOF for the chassis, 3 for each
front and 2 for each rear wheel, and one DOF for the
rotation of the engine, giving a total of 17 DOF. The
wheel movement is limited to vertical motion in the body
frame of the car, rotation about its spindle axis and
steering rotation in the case of the front wheels (or all of
the wheels in case of four-wheel steering). The logical
components of the model include the engine, clutch,
gearbox, differentials and suspension. The brakes are
also a logical component, but they are handled within the
wheel model, by adding in a single torque value for each
wheel.

The car body itself has no real model currently except
for providing penalty forces in the case of collisions
between its bounding box and the terrain, which,
although acceptable in results, is clearly not the state-of-
the-art solution for collision resolution. Also air drag is
accounted for in the model of the car body in a very
simplistic manner. Air drag varies with the square of the
velocity and does not depend on the orientation of the car
(which is not true in real physics). Forces due to air drag
(and gravity) are modeled to act at the center of gravity
(COG) of the car, thus exert no torque on the body
chassis.

The most important – and thus most complex –
component in the dynamical model is the tire model, for
it is clear that it ultimately determines the handling of the
car and thus the realism of the simulation. The
suspension model could be considered to be the second
most important for similar reasons. Suspension parts
actually move with respect to the car frame and thus have
characteristic physical properties in a real car, but for our
current purposes it is reasonable to regard them as logical
components and lump some of their real physical
properties to the wheels (also the inertial properties of the
drivetrain) [8]. In the following sections we wish to give
an outline of the logical components topped by the tire
model discussed in a bit more detail.

5.2 Engine
The main property of the engine is a function of its
maximum output torque at a certain angular velocity,
often called a “torque curve”. It is represented by
multiple linear segments and is normalized to be able to
use engines of different power with the same
characteristics. The effective multiplier is given as a
separate value in the car’s configuration file.

The engine uses the throttle position as an input
variable. The available torque is determined linearly
from the throttle position, which is a crude but sufficient
estimation. The engine has rotational inertia (which is a
single scalar in this case) and frictional constants; its
friction during rotation varies roughly linearly with the
angular velocity. The output torque is fed to the clutch,

which feeds back a response torque from the rest of the
drivetrain. Engine rotation is updated using the
difference of these two torques.

5.3 Clutch
The clutch has the purpose of negotiating differences in
angular velocity between the engine and the rest of the
drivetrain. This is important because we start up with a
running engine and standing wheels, and need to
smoothly eliminate the difference or else the engine
would stall.

There are basically two types of clutch in the real
world and the model: dry and viscous. Dry clutches work
based on Coulomb friction, the clutch torque is roughly
linear with the force applied between the clutch plates in
case the plates are sliding on each other. When the
rotation of the plates becomes equal (and the clutch is
disengaged) the rotation of the engine and the drivetrain
become linked. This link holds until the clutch is
engaged or the torque between the plates exceeds a
predefined level. Clutch control is automatic in the
simulation; it automatically disengages if the engine
revolution falls below a certain level.

As of viscous clutches, a proper model for coding
them is yet to be found. The current solution derives
torques using the difference between the angular velocity
on the two sides of the clutch.

5.4 Gearbox
A gearbox has the task of converting angular velocities
and torques in the drivetrain. It has a set of gears
characterized by their ratio of conversion. These ratios
are used for multiplying the torque and dividing the
angular velocity from the engine to the wheels and vice
versa from the wheels to the engine, based on the
theorem that the product of the two must remain constant
during the conversion.

Figure 9. Normalized torque curve built from
linear segments

There are two methods for changing gears: manual
and automatic. Automatic gear change is based upon
efficiency: the gear is switched to the neighboring higher
or lower one if the absolute torque is higher in that gear
compared to the current one. The efficiency of the torque
output is decreased during automatic gear usage (as it is
in real life) to give manual gears a benefit. The gearbox
has control of the clutch during these operations.

5.5 Differential
The basic idea of a differential is much easier to
implement in code than it is to build in real life. A
differential has the duty of ensuring that all the wheels
receive the same amount of torque while enabling them
to rotate at different speeds. This is necessary because
during a turn the wheels of the car cover different
distances within the same time. In programming this can
be accomplished by simply dividing the available torque
at a preset ratio among the driven wheels. The angular

velocity of the wheels is averaged to find the effective
rotation of the drivetrain.

While the basic differential is “open” in the sense that
it does permit limitless difference between the angular
velocities of the wheels it affects, this scheme is not
always useful. In the case of powerful racecars and off-
road vehicles it is desired to limit the “slip” of the
differential. The solution to this problem up to date is
similar to that of the viscous clutch, which should be
enhanced in the future.

5.6 Suspension
We have provided a rather simple solution to the
suspension system of the car. Wheel suspensions are
treated completely independently; also there is no camber
variation with the suspension travel.

As only vertical motion is permitted for the wheel in
the body frame of the car, the horizontal forces acting on
the wheel are simply forwarded to the chassis itself. This
gives acceptable results but completely neglects the real
geometry of the suspension that is normally taken into
account by the introduction of roll centers [11]. With the
current solution roll centers of both the front and rear
axles are set permanently at ground level, which
increases the tendency of the car to flip over in some
situations. This can be countered by using the vertical
suspension force as the normal force in the tire model
calculations; in this case two wrongs do make a right.

The vertical travel of the wheel is governed by two
nonlinear sets of spring and damping forces, one of them
reserved for the bump stop (a piece of strong rubber that
stops the suspension movement at the point of maximum
suspension travel). Spring forces depend on the vertical
position of the wheel in the car frame and damping on its
velocity. These forces are applied to both the car chassis
and the respective wheel.

5.7 Tire Model
As mentioned above, the tire model of a driving
simulation is the single most important feature of the
dynamical model. This should be evident because under
normal circumstances only the tires of the car touch the
ground and therefore all major forces acting upon the car
body ultimately originate from the tire. The tire model is
responsible for traction and cornering forces and thus
determines the handling characteristics of the car, and
how the engine torque is translated to acceleration. The
tire model is simplified to the generation of three
components: normal, longitudinal and lateral forces. The
latter two forces are decoupled to the maximum extent
possible and then combined to meet the limits set by a
friction ellipse. Aligning moment is currently neglected
because no means of force-feedback have been
introduced to the simulation.

Modeling tires in real time is widely agreed upon by
professionals to be a difficult problem. Tire models are
either purely analytical or semi-empirical, representing

functions to fit experimental data. Both types of models
can be steady-state or dynamical, with a different range
of validity concerning the domain of frequencies
encountered by the tire. For the macro height variation of
the terrain a steady-state approach is sufficient, and the
simulation currently utilizes such a model. With the
recent introduction of the displacement height-maps the
validity of such a solution decreases but fortunately any
steady-state model can be extended to a dynamical one
with the introduction of two new state variables [11].
This is to be done in the near future.

Figure 10. In-game display of wheel forces at work

Steady-state tire models generally calculate traction
and cornering forces based upon two properties of a
wheel in motion: slip ratio and slip angle [11][12]. To
understand these properties it must be made clear that the
tire generates forces due to its deformation best
represented by complex nonlinear spring forces. A tire
producing traction (or braking) forces has different
angular velocity as compared to the same tire rolling
freely at the same traveling speed. This difference is
characterized best by slip ratio, which is defined by:

,1
0

−=
ω
ωSR

where ω is the actual angular velocity of the tire and
ω0 (=vx/Reff, Reff is the effective radius of the wheel) is
the angular velocity of a free-rolling tire moving with the
same linear velocity as the driven or braked tire. Slip
angle (SA) is the angle between the wheel plane and its
direction of motion.

The industry standard for tire modeling in real-time
applications is the so-called Magic Tire Model of
Pacejka [11][12]. It is a semi-empirical model recognized
to be exceptionally correct for derivation of tire forces
under explicit circumstances. Unfortunately its parameter
set is rather complex and cannot be modified intuitively
to account for changes in the tire or the type of surface
the tire rolls upon (since it would require different, hard-
to-obtain experimental data sets for each case). Even
though we wish to implement the Magic Tire Model in

the future (because of its applicability on tarmac), we
were concerned with finding an analytical model due to
these issues. Finally we chose to implement a tire model
based upon that of James Lacombe [9].

Lacombe’s model is an analytical steady-state model.
It focuses on clearly distinguishing two regions of the tire
contact patch, a static (sticking) and sliding region. The
sliding region is handled based upon a Coulomb-type
friction model and the static region based upon linear and
nonlinear spring forces concerning the longitudinal and
lateral forces respectively (the normal force is also
generated from a nonlinear spring very much similarly to
most of the models). The strength of the model lies in its
approach to the derivation of forces during combined

longitudinal and lateral acceleration, while the discreet
cases produce results similar to those of other tire
models. The ratio of the static and sliding regions varies
smoothly during the simulation and the sliding region
produces longitudinal and lateral forces in a coupled
manner since a Coulomb-type frictional force always acts
against the direction of sliding motion, in this case the
motion of the contact patch on the ground. (The direction
of motion of the contact patch is normally not the same

as that of the wheel, only if the wheel is completely
blocked and does not roll at all.)

While the model at work in the simulation is not the
most sophisticated one possible and wishes to be
enhanced in the future, it does respond lively to
parameter changes and driving style. Important real-
world effects such as turn-in braking and power oversteer
can be produced with ease in the simulation, along with
other cases of under- and oversteer. Handling differences
between front-, rear- and four-wheel driven vehicles are
very pronounced and probably even exaggerated to some
extent. On the whole the car behavior is quite realistic
compared to the simplicity of the model.

It is important to note that determining the validity
range of the parameters in the model is in cases almost as
hard as deriving the model itself and accounts for a major
part in the realism of the final product.

Figure 11. Sample plot of pure longitudinal force
coefficient as function of slip ratio

Figure 13. A moment of action in the running
simulation: negotiating a corner in a controlled slide

Figure 12. Sample plot of longitudinal (x) versus
lateral (y) forces with increasing SR at constant SA

6 Summary and Future Work
It is rather challenging to write a driving simulation. In
this paper we have made an attempt to outline some basic
ideas in the design of such an application. We have sub-
classed the original task into two fields: graphical and
physical modeling. We have introduced an adequate
terrain representation; a general framework for doing
physically based modeling and the actual physical model
of the car. These three aspects serve as a basis for
building a more sophisticated simulation.

The list of things that can be done to enhance the
application is virtually endless, limited only by time,
imagination and computing power. The terrain model
greatly desires objects and vegetation to add to its visual
realism, while these objects should also be modeled
physically to enhance the connection between the
graphical and physical representations. The impulse- and
constraint-based methods should be introduced to the
physical model. Car body deformation due to collision

should be addressed. The tire model should be enhanced
and extended to a dynamic one. Real suspension
geometry should be modeled. And last, but not least
driver AI should be introduced to enhance the
playability. The simulation - according to our intentions -
is far from complete as is well shown by its current
version number: 0.1.0.

References
[1] R. van Gaal. Racer Project. A brief list of home-

made driving simulations on the internet
www.racer.nl/links.htm

[2] M. Segal and K. Akeley. The OpenGL Graphics
System: A Specification (Version 1.2). Silicon
Graphics, 1998

[3] P. Lindstrom and V Pascucci. Visualization of Large
Terrains Made Easy. IEEE Visualization, 2001.
Obtained from www.vterrain.org

[4] W. H. de Boer. Fast Terrain Rendering Using
Geometrical Mipmapping .flipcode, 2000. Obtained
from www.vterrain.org

[5] L. Szirmay-Kalos. Computer Graphics.
ComputerBooks, Budapest, 1999 pages 48-59

[6] NVidia OpenGL SDK. NVidia Corporation, 2001
www.nvidia.com/developer

[7] A. Witkin and D. Baraff. An Introduction to
Physically Based Modeling: Differential Equation
Basics. Robotics Institute, Carnegie Mellon
University, 1997

[8] D. Baraff. An Introduction to Physically Based
Modeling: Rigid Body Simulation II –
Nonpenetration Constraints. Robotics Institute,
Carnegie Mellon University, 1997

[9] D. Baraff. An Introduction to Physically Based
Modeling: Rigid Body Simulation I – Unconstrained
Rigid Body Dynamics. Robotics Institute, Carnegie
Mellon University, 1997

[10] A. Witkin. An Introduction to Physically Based
Modeling: Constrained Dynamics. Robotics
Institute, Carnegie Mellon University, 1997

[11] E. M. Lowndes. Development of an Intermediate
DOF Vehicle Dynamics Model for Optimal Design
Studies. Ph.D. Thesis, Department of Mechanical
and Aerospace Engineering, Raleigh, 1998

[12] J. Lacombe. Tire Model for Simulations of Vehicle
Motion on High and Low Friction Surfaces.
Proceedings of the 2000 Winter Simulation
Conference, pages 1025-1034

	Abstract
	Introduction
	On Virtual Reality
	Simulating Driving

	Aim and Scope of the Simulator
	Entertainment
	Platform Issues
	Decomposition of the Task

	Key Features of the Graphical Subsystem
	Terrain Modeling
	Spline-Based Smoothing

	Key Features of the Dynamical Subsystem
	Basic Methods
	Object Representation
	The Simulation Cycle
	Constraints

	The Model of the Car
	General Properties
	Engine
	Clutch
	Gearbox
	Differential
	Suspension
	Tire Model

	Summary and Future Work
	References

