
Real-time BTF Rendering

Martin Schneider∗

Institute of Computer Science II.
University of Bonn

Römerstr. 164, D-53177 Bonn,
Germany

Abstract

The Bidirectional Texture Function (BTF) is a suitable
representation for the appearance of highly detailed sur-
face structures under varying illumination and viewing
conditions. Since real-time rendering of the full BTF data
via linear interpolation is not feasible on current graphics
hardware due to its huge size, suitable approximations are
required in order to reduce the amount of data and to ex-
ploit the features of current graphics hardware.

In this paper we exploit the recently proposed Lo-
cal Principal Component Analysis (LPCA) compression
which provides a reasonable trade-off between visual-
quality, rendering speed and size of the representation and
present a new rendering method which is approximately
three times faster than the originally proposed method.
This is achieved by reparameterizing and rearranging the
BTF-data appropriately so that built-in hardware interpo-
lation between the values of the discrete LPCA represen-
tation can be exploited.

Keywords: Real-time rendering, graphics hardware,
shading, texture, image-based rendering

1 Introduction

One of the main challenges in computer graphics is still
the realistic reproduction of complex materials such as
fabric or skin in a real-time rendering environment. Hu-
man observers are very sensitive to the subtle differences
in the varying appearance of materials under varying light
direction and viewpoint resulting from the complex inter-
action between light and material. These effects can be
very strong even for relatively flat materials such as the
wallpaper in figure 1. Since a full and physically correct
simulation of the interaction between light and material
is infeasible in practice, considerable effort has been spent
on developing mathematical models which describe the re-
flection properties of a possibly wide range of materials
with a small set of parameters.

For many years the reflectance behaviour of surfaces
was modelled by the well known Phong Model because
of its simplicity and computational efficiency. The diffuse

∗schneid3@cs.uni-bonn.de

Figure 1: Six views of a wallpaper from various view and
light directions. The appearance of the material changes
drastically which cannot be reproduced by simple material
representations. The BTF correctly represents and repro-
duces these effects.

term of the model was allowed to vary spatially via tex-
ture mapping. More convincing results can be achieved in
combination with bump mapping or normal mapping tech-
niques, which model the bumpiness of a surface by chang-
ing the surface normal. Unfortunately these results lack
important effects such as self-shadowing, interreflections
and subsurface-scattering. Because of the dramatic devel-
opment of graphics hardware in recent years, it became
possible to render surfaces using more enhanced and phys-
ically plausible approximations like the Lafortune[5] or
the Ashikhmin[1] model and even arbitrary Bidirectional
Reflectance Distribution Functions (BRDF)[4]. But since
a BRDF describes reflectance on a microscale only, Dana
et al. [2] introduced the Bidirectional Texture Function
(BTF) which extends the concept of simple 2D-texture and
also captures the mesostructure of a surface.

The BTF is a 6D function whose variables are the 2D
surface position, the viewing and lighting directions. It
can roughly be interpreted as a per-texel BRDF represen-
tation but including additional effects like self-shadowing,
self-occlusion and subsurface scattering which are beyond
single BRDFs. Since an easy and general method for mod-
elling these effects mathematically seems out of reach,

current research concentrates on image-based methods. In
this case the BTF is usually represented by a set of images
taken under different light and camera positions. Unfortu-
nately, many real world surfaces contain high frequencies
in the spatial and angular domain, requiring a high den-
sity sampling consisting of thousands of images to repre-
sent the BTF with sufficient quality. Due to the pure size
of a BTF (hundreds of megabytes) direct rendering of the
BTF data via linear interpolation is currently not feasible
in real-time even on todays graphics hardware. Therefore
some sort of lossy compression is required that achieves
good approximation quality together with high compres-
sion rates that allows real-time rendering. Recently sev-
eral compression approaches for fast rendering have been
proposed. In this paper we concentrate on Local Principal
Component Analysis (LPCA) compression and present a
new rendering method which is approximately three times
faster than the originally proposed method.

The rest of the work is organized as follows: In the next
section we will review previous work. In the following
sections 3 and 4 we will discuss the LPCA compression in
greater detail and present the originally proposed render-
ing method in section 5. Then in section 6 we introduce
our revised and faster rendering algorithm. The results are
given in section 7 and we end up with the conclusions in
section 8.

2 Related Work

There is huge amount of related work in the field of
real-time rendering, realistic material representationsand
image-based rendering and mentioning all of them is be-
yond the scope of this paper. Hence we consider only
the papers concerned with rendering image-based mate-
rial patches (i.e. BTFs) wrapped onto arbitrary geometry.
This work can be roughly grouped into two categories.

The first group interprets the BTF as a set of spatially
varying materials and fits simple analytic functions to the
discrete BRDFs. Since only few parameters are required
per BRDF impressive compression rates are achieved and
efficient evaluation in graphics hardware is possible. The
least complex model was suggested by McAllister et al. [8]
and is directly based on the Lafortune model. The BTF is
approximated by fitting Lafortune lobes to the BRDFs that
they defined per texel. The model requires very few pa-
rameters to be stored per pixel resulting in a very compact
material representation that can be efficiently rendered in
hardware employing vertex and pixel shaders. The Lafor-
tune Lobes model the variance of luminance of the surface
point while the diffuse and specular albedo are stored as
RGB color values. Already one year earlier Daubert et al.
[3] proposed a similar but slightly more complicated ap-
proach which is also based on the Lafortune model. They
additionally incorporated a view-dependent scaling factor
per pixel stored in a lookup-table that modulates the pixel-
wise Lafortune models in order to cope with self-occlusion

effects. Since the lookup table is defined per pixel signif-
icantly more parameters have to be stored but real-time
rendering is still possible by employing vertex and pixel
shaders. Meseth et al. [9] proposed an improved material
representation based on fitting a set of reflectance fields to
the BTF. Each reflectance field describes the appearance
of the surface for a view direction from the measurement
process. Linear interpolation is employed to cover view
directions not in the measured set. Since the reflectance
fields are fitted per pixel and measured view direction, the
amount of parameters is even higher than in the model by
Daubert et al. but still allows real-time rendering. Nev-
ertheless, these methods suffer from a lack of rendering
quality due to the simplicity of the fitted analytic func-
tions.

The second group of methods was developed in the con-
text of pattern recognition and is intended to exploit the
statistical properties of the BTFs. Sattler et al. [11] pro-
posed a rendering method based on this kind of data driven
approach by decomposing the BTF data into sets of princi-
pal components (called Eigen-Textures), one set for each
measured view direction. As for the reflectance field based
model linear interpolation is employed to yield light and
view directions not in the measured set. Depending on the
number of Eigen-Textures used, the number of parameters
to be stored per pixel easily exceeds the number of pa-
rameters for the reflectance field based model. In contrast
to these methods, the approach published by Müller et al.
[10] is based on Eigen-BRDFs. The BTF is understood as
a set of spatially varying BRDFs which is compressed us-
ing a combination of vertex quantization and PCA named
Local-PCA yielding clusters of Eigen-BRDFs. Since the
Eigen-BRDFs store values for measured view and light di-
rections, this method requires linear interpolation as well
to cover all possible view and light directions. The num-
ber of clusters can be adjusted accordingly to the struc-
tural complexity of the material. For structured materials
this results in significantly reduced memory requirements
compared to the previous method. Real-time rendering
can be realized using the vertex and pixel shaders.

3 BTF-representation

In this work we adopt the BTF-compression method of
[10]. They point out that a sampled BTF can be either
interpreted as a collection of discrete textures (figure 2):

BTFTex :=
{

T(v,l)(x)
}

(v,l)∈M

whereM denotes the set of discrete measured view and
light directions, or as a set of tabulated BRDFs:

BTFBrdf :=
{

B(x)(v, l)
}

x∈I⊂N2 .

Please note that these BRDFs do not fulfill physically de-
manded properties like reciprocity. In special they already
contain a factor(n · l) between incident direction and sur-
face normal. This is also nicely illustrated in figure 2. The

Figure 2: Two arrangements of the BTF data: As set of
images (left) and as set of BRDFs (right).

BTF-data employed in this work is a high-quality RGB-
sampling with|M| = 81×81 and|I| = 256×256 leading
to more than 1.2GB of data (consider [11] for details on the
measurement process). In order to reduce the memory re-
quirements we apply the Local-PCA algorithm toBTFBrdf

as in [10]. The resulting compressed representation has
the form

BTFBrdf ≈
{

B̃c
(x)

}

x∈I⊂N2
,

where

B̃c
(x) = B̄k(x) +

c
∑

i=1

〈B(x) − B̄k(x), Ei,k(x)〉 ∗ Ei,k(x)

denotes the reconstruction of the BRDF at texel x from
c components of the PCA applied to the BRDFs in clus-
ter k(x) looked up from texelx. The Ei,k are the so
called Eigen-BRDFs (i.e. the PCA-components in clus-
ter k) and the mean is denoted bȳBk(x). Adjusting the
number of componentsc and the number of clusters|k|
allows for finding a flexible trade-off between memory-
requirements, approximation quality and rendering speed.
For real-time renderingc should be chosen as small as pos-
sible(c < 8), since rendering time depends on the number
of components that have to be summed up. Depending on
the material complexity compression ratios between 1:50
and 1:250 introducing a relative error of only about 2%
can be achieved.

4 Rendering with LPCA-encoded
BTFs

In general accurate rendering algorithms have to compute
results approximating the rendering equation for every sur-
face pointx by computing outgoing radianceLr as follows
(neglecting emissive effects):

Lr(x,v) =

∫

Ωi

BRDFx(v, l)Li(x, l)(nx · l) dl

Here,BRDFx denotes the BRDF for pointx, Li de-
notes incoming radiance,n is the surface normal andΩi

is the hemisphere overx. Employing measured BTFs, the
following approximation results:

Lr(x,v) ≈

∫

Ωi

BTF(x,v, l)Li(x, l) dl

The area foreshortening term is removed since this ef-
fect is represented in the measured BTFs already. In the
presence of a finite number of point light sources only, the
integral reduces to a sum. Approximating the BTF by the
clustered Eigen-BRDFs, the above equation reduces to

Lr(x,v) ≈
n

∑

j=1

c
∑

l=1

αl,k(x)El,k(x)(v, lj)Li(x, lj)

Here,n denotes the number of light sources,α denotes
the projections on the respective basis vectors as in section
3,c is the number of components from the clustered Eigen-
BRDFsEk(x),l andk(x) is the cluster or material index.
Since the BTF was sampled for fixed light and view di-
rections only, linear interpolation is employed to support
arbitrary view and light directions, resulting in the final
equation which has to be evaluated on the graphics hard-
ware:

Lr(x,v) ≈
n

∑

j=1

∑

ṽ∈N(v)

l̃∈N(lj)

w
ṽ,̃l

c
∑

l=1

αl,k(x)El,k(x)(ṽ, l̃)Li(x, lj)

By N(v) we denote the set of neighboring view direc-
tions of v, for which data was measured (N(l) respec-
tively), while w denotes an interpolation weight.

5 Original LPCA rendering
method

In this section we will shortly review the rendering algo-
rithm for LPCA encoded BTFs as presented in the original
work by Müller et al. [10].

The BTF data needed for rendering is stored in three
textures as depicted in figure 3. A rectangular texture
T1 stores material cluster indices together with sets of
floating-point PCA weightsα which determine, how the
components of the indexed Eigen-BRDFs are to be com-
bined. Another rectangular textureT2 holds the floating-
point valued components of the Eigen-BRDFs for the var-
ious clusters.

Two cube maps are employed to determine the three
closest measured view and light directions for the current

Figure 3: Layout of the original LPCA-rendering. The elements of the basic rendering algorithm are highlighted by bold
font, thick arrows and thick borders. The other elements contribute to the view and light direction interpolation. The
required data is stored in several textures. All processingtakes place in the pixel shader.

view and light direction and the respective interpolation
weights.

The rendering process is depicted in figure 3. The in-
puts are standard texture coordinates, the eye and light po-
sitions, and a per-pixel coordinate system, which is inter-
polated from the local coordinate systems at the vertices
which are specified with the geometry and stored in dis-
play lists.

At first view and light directions are computed and
transformed into the pixel’s coordinate system. Using
cube maps, the three closest view and light directions from
the measurement process are looked up, together with their
interpolation weights. The interpolation weights for each
pair of closest view and light direction are multiplied to
yield the final nine interpolation weights.

At the same time, the basic rendering algorithm is per-
formed: using the texture coordinates, cluster indices and
PCA weights for every pixel on the screen are looked up
(just as we would lookup colors for texture mapping). The
cluster index is used to select the appropriate 81x81x3 vec-
tors representing thec Eigen-BRDFs of the current clus-
ter fromT2. The view and light direction are used to se-
lect the appropriate RGB components from the large vec-
tors. If interpolation is used, this lookup is repeated for
every pair of closest view and light direction. Combin-
ing the PCA weights of the current pixel with the RGB
components, the uninterpolated colors are computed (one
for each pair of closest view and light direction). In a fi-
nal step, these colors are multiplied with their respective
interpolation weights and the results are summed to form
the final color of the pixel.

The major drawback of this method is that all Eigen-
BRDFs are interpolated manually, which is very expen-
sive. In the following section we will present a new ren-
dering method that employs the built-in interpolation capa-
bilities of modern graphics boards resulting in a significant
rendering speed-up.

6 Our new rendering method

In the hardware rendering approach presented in the pre-
vious section BTFs are approximated by weighted sums
of clustered Eigen-BRDFs. Since the BTF was sampled
for fixed light and view directions, linear interpolation has
to be employed to support arbitrary viewing and lighting
directions. Since 4D texture mapping is not supported
on current graphics hardware interpolation cannot be di-
rectly performed in graphics hardware and was therefore
performed manually in the mentioned approach. To ac-
complish this the three closest measured view and light
directions are looked up together with their corresponding
interpolation weights. Since each pair of closest view and
light direction has to be considered, this results in a total
of nine uninterpolated color values and nine interpolation
weights that have to be multiplied and summed up.

In order to speed up this time consuming process we
will incorporate the approach by Liu et al.[6] into the Lo-
cal PCA rendering algorithm. Therefore we reparame-
terize the Eigen-BRDFs in a way that allows us to make
use of the volume texture capabilities of current graphics
hardware. Since the need for interpolation affects only the
Eigen-BRDFs, this approach is also applicable for com-
mon BRDF rendering.

6.1 Reparameterization

For rendering efficiency it is important to find a good
parameterization for the viewing and lighting directions
so that we can achieve a good resampling of the Eigen-
BRDFs on a regular grid. With a good parameterization,
the viewing and lighting directions corresponding to a uni-
form sampling grid of the parameter space are evenly dis-
tributed on the hemisphere. Experience has shown that a
good map should have the following properties:

Preserve fractional area: This property ensures that a
”fair” set of points on the square will map to a fair set on
the hemisphere.

Eye
Position

Local
Coordinate
System

Light
Position

Texture
Coordinates

Final
Color

Rectangular
Texture

Cube Map
Texture

•• Multiplication

Weighted Sum

Eigen-BRDFs

PCA Weights Uninterpolated
Colors

Interpolation
weight for 4th
coordinate

Cluster
Index

Reparameterized View
Direction sv, tv

Reparameterized Light
Direction sl, tl

Local View
Direction

Local Light
Direction

3D-Texture

Ó

Ó

Ó

Figure 4: Layout of the revised LPCA-rendering: Now two 3D texture coordinates are looked up together with the
corresponding linear interpolation weight. Please note that only one direction is interpolated manually.

Bicontinuous: A map is bicontinuous if the map and
its inverse are both continuous. Such a map will preserve
adjacency. It is necessary since we wish to use the linear
distance on the square as an estimate of angular distance
on the hemisphere.

Low distortion: By low distortion, we mean that
shapes are reasonably well preserved.

The elevated concentric map has the properties listed
above and maps uniformly distributed points on the square
to uniformly distributed points on the hemisphere. There-
fore it is a suitable parameterization for our needs.

The elevated concentric mapΩ can be represented as a
concatenation of an elevation mapΨ and concentric map
Φ.

Ω(s, t) = (Ψ ◦ Φ)(s, t)

The concentric mapΦ(s, t) : [0, 1] × [0, 1] → [0, 1] ×
[0, 2π] is a function from the unit square to the unit disk,
mapping concentric squares to concentric circles. At first
the square is mapped to(s, t) ∈ [−1, 1]2 and is divided
into four regions by the liness = t ands = −t. For the
first region the mapΦ(s, t) = (ρ(s, t), φ(s, t)) is

ρ(s, t) = s

φ(s, t) = π

4
t

s

This produces an angle ofφ ∈ [−π
4 , π

4] The other three
regions have analogous transforms (see [12] for details).

The concentric map can be extended to the hemisphere
by projecting the points up from the unit disk to the unit
hemisphere. In order to create a uniform distribution on
the hemisphere we generate a uniform distribution of the
z-coordinate. This can be accomplished by noting that if
we have a uniform distribution on a disk, then the distri-
bution of ρ2 is also uniform. So given a uniformly dis-
tributed point on a disk, we can generate a uniformly dis-
tributed point on the hemisphere by first generating the z-
coordinate fromρ2, and then assigningx andy such that
the point is on the hemisphere. As a result the elevation
mapΨ(ρ, φ) : [0, 1] × [0, 2π] → R

3 is defined as

x = ρ
√

2 − ρ2 cos φ

y = ρ
√

2 − ρ2 sin φ

z = 1 − ρ2

Since the elevated concentric mapΩ(s, t) is invertible
with

(s, t) = Ω−1(x, y, z) = Ω−1(x, y,
√

1 − x2 − y2)

we are able to reparameterize the Eigen-BRDFs as fol-
lows

Ei,k(x)(θv, φv, θl, φl) = Ẽi,k(x)(sv, tv, sl, tl)

Now we can use this reparameterized BTF for
hardware-accelerated rendering.

6.2 Data organization

In this section we describe how the 4D Eigen-BRDFs are
organized in a 3D texture, so that the volume texture capa-
bilities of current graphics hardware can be exploited.

For a given 4D reparameterized Eigen-BRDF
Ẽj,k(x)(sv, tv, sl, tl), we discretize the lighting pa-
rametertl as {tl0 , . . . , tn(tl)−1} so we create a set of
functions with fixedtl for all n(tl) provided values of
tl. In other words, we create a set of volume textures
{S0, . . . , Sn(tl)−1}, where

Si(sv, tv, sl) = Ẽj,k(x)(sv, tv, sl, tli)

Now the interpolation in thesv, tv andsl dimension are
performed by the hardware and so we only have to handle
the interpolation in the fourth dimensiontl by ourselves.
This is done by performing two texture accesses and lin-
early interpolating the results afterwards.

Ẽj,k(x)(sv, tv, sl, tl) =















S0(sv, tv, sl) , tl < tl0

Sn(tl)−1(sv, tv, sl) , tl ≥ tln(tl)−1

(1 − w)Si(sv, tv, sl)
+wSi+1(sv, tv, sl) , tli ≤ tl < tli+1

with w = (tl − tli)/(tli+1
− tli).

In practice the sequenceSi(sv, tv, sl) of volume tex-
tures is combined into a single volume texture and loaded
into graphics hardware. The texture is indexed by the tex-
ture coordinates

(sv, tv, z1 = tli + sl

n(tl)
)

(sv, tv, z2 = tli+1 + sl

n(tl)
)

The cost of an Eigen-BRDF interpolation is therefore
two texture accesses and one linear interpolation.

6.3 Shader design

In order to avoid the pixel shader’s online effort of cal-
culating the viewing parameters(sv, tv) from (θv, φv) we
precompute the mapping and store it in a texture. There-
fore we densely sample the hemisphere of directions and
store for every direction the corresponding(sv, tv) in a
cube map. In addition to(sv, tv) we also precompute
z1, z2 andw values and put them into a second cube map.
Another issue is dealing with the floating point represen-
tation of the Eigen-BRDFs. Since Nvidia’s GeForce FX
only supports 3D textures with 8-bit precision we quan-
tize every Eigen-BRDF separately to 8-bit yielding scal-
ing factorssj,k. To compensate for this we divide every
PCA weightαj,k by the corresponding scaling factorsj,k

in order to avoid performing the rescaling at runtime.
The new rendering process is depicted in figure 4. It dif-

fers in representation of the Eigen-BRDFs. Now we fetch
the(sv, tv) values by accessing the first cube map via the
view vector. The light vector is used as a lookup index
into the second cube map and fetches thez1, z2 andw val-
ues. Now these values are combined in the pixel shader to
yield the two texture coordinates(sv, tv, z1 = tli + sl

n(tl)
)

and(sv, tv, z2 = tli+1
+ sl

n(tl)
). With them the 3D texture

is accessed and the results are linearly interpolated by the
interpolation weightw.

7 Results

We have implemented the presented rendering method on
a NVidia Geforce FX 5950 graphics board and tested it
with several models and BTF-data from BTF Database
Bonn1. Table 7 enlists frame rates for the two models de-
picted in figure 5.

1http:\\btf.cs.uni-bonn.de

Local-PCA revised Local-PCA
c cloth statue cloth statue
2 21 17 67 50
4 15 11 42 34
8 7 4 31 24

Table 1: Rendering performance in frames per second for
the models depicted in figure 5 and different numbers of
LPCA components.

8 Conclusions

In this work we presented significant improvements in ren-
dering LPCA compressed BTFs on graphics hardware. We
have shown how the necessary manual interpolations be-
tween measured light and view directions can be handed
over to the build-in hardware interpolation by using a
reparameterization and the volume texture capabilities of
graphics hardware. Without loss of quality the new shader
performed approximately three times faster in our tests
compared to the straightforward implementation.

In the future we will extend our method to support mip-
mapping. Unfortunately, the standard mip-mapping capa-
bilities of graphics hardware cannot be employed due to
the clustering step. We therefore have to compute new ma-
terial cluster indices and cluster weights for each mip-map
level. To smoothly interpolate between different mip-map
levels, we will determine the currently desired exact tex-
ture resolution level and need to manually interpolate be-
tween the discrete mip-map levels by essentially executing
the described rendering algorithm twice.

References

[1] M. Ashikhmin, S. Premoze and P. Shirley. A Microfacet-
based BRDF Generator. InProceedings of Siggraph 2000,
pp. 65–74

[2] K. J. Dana, B. van Ginneken, S. K. Nayra, and J. J. Koen-
derink. Reflectance and Texture of Real World Surfaces. In
IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 151–157, 1997

[3] K. Daubert, H. Lensch, W. Heidrich and H. P. Seidel. Effi-
cient Cloth Modeling and Rendering. In12th Eurographics
Workshop on Rendering, pp. 63–70, 2001

[4] J. Kautz, P.-P. Sloan, J. Snyder Fast, Arbitrary BRDF Shad-
ing for Low-Frequency Lighting Using Spherical Harmon-
ics In12th Eurographics Workshop on Rendering, pp. 301–
308, 2002

[5] E. Lafortune, S. Foo, K. Torrance and D. Greenberg Non-
linear approximation of reflectance functions. InIEEE Int.
Conf. on Computer Vision, pp. 1010–1017, 1999

[6] X. Liu, Y. Hu, J. Zhang, X. Tong, B. Guo and H. Shum Syn-
thesis and Rendering of Bidirectional Texture Functions on
Arbitrary Surfaces. Submitted to IEEE TVCG, 2002

[7] D. K. McAllister. A Generalized Representation of Sur-
face Appearance.PhD thesis, University of North Carolina,
2002

[8] D. K. McAllister, A. Lastra, and W. Heidrich. Efficient
Rendering of Spatial Bi-directional Reflectance Distribu-
tion Functions. InGraphics Hardware 2002, pp. 78–88,
2002

[9] J. Meseth, G. M̈uller, R. Klein. Preserving Realism in
real-time Rendering of Bidirectional Texture Functions. In
OpenSG Symposium 2003, pp. 89-96, April 2003.

[10] G. Müller, J. Meseth, R. Klein Compression and real-time
Rendering of measured BTFs using local PCA. InVision,
Modeling and Visualization, pp. 271–279, 2003

[11] M. Sattler, R. Sarlette, and R. Klein. Efficient and Realis-
tic Visualization of Cloth. InEurographics Symposium on
Rendering, 2003

[12] P. Shirley, K. Chiu. A Low Distortion Map between Disk
and Square. InJournal of Graphics Tools, vol. 2, no.3, pp.
45–52, 1997

Figure 5: Some results of the rendering method. In the top rowwe have a cloth covered with a corduroy and synthetic
grey. The bottom row depicts a weathered statue head coveredwith stone and varnished wood.

