
Constrained Delaunay Triangulation using Plane
Subdivision

Vid Domiter∗

Laboratory for Geometric Modelling and Multimedia Algorithms
Faculty of Electrical Engineering and Computer Science, University of Maribor

Maribor / Slovenia

Abstract
This paper presents an algorithm for obtaining a con-
strained Delaunay triangulation from a given planar graph.
The main advantage towards other algorithms is that I use
an efficient Žalik’s algorithm, using a plane subdivison for
obtaining a Delaunay triangulation. It is used for inser-
tion of points into existing triangulation. The other part of
algorithm presents a method for inserting edges, already
proposed by Anglada. The algorithm is fast and efficient
and therefore appropriate for GIS applications.

Keywords: Constrained Delaunay triangulation, two-
level subdivision, computational geometry, GIS

1 Introduction
Triangulation of set of points on the plane presents a par-
tition of an area, surrounded by a convex hull. Triangles
are composed by vertices, given as an input. But if the
triangles fulfill additional condition of an empty circum-
circle, they present a Delaunay triangulation (DT) [9].
I will go a step further, as many have taken before, by
constructing a constrained Delaunay triangulation (CDT).
The input is now a planar graph G which consists of
vertices V and non-crossing edges E (G = {V, E}). The
edges E are actually edges of future triangles, obtained by
triangulation.

CDT algorithms can be divided in the same way as DT
algorithms, into three main groups:

• Algorithms based on ”Divide and conquer” strat-
egy
As usually, the input set is divided into smaller sets.
They can be divided using different approaches, like
ribbons or areas. When the sets are small enough,
they are trivial to triangulate. The last and the most
difficult step is merging two sets together. Those al-
gorithms are quite demanding to implement, how-
ever, they are convenient for parallel processing
(Hardwick [5]). A good example was proposed by
Chew [2]. A succesive refinement of the Delaunay

∗vid.domiter@uni-mb.si

triangulation was described by Ruppert [6], where ad-
ditional Steiner points are used.

• Sweep-Line algorithms
They use an imaginary sweep-line which divides a
working area into two sub-areas. If we watch the
area behind the sweep-line, we can see that it has
already been triangulated. Yet, the area before it
still waits to be processed. Each step adds a new
triangle to existing triangulation. This is achieved
by connecting a new point or an edge to the bound-
ary of the current triangulation considering the De-
launay criterium. Very popular algorithm was in-
troduced by Fortune [3]. His algorithm was de-
veloped to construct a Voronoi diagram [1]- a dual
graph of Delaunay triangulation. Shewchuk [7] pre-
sented a successful algorithm for constructing higher-
dimensional CDT.

• Incremental algorithms
Are the most popular algorithms today and proba-
bly the simplest to implement. They build triangu-
lation gradually, by inserting new vertices or edges.
Every step preserves and ensures the rule of empty
circumcircle (Guibas, Knuth and Sharir [4], Žalik,
Kolingerova [9], Anglada [8]). There are two groups
of incremental algorithms:

– incremental search algorithms,

– incremental insertion algorithms.

Constrained triangulation was first developed for net
formations in the field of finite elements analysis. Today,
it is often used in CAD applications and geographic
information systems (GIS). An example is triangulation
of the terrain which already contains elements that could
be represented as edges (roads, rivers, borders). Typical
CDT applications include motion planning, collision
detection and determination of minimal bounding tree as
well. At this point, I have to mention that CDT can not
always assure Delaunay criterium, but it can come near.
Main reason lies in input constraints, which can violate
the criterium.



This article presents an algorithm, which is a com-
bination of two known algorithms (DT algorithm us-
ing a nearest-point paradigm, presented by Žalik and
Kolingerova [9] and an incremental CDT algorithm ex-
plained by Anglada [8]). Sections 2.1 and 2.2 describe
each idea in details. At the end, a conclusion based on
results will be given.

2 The algorithm
The presented algorithm belongs to a group of incremental
insertion algorithms. Its structure consists of two parts:

• insertion of points [9],

• insertion of edges [8].

p
a p

b

p
c

a)

p
a p

b

p
c

p
d

p
i

b)

p
i

Figure 1: Inserted point pi splits one triangle and forms three
new triangles (a) or splits two and forms four new triangles (b),
when it falls on the common edge.

2.1 Insertion of points
The bottleneck of incremental DT algorithm is the search
for a triangle, into which the currently integrating point
falls. Žalik and Kolingerova [9] have transformed the
problem into finding the closest point, which takes less
processing time.

Three main steps of the algorithm are:

• Initialization,

• Triangulation,

• Finalisation.

To make the algorithm work fast, the searching structure
has to be initialized. The proposed structure is two-level
uniform plane subdivision (2LUPS). The plane, which
contains all points, is divided into cells (the first level). In

case of non-uniformly distributed input points some cells
can become overpopulated. Therefore an additional vari-
able Treshold is defined. When the number of points in
cell exceeds Treshold, cells are divided again (the second
level). 2LUPS structure is a combination of uniform sub-
division (the number of cells equals in both, x and y direc-
tion), used for the second level, and adaptive subdivision
at the first level, which uses heuristics [9]. The most ap-
propriate cell division in second level forms 16 new cells.

Due to the insertional nature of this algorithm, determi-
nation of artificial triangle is to be done first. The triangle
has to be constructed large enough, so all points fall inside
of it.

Insertion of the first point is handled under initializa-
tion. The result is a big triangle, split in three smaller ones.
This step is trivial, because triangulation is definitely a
DT (Figure 1a).

p
i

d

i

j

i+1i-1i-2

j+1

j-1

j-2

p
2

p
1

m
in

Figure 2: Finding the closest point.

Triangulation is the main process. It consists of two
steps. The first step is finding a triangle containing inserted
point. This step uses a 2LUPS searching structure and a
searching mechanism, usually performed by so-called spi-
ral algorithm, which is used here [9]. First, the point is
inserted into a cell of 2LUPS structure. Then, a search for
the closest vertex is started (Figure 2). Here, we can see
the idea presented by Žalik and Kolingerova [9].

In Figure 2, inserted point is pi. A distance dmin to
the closest vertex in this cell (p1) is calculated. Shaded
cells are being searched (they could contain a vertex within
a circle, centered in pi with radius dmin). When vertex
p2 is located, dmin is updated and the search continues in
cells intersected by a new circle (now defined by a new
radius dmin). There are no other vertices in the cells, so
the closest is p2.

After the closest vertex is found, it is possible, that it be-
longs to one of the triangles containing the inserted point.
If not, the next closest vertex has to be found. This is easy,
because the candidates are previously examined vertices.

The second step is splitting the corresponding triangle
into three or four sub-triangles (Figure 1a and Figure 1b),



pc

pb

pa

pd

pc

pb

pa

pd

edge flip

Figure 3: Triangle fails Delaunay criterium and edge flip must
be done.

which are then checked according to the empty circumcir-
cle criterium (Figure 3). If a triangle fails the checking, it
must be legalized. This means that a common edge of the
tested triangle and its edge-neighbour must be flipped to
obtain two new triangles. Again, they must be tested. The
procedure is implemented recursively.

The final step is finalization. Its basic task is a removal
of triangles containing the vertices of artificial triangle,
formed in initialization.

The algorithm works with time complexity of O(n1,1)
for most cases. The worst time complexity is O(n2),
where n is a number of inserted points.

2.2 Insertion of edges

The currently inserting edge is defined by vertices that are
already a part of triangulation. Figure 4 shows an example
of the whole process of edge insertion and in Figure 7 we
can see the pseudocode.

The algorithm follows two main steps:

• Removal of triangles cut by edge ab to gain an empty
area around the edge (Figure 4b,c),

• Triangulation of the previously created area, so called
pseudo-polygons (Figure 4d).

Adding the edge to resulting triangulation is nothing
but marking them as fixed, so they become a part of
triangulation and cannot be changed. This task is not
exposed as one of the steps.

2.2.1 Removal of intersected triangles

At the beginning, the first triangle must be located. This
is done in constant time, because we know which vertices
define the inserted edge, thus we can immediately locate
the starting point. Next, we must determine which triangle
is the first cut by an edge. We know that one vertex can
belong to more than one triangle. So during the process

of insertion of points, triangles are built, and every point
is equiped with a list of surrounding triangles. Figure 5
shows the searching method. For each overpassed trian-
gle, intersection between inserted edge and edge laying
opposite to starting point, is checked. If they do intersect,
the search is completed.

a b

a b

a b

a)

b)

c)

d)

a b

PU

PL

Figure 4: Situation before insertion of edge ab(a), removal of
intersected triangles (b) forms two pseudo-polygons PU and PL

(c) and triangulation of PU and PL(d).

Now, the ground for triangle removal has been arranged.
Moving through triangles is simple (Figure 6). To per-
form this task, the proposed functions OpposedTriangle
and OpposedVertex aree implemented.

Let us look at the triangles 4papbpc and 4pbpcpd in
Figure 1b. If function OpposedTriangle receives a triangle
4papbpc and vertex pa as arguments, it returns a trian-
gle 4pbpcpd. In case OpposedVertex is called by triangles
4papbpc and 4pbpcpd, vertex pa of the first entered trian-
gle is returned. Implementation is simple, because it uses
links between triangles (every triangle ”knows” his neigh-
bours).

When triangle is deleted, all links must be updated.
During this process, all points above and below the edge
are stored separately in two lists, PU and PL (Figure 4).
Together with the edge, they present pseudo-polygons that
must be triangulated.



a

b

t

t1

Figure 5: Cycling through surrounding triangles until the first
triangle is found, in our example triangle t1.

u1
u2

l1 l2

l3

T1 T2

T3

T4 T5
a b

Figure 6: Moving through triangles is stressed by arrows.

2.2.2 Triangulation of pseudo-polygons

Triangulation of pseudo-polygons (see pseudocode in Fig-
ure 10) is based on strategy ”divide and conquer” (Figure
8). The main idea is to triangulate the both upper and lower
polygons and link them when finished. As pseudocode
shows, we go through all vertices of polygon and check
the empty circumcircle criterium for each possible trian-
gle, formed by visited vertex and edge. The checking ends
when criterium is satisfied. If currently selected point is p,
then p divides the polygon into left and right sub-polygons,
which are again recursively triangulated. Recursion stops
when a polygon, containing only three vertices, is reached.
Trivially, a triangle is constructed and added to triangu-
lation (it must be linked with its neighbouring triangles).
These steps are repeated until the whole polygon is trian-
gulated.

When inputing data, it can sometimes occur, that a point
falls directly on the edge. So pseudocode is slightly im-
proved, compared to Anglada’s [8], because it can handle
such cases. Point p appears to split the edge ab, so the
algorithm presumes the same. Recursively, it calls a pro-
cedure for edge insertion again, yet with a new edge pb
(edge ab is now treated as ap∪pb. Comparison is shown
in Figure 9.

I will pass the same conclusions about time complex-
ity for edge insertion and for triangulation of pseudo-
polygons as Anglada [8] stated. Let e be the number of

Procedure InsertEdgeCDT(T:CDT, ab:Edge)
Precondition: a,b ε T and ab /∈ T

Find the triangle t ∈ T that contains a
and is cut by ab

PU:=EmptyList
PL:=EmptyList
v:=a
While v not in t do

tseq:=OpposedTriangle(t,v)
vseq:=OpposesdVertex(tseq,t)
If vseq above the edge ab then

AddList(PU,vseq)
v:=Vertex shared by t and tseq above ab

Else If vseq below the edge ab
AddList(PL, vseq)
v:=Vertex shared by t and tseq below ab

Else vseq on the edge ab
InsertEdgeCDT(T, vseqb)
a:=vseq

break
EndIf
Remove t from T
t:=tseq

EndWhile
TriangulatePseudoPolygon(PU,ab,T)
TriangulatePseudoPolygon(PL,ab,T)
Reconstitute the triangle adjacencies of T
Add edge ab to T
Mark the edge ab from T as fixed

EndProc

Figure 7: Algorithm for edge insertion.

a b

c
PE PD

Figure 8: Triangulation of pseudo-polygon: Triangle4abc ful-
fills Delaunay criterium, so point c divides polygon into PE and
PD.

triangles of CDT cut by edge ab and m number of edges.
The edges are set in a way, that every edge is defined
by two vertices which are already in CDT. So finding a
starting point a is done in constant time. Number of sur-
rounding triangles can vary between one and maximum,
as in the case of the number of edges of convex poly-
gon with a point in the center. Finding the first triangle
then requires O(m) time. Construction of upper and lower
pseudo-polygons takes a time complexity of O(e2), since
in each recursive call, total number of points decreases in
one unit. To put all together, procedure InsertEdgeCDT
has a worst time complexity of O(n2).

3 Results

Several tests have been made on AMD Celeron 1.7 GHz
processor with 256 Mbytes of memory on disposal. The
operating system was Windows XP.

I tested the algorithm on graphs, using different num-
bers of points and edges. The procedures for insertion of
edges and points were measured separately. Table 1 shows



a b
p

a)

b
p

b)

a

Figure 9: Example shows a situation, where point p falls on the
edge ab. In picture a), the situation is not handled, therefore the
CDT is incorrect. Picture b) shows my refinement, where edge
ab is split in new edges ap and pb), both treated separately. CDT
is correct.

Procedure TriangulatePseudoPolygon
(P:VertexList, ab:Edge, T:CDT)

If P has more than one element then
c:=First vertex of P
For each vertex v ε P do

If v ∈ CircumCircle (a, b, c) then
c:=v

EndIf
, EndFor

Divide P into PE and PD giving P=PE+c+PD

TriangulatePseudoPolygon(PE, ac, T)
TriangulatePseudoPolygon(PD, cd, T)

EndIf
If P is not empty then

Add triangle with vertices a, b, c into T
EndIf

EndProc

Figure 10: Algorithm for triangulation of pseudo-polygon.

some results of the tested examples, shown in Figure 11.
I observed CPU time in relation with number of inserted
edges. Usually, greater number of edges means longer pro-
cessing. But not always. Another important factor is the
number of triangles being cut by edges. Tested example
d) has less edges than example e) (Table 1), but takes the
same time for edge-processing. The reason lies in greater
number of removed triangles. Removal itself is not that
time demanding. More important is the number of points
that compose pseudo-polygons, which is proportional to
number of removed triangles.

Table 1: Meassured CPU time for tested polygons.
Triangles CPU time [s]

Fig.11 Edges Points cut InsertPoint InsertEdge Total
(a) 368 1200 988 0.01 0.01 0.02
(b) 4259 1856 1311 0.02 0.02 0.04
(c) 5453 2345 1108 0.03 0.02 0.05
(d) 10000 10000 9462 0.08 0.05 0.13
(e) 13667 6132 2412 0.08 0.05 0.13
(f) 19044 16013 9092 0.211 0.09 0.301

Examples in Table 1b,c,e,f present real input data and
examples in Table 1a,d are artificially formed and can be
seen in Figure 11.

4 Conclusion
The algorithm copes well with real data and presents a
good groundwork for advanced research. The advantages
towards other CDT algorithms are especially noticeable in
cases of non-uniformally distributed input data. In future,
I intend to overcome some disadvantages of the algorithm.
When edges are long, relatively to whole triangulation, tri-
angles surrounding them turn out very thin. These trian-
gles are unwanted. One of the ideas is using a polyline that
uses triangle edges and tries to fit the inserted edge. Such
modification provides a next challenge in my future work.

References
[1] Aurenhammer, F., Voronoi diagrams-a survey of a

fundamental geometric data structure, ACM Comput-
ing Surveys, vol. 23, no. 3, pp. 345-405, 1991.

[2] Chew, L. P., Constrained Delaunay triangulations,
Proceedings of the 3rd annual symposium on Com-
putational geometry, ACM Press, pp. 215-222, 1987,
Waterloo, Ontario, Canada.

[3] Fortune, S., A sweep line algorithm for voronoi dia-
grams, Algorithmica, vol. 2, 1987, pp. 153-174.

[4] Guibas L., Knuth D., Sharir M., Randomized incre-
mental construction of Delaunay and Voronoi dia-
grams, Algorithmica, no. 7, pp. 381-413, 1992.

[5] Hardwick, J. C., Implementation and evaluation of
an efficient parallel Delaunay triangulation algorithm,
Proceedings of the 9th annual ACM symposium on
Parallel algorithms and architectures, ACM Press, pp.
239-248, 1997, Newport, Rhode Island, USA.

[6] Ruppert, J., A new and simple algorithm for quality
2-dimensional mesh generation, Proceedings of the
4th annual ACM-SIAM Symposium on Discrete algo-
rithms, ACM Press, pp. 83-92, 1993, Austin, Texas,
USA.

[7] Shewchuk, J. R., Sweep algorithms for constructing
higher-dimensional constrained Delaunay triangula-
tions, Proceedings of the 16th annual symposium on
Computational geometry, ACM Press, pp. 350-359,
2000, Clear Water Bay, Kowloon, Hong Kong.

[8] Anglada, M. V., An improved incremental algorithm
for constructing restricted Delaunay triangulations,
Computers & Graphics, vol. 21, p. 215-223, 1997.

[9] Žalik, B., Kolingerova I., An incremental construc-
tion algorithm for Delaunay triangulation using the
nearest-point paradigm, Int. J. Geographical informa-
tion science, vol. 17, no. 2, pp. 119-138, 2003



a) b)

c) d)

f)e)

Figure 11: Some tested examples.


