
Progressive Compression for Lossless Transmission of
Triangle Meshes in Network Applications

Timotej Globačnik*
Institute of Computer Graphics Laboratory for Geometric Modelling and Multimedia Algorithms

Faculty of Electrical Engineering and Computer Science, University of Maribor
Maribor / Slovenia

* timotej.globacnik@uni-mb.si

Abstract
This paper presents a usage of algorithms for

progressive compression of triangle meshes in a network
applications with a single server and is composed from
two major parts. First one describes algorithm proposed
by Alliez and Desbrun, which is used for progressive
compression and reconstruction of triangle meshes. The
second part considers our experience with distribution
the data between clients using a single server. Different
distribution rules were implemented and tested. Because
server can send data only to one client at the time, this
approach is suitable only for small server applications.
Keywords: progressive compression, triangle meshes,
network applications, sockets

1 Introduction
In recent years, the performance of compute hardware
and broad-band internet connection improved
dramatically. It is possible to realistic render the complex
3D graphics scene even on low-cost computers
practically in real time. The boundary of complex free-
form geometric objects is usually represented by a huge
number of triangles – by triangle meshes. More realistic
is the model greater number of triangles is required for
its representation. However, due the large number of
triangles the transfer of such geometric models through
the internet is still limited. As with other multimedia
types (digital video, digital music), the compression of
triangular meshes is needed. Geometric data such
triangular meshes differ importantly from other type of
data. Two types of algorithms for compression triangular
meshes can be distinguished [6].
• The geometric model is compressed in one step.

This approach is known as a single-rate coding. The
biggest drawback of this approach is inability of
showing the rough picture of the model before it is
fully reconstructed. This makes this approach
inappropriate for internet applications.

• The model is compressed in several steps, where
each step removes a set of vertices that satisfy
special criteria. We are talking about progressive
coding. In this case, geometric object is compressed
in different levels of details – LOD [8, 9]. To keep
the model recognizable also at the lowest level of
detail, the number of steps is limited. The mesh

created after last step is considered as a base mesh.
The base model is usually further compressed with
the single-rate coder. The reconstruction algorithm
works in the opposite direction. First, the base mesh
is reconstructed. After that, each pass adds certain
amount of details to the mesh reconstructed in the
previous pass, until it is fully reconstructed and
identical to the original model.

The progressive triangular meshes compression
algorithms can be divided into three main groups [6, 7]:
• Polyhedral simplification algorithms. The main

idea of these algorithms is to remove the vertices
from the mesh by altering its topology and, if
necessary, also the position of the remaining vertices
what reduces errors produced by the simplification
process. These algorithms can be used in
applications using lossy compression techniques but
are inappropriate for applications, where topology
must be preserved.

• Geometric compression algorithms. To reduce the
storage needed for geometric data both, lossy or
lossless techniques can be used. Because general-
purpose binary compression algorithms do not
achieve optimal results, some other solutions had
been purposed. One of them, called Deering's
approach [1], is based on normalization of every
vertex position into a unit cube and reducing the
fixed number of less important decimals of vertex
coordinates.

• Connectivity compression algorithms. Usually, the
mesh is represented as a set of vertices forming
triangles and additional information of how these
triangles is connected - topology. The main goal of
these algorithms is to find a way, how to represent
triangle mesh where connectivity data would take as
little storage space as possible.

This article presents a progressive triangular mesh
compression algorithm as introduced by Alliez and
Desbrun [2]. Although the approach bases on a simple
idea, it has good performances. The main contribution of
our paper is a description of a new approach where
server application uses distribution rules for a decision
which client will receive data first and what amount of
data will be transmitted. The solution bases on TCP/IP
protocol using sockets. At the end, the practical results
are given.

2 Progressive Compression of
Triangle Meshes

In this Section we briefly describe the basic idea of
algorithm, presented by Alliez and Desburn [2]. This
algorithm enables lossless progressive compression of
3D triangle meshes and works in two steps named
valence-driven decimating conquest and cleaning
conquest. Similarly, the reconstruction procedure follows
the same procedure but in the reverse order, i.e. cleaning
conquest followed by decimating conquest. To
understand the algorithm, used terms are described at
first:
• Valence of vertex v corresponds to the number of

vertices, connected to vertex v. In Figure 1a valence
of vertex v is 6.

• Patch consists from central vertex and its incident
triangles. Each triangle is defined with central vertex
and two adjacent vertices. Edges, connecting all
adjacent vertices form patch border. Figure 1a
represents a patch with central vertex v surrounded
by 6 adjacent vertices forming border of the patch.

• Degree of patch is defined by the number of
triangles incident to the central vertex of the patch.

• Vertex removal is an operation, which removes the
central vertex from the patch and retriangulates the
hole (see Figure 1b, c).

a) b) c)
Figure 1: Operations on triangular mesh

• Independent set is a set of patches in the triangle

mesh, where each triangle lies only in one patch.
Independent set is called optimal independent set in
the case when every triangle of the mesh is located
in one patch (Figure 2a).

• Null patch refers to triangle, which does not belong
to any patch of triangle mesh (white triangles in
Figure 2b). In this case, triangular mesh is not
optimal independent.

• Gate is an oriented edge, which enables moving

from one patch to another (Figure 2c). The gate can
be the input or the output gates. Each input gate
defines its front face f.

• During compression or decompression, each vertex
or triangle can have its status flag set to one of the
three states: free, conquered, or to_be_removed.

• Retriangulation tag is associated to each vertex of
the mesh. It can have two possible values: + or -.
When vertex valence should lower during
retriangulation process, its tag is set to -, on the
contrary vertex tag remains +.

a) b) c)
Figure 2: An optimal independent set (a), null patches(b),

gates(c).

The vertex can be removed from the mesh when:
• surface manifold property is not violated,
• normals of adjacent vertices are not flipped; this

condition can also be ignored, because it has no
influence on the compression algorithm, but it is
important for rendering,

• user defined requirements are satisfied (for example,
to preserve the shape of the mesh also at the low
level of details).

The main idea of the compression algorithm can be
explained using Figure 3. Vertices with valence d ≤ 6 are
removed during mesh traversal, while leaving their patch
borders intact. At the beginning of compression
procedure, first gate g0 is randomly selected from all
edges of the mesh. In Figure 3a, the shaded patch is
entered through the gate g0. The central vertex and its
incident faces are removed, status flag of border vertices
is set as conquered and 5 output gates are pushed into
FIFO, which now contains the following gates: g1, g2, g3,
g4, g5 (Figure 3a). In the second step (Figure 3b), gate g1
is taken from the queue, the central vertex and its
incident faces are removed, again status flags of border
vertices are set and another 5 gates are pushed into the
queue, which now contains g2, g3, g4, g5, g6, g7, g8, g9,
g10. The same procedure is applied with the third patch

a) b) c)

Figure 3: Removing central vertices

(Figure 3c). Process continues until there are any gates in
the queue.

As we can see, the way compression algorithm traverses
the mesh depends on the order in which gates are pushed
into FIFO. Therefore, to allow the proper reconstruction
of the mesh both, compression and reconstruction
algorithm must generate output gates in the same order.
Furthermore, to avoid patch overlapping, next solution
should be considered. If status flag of the central vertex
of the patch is set as conquered this patch has already
been visited therefore current gate is discarded and next
one is taken from the queue.

To keep the patches nicely triangulated, adaptive
triangulation method is used according to the valence of
its central vertex and retriangulation tags of patch border
vertices. The retriangulation tags of patch border vertices
are set during mesh traversal using rules proposed by
both authors. The proper rule is chosen according to the
valence of central vertex of the patch and retriangulation
tags of both vertices defining input gate of the patch (see
Figure 4 for an example). These rules make
retriangulation deterministic, thus proper reconstruction
of the mesh is guaranteed. Sometimes it can happen that
some vertices of the patch have their tags already set –
usually when adjacent patch has already been conquered.
In that case, tags of those vertices are left unchanged, but
patch is still retriangulated according to the rules. Since
the reconstruction algorithm performs these operations in
same way deterministic triangulation of the patch is
preserved.

Figure 4: Set retriangulation tags of degree 4 patch.

After decimating conquest, the majority of vertices in the
mesh would have their valence 3 or 9 (see Figure 5a).
Therefore, to improve mesh regularity cleaning conquest
is performed. Cleaning conquest removes only valence 3
of vertices. As can be seen on Figure 5b, patches of
degree 3 are separated by a triangle. After removing the
vertex with valence 3 gates, which are put into queue, are
the two edges of each triangle, adjacent to the patch
border. Consider an example in Figure 5b. When patch

marked by the arrow is entered through the input gate,
the central vertex is removed and 4 new gates (marked
by arrows) are sent into the queue. Finally, status flag of
each triangle adjacent to the patch is set as conquered.
When cleaning conquest is terminated, the valence of
remaining vertices is the same as before decimation
conquest (see Figure 5c). At the end, the data are
compressed by the arithmetic coder [4].

Mesh reconstruction is performed by the inverse
procedure.

3 Network application
Even after a triangle mesh is compressed, it can still take
considerable amount of memory space. Nowadays this
does not represent a problem, if the compressed data are
already on the computer, but can drastically slow down
the reconstruction (and visualization), when data are
transferred to the remote computer. To solve these
problems, the users are hiring faster internet connections,
or distribute the load to multiple servers connected into
clusters. Since all these solutions increase the costs of
system maintenance, we provide single-server solution,
where server has the possibility to decide – using
distribution rules – which client will receive data first
and what amount of data will be transmitted.

3.1 Communication between server
and clients

The application is divided into two parts: a server and a
client application. The server application maintains three
main tasks:
• receive requests from clients,
• select an active client (the client which will receive

data first) and
• transmit data to the selected client.
The main tasks of the client application are:
• send requests to server,
• receive data from server,
• reconstruct the received mesh and render it on the

screen.

To make communication between both applications
possible also over the internet, TCP/IP protocol was
selected. If we look at Figure 6, we can distinguish two

Figure 5: Triangle mesh before decimating conquest (a), triangle mesh after decimating conquest (b) triangle mesh after

cleaning conquest (c).

types of data being sent between server and client: client
requests and mesh data. As the time needed for client
requests is much shorter than for transferring the mesh
data, we decided to send them through two channels
sockets.

As we described in Section 2, triangle mesh is
compressed by alternatively performing decimatoin and
cleaning conquest. Each process creates a sequence of
vertices at its output. These sequences are then
compressed using arithmetic coder and saved into
separated file (also called data packet).

After the client connects to the server, it sends
get_mesh_list request through the request channel. The
server responds by sending list of compressed meshes
stored in its mesh database over the data channel (see
Figure 6). From that list, the user selects the desired
mesh by sending get_base_mesh request to the server
over the request channel. When, this request is selected
by the distribution rule, the base mesh is loaded from the
mesh database and sent to the client. The client starts
immediately with the reconstruction and rendering of the
mesh. After the base mesh is rendered, the client requests
following data packet by sending get_next_packet
request. Because server already knows which packet was
transmitted before, no additional data is required from
the client. The next packet is loaded from the mesh
database and sent to the client. Procedure is finished,
after the last packet is received, thus mesh is fully
reconstructed. However, the time needed for the
reconstruction of the mesh, depends on selected
distribution rule.

3.2 Distribution rules
Four distribution rules were implemented and each of
them evaluates the client request in a different way. The
main aim is to achieve the fastest response of the server
to client’s requests as well as maintaining server
utilization at the lowest possible level. All these rules are
uninterruptible, i.e., the next client is selected only after
previously selected one received the requested data.

First In First Out (FIFO)
Server sends the data to the first client in the client
requests queue. After that, second request is served, then
third and so on. This rule is commonly used in the most
client – server applications, where server can send the
data to only one client at a time. If the first client in the
queue has very slow connection speed, sending data to
that client would make response times to all other clients
significantly longer.

Least Completed First Served (LCFS)
The rule selects the client, which received the smallest
amount of data up to now. This means that the client,
which sends the first request, would have higher priority
than others what allow it to start reconstruction of the
mesh immediately. Using this rule, the first passes of the
mesh are reconstructed faster than the others, if there are
many client requests, waiting in a queue. However, if
many clients send their first request at the same time,
some clients can wait very long, before their requests are
served.

Smallest Packet First (SPF)
Server checks the sizes of all packets requested by the
clients and selects the smallest one. Because packets
needed at the beginning of the mesh reconstruction are
usually smaller than the latter ones, the client can wait
longer to receive the final packets and to finish the mesh
reconstruction.

Fastest Connection Speed First (FCSF)
Client with the higher speed connection get the data first.
However, when client requires first data packet, its
connection speed is automatically set to the fastest. After
that, server calculates the time needed to transfer each
packet to the client and sets its priority accordingly. This
rule also offers another option where the server could
send to client with the high speed connection two packets
in a row, while slower clients get only one packet at the
time.

Figure 6: Architecture of our system.

4 Results
Four distribution rules, described in previous section
were tested with real application. We have chosen four
progressively compressed trianglular meshes (Figure 7),
where each mesh have been saved as a sequence of data
packets – files. Thus first mesh, Ball Joint, consists from
10 packets where packet 1 represents the base mesh,
packet 2 first pass, packet 3 second pass, etc. Second
mesh, Club, is composed from the base mesh and 4
passes. Dinosaur is represented by 7 packets while Venus
needs 10 packets to be fully reconstructed. Sizes of
packets of these meshes are presented in Table 1.

Packets [kB] Mesh
name 1 2 3 4 5 6 7 8 9 10

Ball Joint 71 4 2 5 3 8 4 11 6 14
Club 476 7 21 13 25 / / / / /
Dinosaur 84 2 4 2 6 4 8 / / /
Venus 70 4 2 5 3 7 4 11 6 14
Table 1: Sizes of every data packets of each mesh, used

for testing purposes.

These meshes were stored on the server - an AMD
Athlon 1400+ with 384MB of RAM, running Windows

XP operating system. Its connection speed was ADSL
1024/256. For testing purposes, we have used five clients
with different connection speeds. The first one, (Client1)
was connected to the internet through an analogue
modem 33.6 kb/s, the connection speed of the second
client (Client 2) was ADSL 1024/256 kb/s, while the last
three clients (Client 3, Client 4 and Client 5)
communicated with server through ADSL 2048/384 kb/s
communication line.

We tried to evaluate the distribution rules with three
different approaches. In the first one, the same mesh
(Ball Joint) was simultaneously requested by all three
clients. For each of the client, we estimated the time
needed to receive all data packets of the mesh (see Figure
8). The test was performed using all four distribution
rules. The results can be seen in Table 2.

Estimated time in seconds. Rule
Client FIFO LCFS SPF FCSF
1 – Ball Joint 48.154 48.713 48.658 45.164
2 – Ball Joint 44.210 43.952 9.951 28.113
3 – Ball Joint 44.642 44.591 7.691 30.244

Table 2: All clients requested the same mesh.

Figure 7: Four testing examples.

If we look at the results, estimated times are almost
identical, when FIFO rule was used, because the two
clients with faster connections must wait for the slower
one to finish transferring its packet.
Since LCFS rule in this case gives the same priority to all
clients (because all of them requested the same mesh),
the results are very similar to those, estimated with FIFO
rule.
SPF gives the best result in this test because first packet
of the mesh is the biggest in size, therefore the client
which first received the packet 1 has higher priority than
other clients. The same rule could also be the worse one,
if the slowest client would requested the packet 1 first.
When FCSF rule is used, all three clients must receive
packet 1, before their speed is calculated. After that,
faster clients receive the data before slower ones. We can
see that the times of both fast clients are almost identical,
because server upload speed is limited to 32kB, so none
of them can receive data with more than 32kB/s.

To see how efficient are the rules, when different meshes
are requested, we repeated the above procedure, but in
this case, each client requested different mesh.

Estimated time in seconds. Rule
Client FIFO LCFS SPF FCSF
1 – Venus 58.413 59.217 56.022 58.413
2 – Dinosaur 48.282 57.162 30.131 42.010
3 – Club 44.687 57.920 57.772 41.800

Table 3: Different meshes were requested.

Again, in the case of FIFO rule, even when meshes
required by the faster clients are shorter than the mesh,
requested by the slower one, the times of all three are
very similar.
LCFS rule results are even worse, because the fastest two
clients must wait for the slower one before their request
can be complied.
Again, SPF rule gives higher priority to client which
requested the smallest mesh. For that reason, mesh
Dinosaur is transferred much faster than other two
meshes.
When FCSF rule is used, clients with faster connections
have the advantage and thus, shorter transfer times. This
time could be even shorter if Client 1 would requested
mesh with smaller first packet – because all clients have
the highest priority before they receive first packet.

Figure 8: Reconstruction of triangle mesh Venus.

In third approach, we wanted to see, how the number of
packets influence the efficiency of the individual rules.
This approach is similar to the previous one, however
this time all clients have the same connection speed.

Estimated time in seconds. Rule
Client FIFO LCFS SPF FCSF
3 – Venus 26.396 23.513 24.149 25.947
4 – Dinosaur 25.312 26.447 7.083 24.904
5 – Club 24.335 21.430 26.227 24.037
Table 4: Different meshes were requested by clients with

equal connection speeds.

The only rule, which is affected by the size of data
packets is rule SPF. As we can see, the smallest mesh
(Dinosaur), having half number of vertices of mesh
Venus and a quarter number of vertices of mesh Club is
transferred much faster than the other two meshes.
However, the times of other two meshes are very similar
because server chooses the client faster that it can send
request for new data packet thus in that time, there is
only one request in the queue.

5 Conclusion

It is obvious that the selection of efficient rule is essential
to achieve the good response times and keep the number
of requests at the lowest possible level. In our case, the
only appropriate and useful rule, which satisfies both
conditions mentioned above, is rule FCSF. FIFO and
LCFS rules are to much affected by the connection speed
of the clients, while SPF enables fast reconstruction of
smaller meshes. However, the rules could be more
efficient, if the server would interrupt the transfer after
expiration of certain time period giving opportunity to
other clients.

References
[1] M. Deering. Geometric Compression. Computer

Graphics (Proc. SIGGRAPH), pages 13 – 20,
August 1995.

[2] P. Alliez and M. Desbrun. Valence – driven
Connectivity Encoding for 3D Meshes.
EUROGRAPHICS, pages 480 – 489, 2001.

[3] M. Schindler. A Fast Renormalization of Arithetic
Coding. In Proceedings of IEEE Data Compression
Conference, Snowbird, UT, page 572, 1998.

[4] I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic
Coding for Data Compression. Communications of
the ACM, 30(6), 1987.

[5] A. Khodakovsky, P. Schroder, and W. Sweldens.
Progressive Geometry Compression. In ACM
SIGGRAPH 00 Conference Proceedings, pages
271–278, 2000.

[6] Jingliang Peng, Chang-Su Kim, and C.-C. Jay Kuo.
Technologies for 3D Triangular Mesh
Compression: A Survey. Submitted to Journal of
Visual Communication and Image Representation,
2003.

[7] G. Taubin and J. Rossignac. Geometric
Compression through Topological Surgery. ACM
Transactions on Graphics, Vol. 17, No. 2, 1998; and
IBM Technical Report RC-20340, January 1996.

[8] W. J. Schroeder, J. A. Zarge, W. E. Lorensen,
„Decimation of Triangle Meshes”, Computer
Graphics, Vol. 26, No. 2, 1992, pp. 65-70.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
W. Stuetzle, „Mesh Optimization”, Proceedings of
the 1993 ACM SIGGRAPH conference, 1993, pp.
19-26.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

