
Storing of High Dynamic Range Images in JPEG/JFIF files

Konrad Kabaja∗

Institute of Computer Graphics and Multimedia Systems
Szczecin University of Technology

Poland

Abstract

There’s a plenty of file formats designed for storing high
dynamic range (HDR) images. But none of them provide
backwards compatibility with existing file formats. In this
paper we propose a simple approach to lossy compress-
ing HDR data in a standard JPEG/JFIF file. An original
HDR file is decomposed into a tone mapped version of it
LDR (low dynamic range) 24bpp and additional informa-
tion needed to restore the original HDR image from LDR.
The LDR image is compressed using standard JPEG en-
coder and forms a foreground image. Extra data is carried
wavelet-compressed as a subband in the file. Naive (not
HDR-enabled) applications will see the image as a normal
JPEG/JFIF file and will extract only the LDR data giving
user a preview of the original HDR image. HDR-enabled
applications will extract additional information from the
subband channel and restore the HDR image. The re-
sults of compressing a series of natural and synthetic HDR
images using various lossy compression settings are pre-
sented and discussed in the paper.

Keywords: High dynamic range image formats, lossy
compression, image processing, JPEG, wavelet compres-
sion.

1 Introduction

Visible light in real world covers very wide range of lumi-
nance. Humans can perceive 4 orders of magnitude simul-
taneously and can adapt their eyes to see 8 orders. Conven-
tional digital image storing formats (24bpp) are capable
of representing only 2 orders of magnitude and are called
LDR low dynamic range, output referred images. The
genesis of this limitation is because standard CRT/LCD
displays are capable of displaying only 2 orders of lumi-
nance and a limited gamut of colors. The image formats
that can hold extended gamut and dynamic range are called
HDR high dynamic range, scene referred images. First at-
tempts to develop HDR displays have been made by Seet-
zen et al. [10]. The methods for obtaining HDR images are
already known and a variety of storing formats has been
introduced.

The main issue is that all HDR image formats provide

∗kkabaja@wi.ps.pl

no backward compatibility, which slows the adaptation of
HDR imagery into end-user solutions. We need a standard,
compact, backward compatible and lossy format, which
can be adapted for storing large HDR images on small
storage space like JPEG. That format would be used for
storing images taken by HDR enabled photo cameras with-
out a fear that photos wouldn’t be opened by naive appli-
cations. Such file would be seen by standard applications
as plain JPEG/JFIFimage, offering a LDR version of the
original HDR image. The file would be seen as the HDR
image by HDR-enabled applications.

2 Background

First attempts to store high luminance values has been
made in late ’80 by researchers (e.g. Jourlin & Pinoli 1988
[4]). Then in 1989 Radiance system introduced RGBE
format for storing HDR data. In 1998 LogLuv repre-
sentation was proposed by Ward Larson [6]. Color pix-
els were encoded as log luminance values and CIE (u’,v’)
chromaticity coordinates. In this format, encoding was
implemented and distributed later as part of the standard
TIFF I/O library. In 2002 Industrial Light and Magic made
their EXR format available Kains et al. 2002 [5]. It sup-
ports 16-bit floating-point (supported natively on Nvidia’s
GeForce/Quadro FX GPU’s & Cg graphics language), 32-
bit floating-point, and 32-bit integer pixels. The format
supports also lossless & lossy image compression algo-
rithms. In 2004 Greg Ward & Maryann Simmons [12] pro-
posed a simple approach to HDR encoding (in JPEG files),
which was backward compatible. This paper is based on
results achieved in that article.

The first attempts to effectively compress HDR anima-
tions in MPEG format were made Rafal Mantiuk et al.
2004 [9]. However, compression of animation will not be
discussed in this paper.

3 Method description

3.1 Coding/decoding pipeline

Figure 1 shows an overview of HDR-JPEG encoding
pipeline. We start with the HDR scene-referred image. It
is then processed by tone mapping operator (TMO) that
gives in result output-referred LDR image. This method

Figure 1: HDR-JPEG encoding pipeline.

was invented to work with any TMO, but in our pipeline
we use Drago et al. TMO [3]. In our opinion, it gives
the best visual results for LDR preview that user will see
in a naive application. In the next step HDR and LDR
images are encoded giving a composite, consisting of pre-
vious LDR image (not modified) and a ratio image R that
holds information needed for restoring HDR image from
LDR image. Later on, wavelet compression is applied to
R channel giving compressed subband data (Sub). This
method was invented to work with any wavelet encoder.
In our research we’ve used SFQ by Xiong et al. 1996 [13]
and TCE by Tian and Hemami 2004 [11] encoders that
present the lowest distortion ratios. In the last step, LDR
image is compressed using a standard JPEG encoder and
subband data are attached to JFIF header giving in result a
backward compatible JPEG/JFIF file containing the addi-
tional data.

Figure 2: HDR-JPEG decoding pipeline.

As we can see in Figure 2 there are two ways that HDR-
JPEG file can be treated. Naive applications will utilize
only the simpler method (upper path) consisting of only
JPEG-decompression step that will extract only output-
referred LDR image data. This path provides backward
compatibility for applications that don’t care about addi-
tional HDR information stored in the file. HDR enabled
applications will choose the lower path. First, JFIF header
will be unpacked and JPEG data decompressed resulting in
an LDR image and extra data Sub. Next, subband will be
decompressed using wavelet decompressor giving in re-
sult ratio image R. The last step restores an HDR scene-
referred image from the LDR image and R ratio image.

3.2 Ratio image

The variety of tone mapping operators that can be used is
limited by two rules that have to be followed by them:

• The original HDR image must be smoothly mapped
to a 24-bit output domain.

• Hue must be maintained at each pixel.

Restricted by these rules, we can compute ratio image
R by dividing HDR luminance by LDR luminance and ap-
plying some additional computations to minimize errors
provided by lossy compression and integer representation:

R =
Luma(HDR)
Luma(LDR)

. (1)

Ratio R data will be stored in data markers reserved for
additional data in JPEG format. JFIF header offers us a
limited set of additional data markers that can be added to
file. These are 16 Application Markers (APP0 to APP15)
and one User Comment Marker (COM). Every marker is
limited to 64Kbytes of storage space, because it’s length is
stored on 2 bytes in header. APPx markers are allowed to
hold arbitrary binary or text data. APP0 marker is reserved
for standard JFIF v1.2 header and APP14 is reserved by
Adobe for theirs additional data. APPx markers are per-
fect suitable for keeping our subband. We will utilize 14
from 16 available markers resulting in 895 Kbytes of ad-
ditional binary space for our Sub data. The COM marker
can also contain arbitrary binary or text data because it is
treated the same way in JFIF header as the APPx mark-
ers. Its size is also limited to 64Kbytes. However, the pur-
pose of COM marker is to hold plain-text-only data, which
user can add manually and, following the JFIF specifica-
tion, it is highly undesirable to hold binary data here. But
this doesn’t mean that COM marker is useless for us. We
will hold there some additional data needed for the decom-
pression of HDR image (to be specific - two floating-point
range factors stored in text format).

Figure 3: LDR foreground image (left) and ratio image
(right).

3.3 Compression of ratio image

Because the ratio image may be very large for very large
HDR images, and we have only limited storage space we
have to compress it. We could use JPEG compressor to
compress the ratio image, but we’ve chosen wavelet com-
pression because it gives better compression ratios at the
same quality. Because of the JPEG storage limitation,
there may be situation when we exceed this limit. In this
situation Ward et al. [12] proposes downsampling the ra-
tio image. This method has a drawback resulting in drasti-
cally lowering the amount of information kept in ratio im-
age. Ward introduces pre- or postprocessing step that fixes
these lacks by modifying the LDR image. We propose
lowering bitrate quality settings of the wavelet compressor
and repeating the compression step to decrease the size of
the subband. This eliminates the need for an additional
pre- or postcorrection step.

However, it doesn’t mean that postcorrection step may
not be introduced. It could consist of decompressing, com-
pressed subband (ratio image) data and correcting LDR
image to eliminate errors introduced by wavelet compres-
sion (this technique would be similar to one described by
Ward et al. [12] for downsampled images).

4 Method details

4.1 Compression

Step 1.Apply a TMO to a HDR image stored in XYZ col-
orspace. In this step the following formula will be applied
to XYZ: tXij

tYij

tZij

 =

Xij

Yij

Zij

 Lij

Yij
. (2)

WhereLij is a luma channel computed by TMO. It will
give in resulttXY Zij . Note thattYij is in effect aLij

channel returned by TMO. Values oftXY Zij range from
0 to 1.

Step 2. Transform to the RGB colorspace. Values of
tRGBij range from 0 to 1, similar totXY Zij . The matrix
that we use is a standard XYZ2RGB transformation matrix
with D65 white point.

tRij

tGij

tBij

 =

 3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

tXij

tYij

tZij


(3)

Step 3. Because JPEG compressor takes integer val-
ues as an input we have to scale floating-point range〈0, 1〉
of tRGBij to 〈0, 255〉 and quantize it to integer values
〈0, 255〉. This represents a LDR image that will be com-
pressed using JPEG later. Last step is to scale it back to
〈0, 1〉 itRGBij because we will need it in the later com-
putations.

itRij

itGij

itBij

 =

Integer(255 ·

tRij

tGij

tBij

)

255
(4)

Step 4. Transform back to XYZ colorspace. Values of
itXY Zij range from 0 to 1, but are quantized to only 256
different values. The matrix used is a standard RGB2XYZ
transformation matrix with D65 white point.

itXij

itYij

itZij

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

itRij

itGij

itBij

 (5)

Step 5. Divide Yij by (itYij + 1), the result isR our
ratio image.

Rij =
Yij

itYij + 1
(6)

Why does we need Step 2-4 and why we chooseitYij

instead oftYij in equation? Because JPEG needs integer
values and in effect it compressesitRGBij not tXY Zij .
So, after decompression we will obtainitRGBij not
tXY Zij or tRGBij and some information will be lost.
ChoosingtYij would introduce a small additional error in
the decompression stage.

Why does we add 1 toitYij? BecauseitYij ranges
from 0 to 1 and there would be many divide by zero er-
rors. Even ifitYij would be very close to 0 (but not equal
0) it would introduce rounding errors during computations
in CPU/FPU. To avoid this, we translate〈0, 1〉 range to
〈1, 2〉.

Step 6. Apply a decimal logarithm to ratio imageR.
This step compresses a linearR to non-linearlR. We in-
troduced this step because great number of images utilizes
low luminance values more frequently than high values.
In effect, we assign greater bandwidth in subband channel
for darker luminance values.

lRij = log10(Rij) (7)

Step 7. Because after Step 6lRij can carry large
and negative values we have to scale it to a static range
〈0 − 255〉. We will also need delta and minim values for
decompression. These values will be remembered in out-
put image file.

minim = min(lR)
delta = max(lR) − min(lR)

slRij = 255(
lRij − minim

delta
)

(8)

Step 8. QuantizeslRij to integer values before com-
pression. This is our final ratio image. That we will use
during decompression to restore HDR data.

Figure 4: HDR-JPEG image encoding pipeline (details).

islRij = Integer(slRij) (9)

Step 9. CompressislR using wavelets. If compressed
data extends 895 Kbytes data limit this step should be re-
peated with lower bitrate settings for wavelet compressor
as many times as needed. Because this step may be time
consuming, it should be implemented very careful (es-
pecially the bitrate-choosing algorithm) to minimize the
needed repetitions. If chosen wavelet compressor supports
specifying target bitrate a priori then it should be set to the
proper value to eliminate repetitions at all.

In proposed method we don’t scale down image (as
Ward et al. [12] does) because ˜900 Kbytes subband limit
provides plenty of storage data space for great amount of
processed images. We don’t need post-correction step on
LDR image to correct lost information in subband.

Why does we need Step6-8? Because the wavelet com-
pressor takes only 8-bit integer values as an input and can-
not store full 32-bit information in floating-point format.
We have to do everything to utilize this small amount of
data space the best way.

Subdata = WaveletCompress(islR) (10)

Step 10.Compress LDR output-referred imageitRGB
using JPEG. This is a standard JPEG compression.

JPEGdata = JPEGCompress(itRGB) (11)

Step 11.Now we have everything that we need to cre-
ate HDR-JPEG file. Finally we pack subband data in JFIF
header and addJPEGdata to form a proper JPEG/JFIF
file. Sub data are divided into up to 14 64Kbytes-packets
and stored in APPx markers. We also store minim and
delta values needed to restore the ratio image in COM
marker in text form. We are also able to provide additional
information in COM marker, e.g. used wavelet compres-
sor, information about image content, copyright, hardware
used to take photo etc.

JPEGfile = JFIFPack(Subdata, JPEGdata) (12)

JPEGfile is the final output file that can be viewed
using naive application. It also contains additional sub-
band information that can be accessed via HDR enabled
application to restore an HDR image.

4.2 Decompression

Step 1.JPEG/JFIF file is unpacked to compressed JPEG-
data and Sub data (if the application utilizes additional
subband information). Sub data is compacted from up to
14 64 Kbytes APPx markers. Also the minim and delta

Figure 5: HDR-JPEG image decoding pipeline (details).

factors (mentioned in Section 3.4.1) are restored from
COM marker.

Subdata, JPEGdata = JFIFUnpack(JPEGfile)
(13)

Step 2. JPEGdata is uncompressed to LDR output-
referred image. This step is the last one for naive appli-
cations , which ignore additional subband information in
APPx markers. Naive application:

itRGB = JPEGDecompress(JPEGdata). (14)

HDR enabled application:

itRGB =
JPEGDecompress(JPEGdata)

255
. (15)

For HDR applicationsitRGB is scaled to range〈0, 1〉.
Step 3.Switch to XYZ colorspace. Values ofitXY Zij

range from 0 to 1. The matrix used is a standard
RGB2XYZ transformation matrix with D65 white point.

itXij

itYij
itZij

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

itRij

itGij

itBij

 (16)

Step 4.Uncompress ratio image from subband data.

slR = WaveletDecompress(Subdata) (17)

Step 5.Re-Scale ratio image to its original space using
delta and minim factors.

lRij =
slRij

255
· delta + minim (18)

Step 6.Uncompress non-linear ratio image representa-
tion to linear.

Rij = 10lRij (19)

Step 7.Finally restore HDR scene-referred image from
LDR output-referred image and ratio image.

Yij = (itYij + 1) · R

Xij = itXij · (itYij + 1) · Rij

itYij

Zij = itZij · (itYij + 1) · Rij

itZij

(20)

How does it work?Rij is equal to (see previous sec-
tion):

Rij =
Yij

itYij + 1
, (21)

so we can substitute it:

Yij = (itYij + 1) · Rij

= (itYij + 1) · (Yij

itYij + 1
)

= Yij.

(22)

Also we remember thatitYij = Lij anditXij was com-
puted in compression step as:

itXij = tXij = Xij · Lij

Yij
,

itYij = Lij .

(23)

We approximatetXij usingitXij because we lost this
detailed information in compression step. It will introduce
small error in the output HDR image.

We can substitute:

Xij = itXij · (itYij + 1) · Rij

itYij
,

Xij = Xij · (itYij

Yij
) ·

(itYij + 1) · (Yij

itYij+1)

itYij
= Xij .

(24)

Z value computations are similar to X.

5 Implementation

HDR-JPEG encoding and decoding programs (called
pfsinjpeg and pfsoutjpeg) were implemented as additional
parts to PfsTools package [8]. For tone mapping operators
implementation PfsTMO package was used [7]. We used
JPEG library provided by Independend JPEG Group [1] to
compress and decompress LDR data. QccPack library [2]
was utilized for wavelet compression and decompression
of subband data.

6 Tests

5 natural, realistic and 2 synthetic, rendered images were
chosen for tests (Figure 6-9). They range from small to
very large and represent various content. Dynamic range
varies from2.8 to 4.8 (e.g. 4.8 is 1 : 104.8 or 1 : 63, 000
dynamic range). The image characteristics were shown
in Table 1. The following quality settings were used for
compression:

• LDR data encoded using JPEG quality 70 (max 100)
and subband data encoded using SFQ algorithm by
Xiong et al. [13]. SFQ settings (standard): wavelet
CohenDaubechiesFeauveau.9-7; boundary extension
symmetric; rate-distortion parameter 1.0; baseband
and highpass quantizers were allowed to search all
allowable stepsizes; number of levels of dyadic de-
composition 3.

Figure 6: Display1000 and Montreal images.

Figure 7: Memorial and Mountain Dew images.

Figure 8: Rend09 and Rend13 images.

Figure 9: Price Western image.

• LDR data encoded using JPEG quality 100, subband
data encoded using SFQ algorithm with the same val-
ues as in previous step.

• LDR data encoded using JPEG quality 100, sub-
band data encoded using TCE algorithm by Tian
and Hemami [11]. TCE settings (standard): wavelet
CohenDaubechiesFeauveau.9-7; boundary extension
symmetric; number of levels of dyadic decomposi-
tion 5; target bitrate 2.

We’ve chosen Drago et al. [3] tone mapping operator for
the tests. Target file and subband data sizes were measured

and compression ratio factors were computed. The result-
ing JPEG images were decompressed to HDR images and
compared to HDR originals using MSE (mean square er-
ror) for each X, Y, Z channel and an average XYZ MSE.

7 Results

Tables 3 and 4 show the achieved file sizes (also subband
data sizes) and mean square errors measured between orig-
inal HDR image and decompressed HDR-JPEG image.
For the first series of tests (Q70 + SFQ) the achieved com-
pression ratios (CR, Table 2.) were impressive. Lowest
CR was 11.8 for ultra-large Price Western and the high-
est was for Mountain Dew with 38.1 (average 24.5). The
cost for such big CR was quite large quality drop. Lot of
artifacts were visible and images lacked details. We have
observed quite interesting pecularity after decompressing
highly compressed HDR-JPEG image to HDR and apply-
ing a TMO on it again. The final image presented far bet-
ter quality than LDR image in original HDR-JPEG. We
present this situation in Figure 10.

The explanation for this behaviour is the fact that (in this
quality setting) almost half of the file is occupied by com-
pressed ratio image. Subband data is compressed approx-
imately 7-12:1 having two to three times more bandwidth
space than LDR foreground image (color + luminance!).
After decompression, overall quality is improved by addi-
tional (less compressed) data from ratio image.

Figure 10: JPEG image (left), decompressed and tone
mapped image (right). Right image has more details than
left one.

Next tests (Q100 + SFQ) present acceptable results.
We noticed lost of details in smooth areas. Images were
noisy in high detail places, but overall quality was quite
good. Compression ratios varied from 3.6 (Memorial) to
9.2 (Mountain Dew) with average 5.9 4 times more data
compared to the first test.

The last series of tests show really good image quality.
Images are clean, without artefacts, lost of details or noise.
We have increased bitrate for wavelet compressor to 2bpp
so, subband was compressed at 4:1 ratio. The cost of good
quality are quite large files and low compression ratios.
The average is 4.3, but it is still far better than OpenEXR’s
lossless PIZ compression with average CR = 1.6 Kains et
al. 2002 [5]. The test for Price Western image failed and

results weren’t computed. That was because at this quality
setting there was too little space in application markers to
store subband data. We could lower bitrate settings, but
we left it unchanged to signalize the problem.

We noticed some common issues that appeared at all
compression settings. The first issue is the lack of details
in very bright areas (Figure 11).

Figure 11: Original tone mapped image (top left), JPEG
foreground image (top right), difference between images
(bottom).

This is caused by logarithmic compression of lumi-
nance. We assigned wider bandwidth in ratio image for
low values to expose darker areas, but the drawback is
less space for high values. The second issue is the notice-
able quantization of values (that was done for JPEG and
wavelet input as well because compressors needed integer
values). It revealed itself in smooth areas e.g. sky, which
looks like it would have 16bpp palette. Another drawback
of this method is the compression time. Compression of
Display1000 2048x1536 10Mbytes image takes about 6
minutes on P4 2.0GHz using SFQ algorithm. For TCE it
takes about 30 seconds. For example JPEG needs only 5
seconds to compress this image (but only LDR part).

Table 1: Testing images.
Name Resolution Dynamic

range
Source

Display1000 2048x1536 3.4 n/a
Memorial 512x768 4.8 Paul

Debevec
Montreal 2048x1536 3.1 n/a
Mountain Dew 2048x1536 n/a n/a
Price Western 3272x1280 2.8 Spheron
rend09 1024x1024 3.9 Saba

Rofchaei
rend13 1024x1024 4.1 n/a

8 Conclusions and future work

We proposed an algorithm for lossy, high dynamic range
image compression format , which is backward compati-

Table 2: Resulting compression ratios.
Name CR,

JPEG Q70,
SFQ

CR,
JPEG Q100,
SFQ

CR,
JPEG Q100,
TCE

Display1000 17.6:1 4.4:1 3.6:1
Memorial 12:1 3.6:1 3.2:1
Montreal 31.9:1 5.8:1 4.2:1
Mountain Dew 38.2:1 9.2:1 5.8:1
Price Western 11.8:1 3.6:1 n/a
rend09 30.3:1 7.3:1 4.8:1
rend13 29.7:1 8:1 4.2:1
Average: 24.5:1 5.9 4.3

Table 3: Resulting file sizes.
Name HDR size JPEG size,

Q70, SFQ
+ subdata
size

JPEG size,
Q100, SFQ
+ subdata
size

JPEG size,
Q100, TCE
+ subdata
size

Display1000 10 MB 583 KB
244 KB

2.27 MB
244 KB

2.78 MB
768 KB

Memorial 1.28 MB 109 KB
56 KB

366 KB
56 KB

406 KB
96 KB

Montreal 9.45 MB 303 KB
144 KB

1.62 MB
144 KB

2.23 MB
768 KB

Mountain Dew 9.57 MB 256 KB
156 KB

1.04 MB
156 KB

1.64 MB
768 KB

Price Western 13.4 MB 1.14 MB
674 KB

3.65 MB
674 KB

n/a

rend09 2.93 MB 99 KB
53 KB

412 KB
53 KB

624 KB
256 KB

rend13 1.92 MB 66 KB
36 KB

244 KB
36 KB

463 KB
256 KB

ble. It is one of the first lossy compression formats pro-
posed in this matter. The main advance of the proposed
solution is that it utilizes the existing JPEG compression
standard for data storage. Images stored using this method
can be read in every hardware or software that is capable
of reading standard JPEG files. In HDR-enabled applica-
tions or devices it can be read as HDR image. This fills the
gap between HDR imaging technology and existing LDR
solutions.

We see some deficiencies in proposed method, which
point out future work. Logarithmic luminance compres-
sion should be replaced by some more intelligent solu-
tion that would compress it in an adaptive way. Wavelet
compression methods should be reviewed to choose the
best suitable for the HDR image compression. A method
for minimizing integer numbers round-off errors should be
developed. A postcorrection step should be considered to
improve image quality.

9 Acknowledgments

Thanks to Radoslaw Mantiuk for providing lots of help
during writing process of this article. Thanks to Rafal
Mantiuk for the first concept of this algorithm and
PfsTools package.

References
[1] Independent jpeg group, http://ijg.org/.

Table 4: Resulting MSE.
Name JPEG Q70,

SFQ MSE
JPEG Q100,
SFQ MSE

JPEG Q100,
TCE MSE

Display1000 X: 0.034898
Y: 0.028088
Z: 0.074218
XYZ: 0.045735

X: 0.034147
Y: 0.027747
Z: 0.061485
XYZ: 0.041126

X: 0.013952
Y: 0.005275
Z: 0.042642
XYZ: 0.020623

Memorial X: 0.222154
Y: 0.136199
Z: 0.086948
XYZ: 0.148433

X: 0.217203
Y: 0.132986
Z: 0.067651
XYZ: 0.139280

X: 0.144987
Y: 0.048072
Z: 0.025714
XYZ: 0.072924

Montreal X: 0.009108
Y: 0.002706
Z: 0.010072
XYZ: 0.007295

X: 0.008893
Y: 0.002578
Z: 0.007879
XYZ: 0.006450

X: 0.007818
Y: 0.001364
Z: 0.006735
XYZ: 0.005306

Mountain Dew X: 0.000001
Y: 0.000001
Z: 0.000007
XYZ: 0.000003

X: 0.000001
Y: 0.000001
Z: 0.000007
XYZ: 0.000003

X: 0.000001
Y: 0.000000
Z: 0.000007
XYZ: 0.000003

Price Western X: 0.003506
Y: 0.003299
Z: 0.009585
XYZ: 0.005463

X: 0.003234
Y: 0.003134
Z: 0.008443
XYZ: 0.004937

n/a

rend09 X: 0.003630
Y: 0.003986
Z: 0.005297
XYZ: 0.004304

X: 0.003419
Y: 0.003776
Z: 0.004579
XYZ: 0.003925

X: 0.000158
Y: 0.000171
Z: 0.000296
XYZ: 0.000208

rend13 X: 0.005119
Y: 0.005685
Z: 0.006896
XYZ: 0.005900

X: 0.005027
Y: 0.005565
Z: 0.006614
XYZ: 0.005735

X: 0.001358
Y: 0.001503
Z: 0.001801
XYZ: 0.001554

[2] Qccpack library, http://qccpack.sourceforge.net/.

[3] F. Drago, K. Myszkowski, T. Annen, and N. Chiba. Adaptive log-
arithmic mapping for displaying high contrast scenes.Computer
Graphics Forum, 22(3):419–426, September 2003.

[4] M. Jourlin and J-C. Pinoli. A model for logarithmic image process-
ing. Journal of Microscopy, 149(1):21–35, 1998.

[5] F. Kains, R. Bogart, D. Hess, P. Schneider, and B. Anderson.
Openexr, http://www.openexr.org/, 2002.

[6] Gregory Ward Larson. LogLuv encoding for full-gamut, high-
dynamic range images.Journal of Graphics Tools: JGT, 3(1):15–
31, 1998.

[7] Rafal Mantiuk and Grzegorz Krawczyk. Pfstmo, http://www.mpi-
sb.mpg.de/resources/tmo/, 2004.

[8] Rafal Mantiuk and Grzegorz Krawczyk. Pfstools, http://www.mpi-
sb.mpg.de/resources/pfstools/, 2004.

[9] Rafal Mantiuk, Grzegorz Krawczyk, Karol Myszkowski, and Hans-
Peter Seidel. Perception-motivated high dynamic range video en-
coding. ACM Transactions on Graphics, 23(3):733–741, August
2004.

[10] Helge Seetzen, Wolfgang Heidrich, Wolfgang Stuerzlinger, Greg
Ward, Lorne Whitehead, Matthew Trentacoste, Abhijeet Ghosh,
and Andrejs Vorozcovs. High dynamic range display systems.
ACM Transactions on Graphics, 23(3):760–768, August 2004.

[11] C. Tian and S. Hemami. An embedded image coding system based
on tarp filter with classification. 2004.

[12] G. Ward and M. Simmons. Subband encoding of high dynamic
range imagery. 2003.

[13] Zixiang Xiong, Kannan Ramchandran, and Michael T. Orchard.
Space-frequency quantization for wavelet image coding.IEEE
Transactions on Image Processing, 6(5):677–693, May 1997.

