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Abstract

A navigation system is planned and implemented in order
to use it in computer aided surgery. The idea is that three
cameras are collecting images of the same object and from
these projections the 3D coordinates of the points can be
computed. In order to perform such a positioning we have
to solve the calibration of the cameras. The calibration
needs a special object, called calibration cross. The images
of the calibrated cameras can be used later for determining
point positions. The experimental results shows that the
positions of 3D points can be determined with an error
cca. 0.3 cm. We work further for improving this result.
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1 Introduction

Skeletal injury operations are in general of high complex-
ity and require extreme accuracy. A team of experts has
been assembled from Department of Trauma Surgery and
Department of Image Processing and Computer Graphics
of University of Szeged. The goal of the team is to re-
search and develop appropriate software and procedures
capable of performing biomechanical tests and diagno-
sis on newly injured (human) accident victims with bone
damage. The aim is to support the surgical procedure that
would optimally stabilize the structural integrity of the in-
jured bone.

The method is to acquire CT images in order to build a
3D virtual model of the bone system of the patient. The
surgeon can use this model to plan the necessary opera-
tion. Having the operation plan in hand the surgeon need
some support to perform the plan as precisely as it is pos-
sible. For this reason the actual position of the patient’s
body and the implants should be determined. The aim of
this development was to give a software tool for determin-
ing these positions from CCD camera images, it is called
MedNavigator.

We plan to extend our system with the ability to
help the surgeon during the localization [1]. We could
identify some special marked points and give real-time
information, for example, where and in which angle the
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surgeon has to insert the implants.

Three or more cameras are installed in the operating
theatre for image acquisition (see Fig.1). Our challenge
to define exact three-dimensional point positions in space
with the help of camera images [2]. For example, when
the surgeon drills a hole into the bone according to the
previously prepared plan, (s)he has to localize the starting
position and the direction of the hole on the surface of the
bone. That means, that the 3D virtual model of the bone,
the actual bone position, and the drill should be positioned
together.

To solve this problem we need to know the cameras’
mapping model, the method how to determine the model,
and the position from the camera images.

Figure 1: Used virtual space for the calibration

The camera maps the 3D space of the real world into a
2D projection. The mathematical description of this pro-
jectional mapping is necessary for the positioning. The
mapping and also the mathematical description can change
during the operation. For example, the camera can be
moved into another place during the operation. It means
that the determination of the mapping should be done
quickly and easily. This procedure, called camera cali-
bration, is the subject of this paper.



2 Calibration methods

2.1 The basic types of calibration

The calibration has two basic types [5]:

1. Photogrammetric calibration.

2. Self-calibration.

Photogrammetric calibration
Camera calibration is performed by a calibration object

whose geometry is known with sufficient precision. This
means that the calibration object put into the camera, and
then we can determine the camera’s parameters with image
processing method and marker points. This task requires
special calibration object. For example in 3D it is usually
a box.

Self-calibration
In self calibration a camera is moved in a static scene,

and we can determine the camera’s parameters from the
excursion. In this time we don’t use any calibration object.
Because there are a lot of parameters to estimate, we can’t
obtain reliable result.

2.2 Our calibration method

The calibration is to determine the mathematical transfor-
mation or mapping as the camera maps a 3D object into
a 2D image. In our system the calibration object is a 3D
cross (see Fig. 2). The 3D cross is our new calibration de-
vice. Its shape makes possible that really 3D information
can be used during the calibration.

Figure 2: Our calibration object

Our calibration cross consists of 6 tubes (diameter 10
mm) forming the axes of a 3D coordinate system and there
are 5 color LEDs at the ends of the tubes (the 6th end is
for fixing the cross). The tubes are 10 cm long, that is, the
LEDs are so far from the origin of the coordinate system
represented by the cross. The flashing LEDs are the points
to be identified for the calibration.

The calibration in the operating theatre must satisfy spe-
cial conditions. We need a precise point definition there-
fore we have chosen photogrammetric calibration.

3 The mathematical description
In the following section we present the mathematical
model of the camera mapping [3].

3.1 Camera calibration
The coordinate system in which we are going to determine
the camera mapping is the following. The origin is the
centre of the 3D calibration cross, its axes are in the same
directions as the tubes of the cross. For example, the ver-
tical tube show the axis Y.

Let M denote the matrix describing the camera mapping
in the homogeneous coordinate system.
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by this camera mapping as

M · P = P̂ .

Our task is to determine the 12 components of matrix
M , that is, we need at least 12 equations to solve such
a problem. In order to find the necessary equations, let
us consider the images taken from the calibration cross.
Suppose that we have three cameras taking pictures from
the calibration cross.

Each camera is represented with it’s own mapping-
matrix. Let M i be a mapping-matrix of the ith camera,
the projection of point P is P̂ formally,

M · P = P̂ .

Camera calibration means, that we should determine the
matrix M using calibration images. Let us suppose that
there are points P j , j=1,2, ..., j, in the 3D space with
known coordinates. We are going to collect images of



these points with all cameras. Let the projection of point
P k by the ith camera denoted by P̂ j , that is,

M i
· P j

= ˆP i,j .

This vector equation means three scalar equations for
the first three components of ˆP i,j . If we have 5 points
then we have altogether 3x5=15 equations per camera, and
so, 45 equations for the three cameras, which seems to
be more than enough. However, due to measurement and
modelling errors we cannot hope that some of the 12 from
the 15 equations will be enough to determine the 12 com-
ponents of any mapping matrix. For this reason instead
of looking for precise solutions, we can reformulate the
problem as an optimization. Formally, we want to find the
solution of
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That is, we are looking for M i, i=1,2,3, such that
the difference between the measured and the computed
positions is minimal in some sense.

Powell’s algorithm [4]:

To solve this we use a numerical method, Powell’s algo-
rithm, which works according to the following principle.

The inputs of the Powell’s algorithm are a function and
an initial direction. The algorithm minimizes the function
iteratively. The result of the Powell’s method are the op-
timal components of the matrix M i, i = 1, 2, 3. We con-
sider these matrices as the results of the calibration and
the positioning procedure uses these matrices till the next
calibration. As far as we know, using Powel’s method for
solving the calibration and positioning problems is new in
the literature.

3.2 Positioning
After the calibration method where we determines the M i

matrices - we would like to determine certain points in the
space. One point in an image made by a camera determine
a line in a 3D space, which means that we need at least
two cameras to determine a point in space. Because of
noise, and errors it is better to use three cameras. As we
saw in the calibration method every camera has a mapping
matrix, which is calculated during the calibration method.
We would like to find the point P in the space, if we know
its projection. We can write down the following equation
system (i=1, 2, 3)

M i
· P = P̂ i. (1)

Instead of solving this equation system we reformulate
the problem as an optimization task, and we search a point
P such that the difference of the equation system’s left and
right sides is minimal (least square method).
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To solve this problem we can use Powell’s method
again.

4 Method of calibration and po-
sitioning

In the operation theatre the first step is to make camera
calibration. During calibration each of the three cameras
are calibrated in the same way using the same 3D cal-
ibration cross mentioned in Section 2. The points P j ,
j = 1, 2, 3, 4, 5, used for the calibration are just the LEDs
of the cross. The projections of these points are eas-
ily recognised on the projection images if the points are
swiched on and off during the acquisition. The difference
of the two images (i.e., where the LED was switched on
and was off) is more suitable for the detection of the ith
projection of the jth LED, that is, ˆP i,j .

Each camera gets the 2D coordinates of LEDs, then the
program sends these coordinates to the mathematical mod-
ule, which calculates the mapping matrices (see Fig.3).

Figure 3: MedNavigator

The next step is to synchronize the camera image, the
CT image and 3D model, which is made previously from
CT images. During this positioning the computer switches
on a marker, say P . The MedNavigator determines the
positions of the projections of P in the camera images, P̂ i,
i = 1, 2, 3. Then using the calculated mapping matrices
the program computes the 3D position P .

5 MedNavigator
MedNavigator is a collection of program modules classi-
fied functionally as follows (see Fig. 3). The Acquisition
is responsible for collection of camera images. The unit
LED control switches on and off the LEDs according to
the control of the computer. Point detection receives the
camera images and subtract the images in order to get dif-
ference images for the determination of the coordinates of
the LEDs projections. This unit send the point positions



for further processing to the module Mat. Mat has two ba-
sic tasks. It computes the mapping matrices of the cameras
during the calibration. Also the Mat module determines
the 3D points coordinates from the three camera images.
Finally, the whole process can be followed through the
graphical User Interface (see Fig. 4). When we start the

Figure 4: Window of MedNavigator showing 3 camera in
use

MedNavigator we can see the three camera images. The
calibration tool is connected to the computer through the
parallel port, so the program can switch the LEDs. After
we start the calibration the program saves the camera’s im-
ages. Then it switches the LED one by one and records the
images. From the initial background image it subtracts the
actual image, where one of the LEDs is on, and the result
is the position of the brightest point. The LED identifi-
cation number, and the 2D LED coordinates are given to
the Mat module. The Mat module calculates the mapping
matrix.

6 Results
We tested the MedNavigator system in different ways.
First, we tested the Mat module independently from the
camera images. It means that the mathematical proce-
dures got numerical input data and the output was checked
knowing the exact results to be computed when the system
works perfectly. For example, the camera calibration gave
the mapping matrix for each camera as an output. Then we
checked the equation system (see Eq. 1) using the matrix
and the known point positions.

After this testing and making the necessary program
modifications, we started the testing of the whole system.

The camera images collected from the calibration cross
were used for this validation. From these images we de-
termined the LED positions. Knowing the LED positions
exactly we could compare the computed coordinates with
the real ones.

The measured and the real coordinates of the LEDs and
the Euclidean distance between them (row D) are in Table
1.
The table shows that the differences are about half a cen-

1.LED 2.LED 3.LED 4.LED 5.LED
X∗ 10 -10 0 0 0
Y ∗ 0 0 0 10 -10
Z∗ 0 0 10 0 0
X 9.58 -10.54 0.00 0.41 0.53
Y -0.10 -0.24 0.00 10.10 0.20
Z -0.20 -0.18 10.00 0.20 0.23
D 0.48 0.65 -0.00 0.48 0.60

Table 1: Measured (X∗, Y ∗, Z∗) and the real (X, Y, Z)
coordinates in cm and D is the Euclidean distance

timeter. Such an error is too big for our aim, so we started
to look for the reasons of the errors and to correct the pro-
gram. Finding and solving such problems like inexact po-
sitioning due to wrong calibration object, synchronisation
and high intensity points due to mirroring. We could re-
duce this error as it is seen from Tables 2 and 3. Table
2 shows the best result we have while the Table 3 is the
worst result. Table 4 shows the summary of 100 tests re-
sults. The first column indicates the number of test with
the error of the second column. We emphasise that 81% of
own tests performed under 0.3 cm.

Our computation platform was Microsoft Windows XP.
We used the compiler Microsoft Visual Studio .Net 2003.
The system needs 4-5 seconds for collecting the images,
1-2 seconds for point detection, and less than 1 second
for computation. The navigation system needs 150 KB
memory, and minimum 100 Mb working space.

1.LED 2.LED 3.LED 4.LED 5.LED
X∗ -11,2 11 0,5 0,3 0,5
Y ∗ -1,8 -1,8 10 -1,2 -1,3
Z∗ 0 0 0 -10,7 10,5
X -11,10 11,25 0,51 0,19 0,34
Y -1,72 -1,80 10,00 -1,28 -1,39
Z -0,010 0,039 -0,00 -10,68 10,37
D 0,12 0,26 0,01 0,13 0,22

Table 2: Best measured (X∗, Y ∗, Z∗) and the real (X, Y,
Z) coordinates in cm and D is the Euclidean distance



1.LED 2.LED 3.LED 4.LED 5.LED
X∗ 11,2 -11 0,5 0,3 0,5
Y ∗ -1,8 -1,8 10 -1,2 -1,3
Z∗ 0 0 0 -10,7 10,5
X -10,98 11,12 0,52 0,19 0,08
Y -1,68 -1,77 10,01 -1,32 -1,35
Z 0,13 0,09 0,01 -10,78 10,37
D 0,28 0,15 0,02 0,18 0,43

Table 3: Worst measured (X∗, Y ∗, Z∗) and the real (X, Y,
Z) coordinates and D is the Euclidean distance

Number of result Error-Distance
3 0,4-0,5
16 0,3-0,4
52 0,2-0,3
10 0,1-0,2
19 0,0-0,1

Table 4: Result of 100 tests

7 Conclusion
We found that the best positioning error in this system is
about 0.3 cm. In order to make further improvements we
think that we should change our cameras. In the present
system the resolution of the cameras is 320*240. The same
procedure can be applied if the cameras have better reso-
lution. We expect that if the cameras are giving 640*480
resolution images then then error can be half of the present
value. The system has an own web page:
http://www.inf.u-szeged.hu/ medsys/ .
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