
Molecular dynamics on graphics accelerators

Samuel Kupka∗

Faculty of Sciences
University of Pavol Jozef Safarik

Kosice / Slovakia

Abstract

Molecular dynamics algorithm optimized for the graphics
accelerators is presented in this paper. Parts of it can be
used to optimize existing algorithms designed for the clas-
sic CPU.

Keywords: molecular dynamics, graphics accelerators,
computer simulation, SIMD processor, BrookGPU

1 Introduction

The computer aided simulations are an important part of
science work. It can be used to test new theoretical re-
sults without a need of the expensive laboratory equip-
ment. Even the personal computers are becoming fast
enough to simulate large systems in reasonable time.

The ultimate goal of companies, that create graphics ac-
celerators is to provide their customers with the highest
possible computing speed for computer games. Because
of those companies, personal computers are now equiped
with very fast graphics processors that can be utilized in
many useful ways. Running computer aided simulations
is one of them.

Molecular dynamics (MD) simulation is a discipline of
molecular modeling. It addresses numerical solutions of
Newton’s equations of motion on an atomistic or similar
model of a molecular system to obtain information about
its time-dependent properties. It is used to examine the
dynamics of atomic-level phenomena that cannot be ob-
served directly [4]. Constraints of the simulated systems
are given by the overall computer system performance and
time allocated for the MD to produce usable results [3].
There have been many optimalization techniques intro-
duced to the MD simulations [5], but there is still a need
to find a new ways to speed up whole application as such.
Graphics accelerators (GA) are still viewed as a good pos-
sibility, although many of it’s internal characteristics are
not very fitting for this type of exploitation. This paper
introduces algorithm that should compensate some of the
bad aspects of the graphics accelerators (or SIMD proces-
sors).

∗bwpow@ideaz.sk

1.1 Programming language

Most of the programming languages for GA are directed
towards shaders or geometry applications. For the imple-
mentation of my algorithm, I’ve chosen BrookGPU1 [2].
It is a compiler and runtime implementation of the Brook 2

stream programming language for modern graphics hard-
ware. I’ve chosen this one, because it provides easy access
to GPU without a need to understand graphics procedures.
This way, source code can be viewed and edited by non-
graphics programmers.

Version of BrookGPU which was used in the beginning
of the development introduced some important limitations.
It did not have support FOR cycles in kernel functions.
All cycles had to be unrolled by compiler. It did not pro-
vide developer with effective ways to debug programs and
some of the functions were available only for the specific
hardware. Some of these limitations were removed during
the development of BrookGPU and new graphics cards.

2 Basic MD

Molecular dynamics is based on an idea of introduc-
ing Newton’s equations to a large set of sites (atoms,
molecules). The other possible approach is based on sta-
tistical model. In real practical MDs, both models are used
together to produce most effective system [4] [1]. Al-
gorithm described in this paper utilizes only the first ap-
proach.

The most simple basic MD is an O(N2) algorithm. Let
S be a set of all sites, then the algorithm can be described
as:

Do forever{
For each site X in S do{
For each site Y in S do{
Calculate forces from X to Y
}
Update parameters of X

}
}

Because forces between sites are getting less significant
with greater distance, idea of neighbooring lists. For ev-

1http://graphics.stanford.edu/projects/brookgpu/
2http://merrimac.stanford.edu/brook/



ery site, the list of all other significant sites is generated.
Simple algorithm may look like this:

Do forever{
For each site X in S do{
For each site Y in S do{
If(Distance(X,Y)<MaxDistance){
Add Y to Neighbour(X)
}

}
}
Do N steps{
For each site X in S do{
For each site Y in Neighbour(X) do{
Calculate forces from X to Y
}
Update parameters of X

}
}
}

Where N depends on the model used. Of course, there
are many improvements and modification of this simple
idea, but this paper does not cover those.

3 Proposed algorithm

Proposed algorithm contains CPU and GPU part. The
CPU part is responsible for streams preparation and run-
ning kernel functions from the GPU part.

Algorithm provides a way to create and keep neighbours
lists with constant sizes to be useable in kernel functions.

3.1 Basic idea

The simulation space (or cell) has a shape of the cube. Let
N be the number of the sites in the space. We divide the
space into the M3 cube shaped regions. All regions must
have same sizes. Constant M is chosen from the formula
C < N/M3 < 2C, where C is the constant value used to
unroll loops and as the size of the neightbours lists.

Value of the constant C should be from four up to eight
times larger than number of GA pipelines. Each kernel
function used in the algorithm computes forces for C sites
for one call. If C is too small, algorithm gets slow becasue
of overhead with every kernel function call. If the con-
stant is too large, algorithm looses performance because
of inefective use of neighbours lists.

Lets call the geometrical center of each region the seed
for this region. Lets compute distance from each site to the
closest seed. This can be done by computing distance from
each seed to every site. This operation needs O(NM3)
steps. Lets sort all sites by the distance from the closes
seed. This can be done in O(N2) steps. It is possible to
optimize performance of these two procedures, but there
won’t be any significant change to the whole algorithm.
This way we get the list of the closest sites for every seed.

Because the sites are not evenly distributed in the space,
each list contains different number of sites.

To create neighbours list for each region, get the list of
closest sites and divide it into the nonoverlaping sublists,
each of size C. Pad the last sublist for every region with
EMPTY values. All the sublists for each region form a
neighbours list for that region. Neighbours lists can be
desribed as spheres with the center in the seed and radius
same as maximal distance of all sites in the list from the
seed. Spheres from different regions may overlap. Let
MaxDistance be the maximal distance of two sites with
nominal impact on each other. If the shortest distance
of two spheres is more then MaxDistance, then the sites
covered with one sphere don’t have impact on the sites in
the second sphere. Let A and B be the two spheres and
IsNear M3xM3 matrix. For each two spheres A and B, if
the shortest distance from A to B is less than MaxDistance,
set IsNear[A][B] = 1 else set IsNear[A][B] = 0. This way,
we got the list of neighbouring spheres. For this algorithm,
we will assume, that if the two spheres are not neighbours
(IsNear is set to 0), then all sites within these two spheres
are not neighbours as well.

3.2 CPU part

The CPU part generates IsNear matrix and runs the kernel
functions.

Create regions and get seeds
Do forever{
label :beginning;

For each site X in S do{
Min[X]=INFINITY
For each seed Z do{
if(Distance(X,Z)<Min[X]){
Min[X]=Distance(X,Z);
Belong[X]=Z;

}
}

}

Sort all sites X in S by Min[X];

For each site X in S do{
Put X into Sphere[Belong[X]];

}

For each sphere A in Sphere do{

For each sublist U in A do{
PadUnusedPlacesWithEMPTY(U);

}

For each sphere B in Sphere do{
If(ShortestDist(A,B)<MaxDistance){
IsNear[A,B]=1;



}
else{
IsNear[A,B]=0;
}

}
}

Do forever{
For each sphere A in Sphere do{

For each sublist U in A do{
For each sublist V in A do{
If(U != V){
kernel add_forces(U,V);
}

}
}

For each sphere B in Sphere do{
If(IsNear[A][B]==1){

For each sublist U in A do{
For each sublist V in B do{
kernel add_forces(U,V);

}
}

}
}

For each sublist U in A do{
kernel move_sites(U);
D = 0;
reduce max_dist_from_seed(U,A,D);
if(D>MaxAllowedDistance){
goto :beginning;

}
}

}
}
}

This is a very simplified scheme of the algorithm.

3.3 GPU part

The GPU part consists of two kernel and one reduce func-
tion.

kernel add_forces(stream U, static V)
{
If(U!=EMPTY){
Vector F;
For I=1 to C do{
If(V[I]!=EMPTY){
F+=ComputeForces(U,V[I]);

}
}
AddForceTo(U,F);

}
}

kernel move_sites(stream U)
{
If(U!=EMPTY){
MoveSite(U);

}
}

reduce max_dist_from_seed
(stream U,const A,out D)

{
E=Distance(U,A);
if(E>D) D=E;

}

The functions called from the kernel functions are de-
pendant on the used physical model as are the constants
MaxDistance and MaxAllowedDistance.

4 Performance

This algorithm was developed as proof-of-concept, so it
doesn’t contain most of the standard optimization tech-
niques used in modern MD systems. Performance of the
algorithm is also dependent on the used GA and physical
model. It is optimal only for the short-range forces physi-
cal models and large numbers of the sites. The use of the
PciExpress BUS instead of AGP gives a big performance
boost. Algorithm needs to copy all sites information be-
tween System RAM and GA RAM because of the neigh-
bours lists regeneration after every few hundreds steps, de-
pending on the physical model and constants values.

Performance of the GA algorithm compared to the ba-
sic algorithms described in section 2 with 1000 sites and
simulating 1000 steps.

Computer GA Basic Basic with NL
System A 21.3s 219s 119s
System B 11.1s 137s 63s
System C 3.7s 151s 81s

Table 1: Performance of different algorithms

System A was AMD Athlon 2500+, NVidia 5500 AGP,
System B was Intel Pentium4 3.2GHz, NVidia 6600 PciE
and System C was AMD Athlon X2 4400+, 2x NVidia
6800 GT PciE.

5 Conclusion and future work

This algorithm shows a very simple way to use GA for
molecular dynamics and other similar simulation meth-



ods. The use of BrookGPU gives oportunity to the people
not familiar with graphics hardware to edit algorithm and
add their own functions. The use of constant fields, as de-
scribed by this algorithm, may be used to optimize other
non-GPU MD systems as well.

In the future, I plan to rewrite most parts of the al-
gorithm to Cg 3 language and integrate it into the GRO-
MACS 4.

6 Acknowledgments

The author thanks to Prof. Aatto Laaksonen and the
Fyzikal chemistry department of Stockholm University for
great help and technical support. To Doc. Jozef Ulicny,
RNDr. Jozef Jirasek and Faculty of Science of University
of Pavol Jozef Safarik in Kosice for support and help.

References

[1] J. M. Haile. Molecular Dynamics Simulation : Ele-
mentary Methods. John Wiley & Sons, Inc., 1997.

[2] Daniel Horn Jeremy Sugerman Kayvon Fatahalian
Mike Houston Ian Buck, Tim Foley and Pat Hanra-
han. Brook for GPUs: Stream Computing on Graphics
Hardware. Computer Science Department, Stanford
University, SIGGRAPH, 2004.

[3] S. J. Plimpton. Computational Limits of Classi-
cal Molecular-Dynamics Simulations. Computational
Materials Science, 1995.

[4] D. C. Rapaport. The Art of Molecular Dynamics Sim-
ulation, Second edition. Cambridge University Press,
2004.

[5] B. A. Hendrickson S. J. Plimpton. Parallel Molecu-
lar Dynamics Algorithms for Simulation of Molecular
Systems. American Chemical Society, Symposium Se-
ries 592, 1995.

3http://developer.nvidia.com/
4http://www.gromacs.org/


