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Abstract 
We present a solution for a variant of the 2D containment 
problem, to create a texture atlas. The texture atlas is an 
efficient color representation for a given VRML scene. It 
contains a composition of several texture images stored in 
one file. The containment problem is the question how to 
place a set of shapes into a “container shape” without 
overlapping, while minimizing the area of the container. 
In our case we place a set of texture images of arbitrary 
shape into a rectangle. We use a heuristic search 
algorithm based on Minkowski operators to solve the 2D 
translational containment problem. This particular 
problem is called packing problem and is known to be 
NP-complete. We present its practical implementation 
and show results measured on several test scenes. 

 
Keywords: Minkowski operators, texture atlas, packing 
problem. 
 

1 Introduction 
Both number and size of files negatively influence the 
speed when large virtual worlds are transferred over the 
Internet. For a given virtual scene, we can efficiently 
decrease a number of texture files using a texture atlas. 
The texture atlas is a bitmap containing a set of input 
textures. When using a good packing method, the size is 
decreased, too. Saving a texture memory of graphic card 
is thus a next good reason for using texture atlases. 
Unfortunately a combination of texture atlas and 
mipmapping technique is impossible in general, but this 
specific issue is not the goal of this paper. 
 
 

 

The basic idea of our algorithm is to extend 
successively an arbitrary-shaped container with incoming 
arbitrarily-shaped textures by attaching the textures on the 
outer border of the container. The goal is to keep the 
rectangular area of the resulting container as small as 
possible. The Minkowski operation is used to compute 
efficiently all positions the incoming polygon can be 
attached to using translations. Afterwards we choose that 
position where the container area is minimally expanded 
and the empty space between polygons is the smallest 
(with “placing operator”). 

We did not implemented rotations yet but we consider 
them as important improvement of the next version of the 
algorithm. However the angle of rotation different from 
multiples of π/2 brings degradation of the texture quality 
due to the necessary interpolation among pixels applied 
during the rotation of input raster image(s). The second 
problem with rotations arises in back-mapping of the 
texture map to the original 3D object. The texture 
mapping coordinates are from interval <0, 1> and if we 
rotate by a small angle the change is manifested in 
decimal places. We cannot be sure in number of decimal 
places VRML browsers work and if they recognize such 
“little” changes. From there reasons we expect useful 
rotations only by multiples of π/2. 

This paper is organized as follows. Section 2 presents 
a related works, section 3 deals with VRML specific 
issues – image formats, and texture mapping. We define 
morphological operators and their properties in the 
section 4. We skip a formal description of the 2D 
translational containment problem and the state definition, 
since they are well described in [4]. Instead, we 
concentrate on the heuristic searching method and 
containment strategy in section 5. Finally, several 
examples and measurements are shown in section 6. 



2 Related Work 
Texture atlases are widely used in computer games. 
Avatar texture atlas is the most known example, see 
fig. 1. Such texture atlas is usually explicitly defined - 
first the texture atlas is designed, then this bitmap is 
mapped on avatar body. A priori knowledge of the avatar 
model is required.  

Automatic texture atlas generation for arbitrary, but 
single 3D object was described in [3]. 

In our approach, we process textures and scenes of 
arbitrary structure, having no explicit knowledge about 
their relationships. 

 

 
 

Related research about containment algorithms can be 
subdivided into four categories [5]: 

 
• The physics approach, which applies classical physics 

theory by adding potential energy to the shapes to 
place, that can be viewed as physical elements. 
However, solving these large equations take a large 
amount of time, what makes it useless when we need 
fast results. 

• The Computational Geometry approach, which latest 
development in multi-polygon rotational case [1] can 
place convex m-gon P into convex n-gon container Q 
by solving linear programs. )( 44nmO

• The Operational Research approach, which can lead to 
practical results, but tend to become more complex 
when rotations are part of the equation. 

• The Meta-Heuristic approach, which can obtain 
interesting results if the selected heuristic is 
appropriate, but fail to be applicable when the input 
space increases substantially. 

 
The texture atlas packing problem is often solved with the 
meta-heuristic approach. For tens of texture images, it 
gives satisfying results in a very short time while other 
approaches tend to be much slower than the heuristic 
method. In the method proposed by Sander at al. [6], the 

bounding boxes of the polygons are packed. They first 
sort bounding boxes by area sizes, then rotate them to 
align the longer axis of the rectangle with the vertical 
direction. In order to decrease a height, they place the 
rectangles sequentially into rows alternating left-to-right 
and right-to-left order. 

Another heuristics proposed by Lévy at al. [3] work 
directly with polygonal shapes. They initially sort 
polygons like Sander, but taken the inspiration at game 
Tetris, they let polygons fall down vertically and search 
for the best horizontal position on top of already 
positioned shapes. 

These heuristics are fast but they are not able to cover 
unused empty space that can naturally appear inside 
already positioned polygons. For this reason we have 
decided to take inspiration at Minkowski operators. 
Minkowski operators make possible to find these unused 
places in a short time. Minkowski operators (especially 
difference) tend to be faster than normally known 
techniques for solving collisions - they do not inform us 
whether there is a collision, but they tell us where the 
collision never occurs. 

3 Textures in VRML 
Three bitmap types are used in VRML scenes - GIF, JPG, 
and PNG. Due to different image format characteristics, 
we have to solve the containment problem for these 
formats independently. If using a combination of these 
formats in the final texture atlas, accuracy, transparency, 
and compression would be negatively influenced and 
complicated. For example, when converting GIF to PNG, 
we lose animation possibility. When GIF or PNG image 
would be converted to JPG format, the lossy compression 
would cause image degradation. 

Fig. 1: An avatar and corresponding texture atlas 
(from http://www.allelves.ru/forest/) 

Since we want to keep the image quality of all original 
textures unchanged, we have to manage JPG images in 
a special way. The DCT transformation processes pixels 
arranged in blocks of 8 x 8 pixels. This block is called 
superpixel. If input textures are placed into the texture 
atlas close to each other, original superpixels should not 
overlap. That is why we process JPG images on the level 
of superpixels (see fig. 2c) instead of single pixels such as 
in the case of PNG files. 

Input sets for our test scenes usually contained from 5 
to 60 texture files (the maximum was almost 200 images). 
Figure 2 presents one typical example of one texture file 
in JPG format. It can be seen that one input image can 
contain pixels/texels that are not mapped to a 3D model. 
Those pixels can be avoided from further processing, thus 
achieving more efficient use of space in the final atlas. 

After placing input images into the texture atlas, all 
relevant texture coordinates have to be recomputed in the 
source VRML file(s). Such remapping process includes 
only a simple arithmetic. A problem occurs when the 
original texture image is applied as a tile, i.e. the VRML 
source code maps its 2D texture coordinates out of the 
standard range <0, 1>. Although this is a regular VRML 

http://www.allelves.ru/forest/


technique, it cannot be used in combination with the 
texture atlas, since newly computed texture coordinates 
are directed to another image data in this case. We seek 
for such a situation in the VRML code and avoid relevant 
image from the texture atlas creation. For this reason, our 
method can produce more than only one output image file 
for a specific image format. 

 
a) One JPG texture image 
from the input set. 

 
b) Convex hull of image 
data really mapped to 3D 
surface. Remaining white 
space represents wasted 
area. 

 

 

c) Polygon approximation 
with respect to DCT 
superpixels. Each small 
square size is 8*8 pixels. 

 

 

d) Our final polygon 
representation. The square in 
left bottom corner is the 
reference point (0, 0). 
 

 
 

 Fig. 2: Input JPG image and corresponding polygon 
representation 

 

4 Theoretical Background 
In this section we introduce the basic operators and their 
properties, especially Minkowski sum and difference 
operator. Operators help us to find non-overlapping 
positions for each polygon in the container. This section is 
based on the work of Marques at al. [4]. 

 
Let , . Usually, , . 2, ZBA ⊆ 2Zt ∈ 2, RBA ⊆ 2Rt ∈

In our approach, we consider A, B, and t as sets of 
discrete points. 

 

A B 
 
 

Morphological mirror of A, (-A), is 

(1) }:{)( AaaA ∈−=−  

 

 
 
 
Translation A by t, A+t, is 

}:{ AatatA ∈+=+  (2) 

 
A+t 

 
 
Minkowski sum A with respect to B, , is BA⊕

U
Bb

bABA
∈

+=⊕  (3) 

 
BA⊕  

 

The Minkowski sum keeps four relation terms – 
reflexivity, commutative law, associative law, and 
transitivity [2]. The following relations define the 
Minkowski sum for sets and vectors. 

(4) tAtA +=⊕ }{  

(5) tBAtBA +⊕=+⊕ )(  

The most useful property determines how translations of 
shapes are mapped from and into Minkowski sum sets. 
We have the following fundamental property. 

(6) ( )( ) (( )BAtAtB −⊕∈ )⇔∅≠∩+  

 



The Minkowski difference A with respect to B, BAΘ , is 
defined as follows. 

BABA ⊕=Θ  
(7) 

 

 
BAΘ  

 
 
Minkowski difference keeps the previous terms (reflex., 
commut., assoc., transit.) like that Minkowski sum. 

The following property says that if a shape B 
positioned at point t is contained in A, then the point t 
belongs to the Minkowski difference of A with the mirror 
of B. By using this property we can get the set of all 
points t in which B fits into A just by computing the 
difference [4]. 

(8) ( )( ) ( )( )∅≠−Θ∈⇔⊆+ BAtAtB  

5 Heuristic Searching 
We start with an empty container C, with zero x and y size 
(Cx = 0, Cy = 0, Area(C) = 0). Then we add the first 
polygon A1 from the input set to the container C, thus 
obtaining a new status ( , C1AC + x = A1x, Cy = A1y). 
The following algorithm is applied when searching for the 
best position of the next polygon A from the input set to 
be added to the container C. 

Compute the Minkowski difference Md of C with 
respect to A, see in fig. 3. 
This gives us a set of translation vectors t, which 
applied on A causes overlapping C with A. We 
actually need the opposite of this. 

1. 

 
ACM d Θ=  

Fig. 3: Container (smaller polygon) showen together 
with computed Minkowski difference (bigger area). 
Second polygon for M. difference was polygon A at 
fig. 6. Those two areas overlapped. The one filled 
square in bigger area represents reference point (0,0). 
 

2. Compute Od as the outer border of the Md area, i.e. 
find all 4-connected neighboring pixels of Md (fig. 
4.). Then Od is a set of vectors t, which defines all 
translations of A to positions close to C, see fig. 5. 
Such translations are candidates for the final 
positioning of A. 

 

 
Fig. 4: Outer border of Md area (Od), in relation with 
container. 
 

To find the best position of A, we evaluate every 
translation vector t (tx,ty) from Od set using 
containment strategy that is explained in details 
below, in fig. 5. 
Polygon A, translated to its final position, is then 
added to the container C, sizes Cx, Cy are updated, 
and the algorithm is repeated until all input polygons 
are processed. 

3. 

 
Fig. 5: Placing polygon A next to container C at one 
position from Od. We can see the exact matching A to 
C. 

 



Containment Strategy 
When searching for the best translation vector t for 
polygon A in container C, our aim is to minimize the final 
container area, see fig. 6. Theoretically, the best t does not 
change that area at all.  
a)  

 

 

 

 

 

b) 

Fig. 6: Minimization of the container area (depicted as 
hashed rectangle). Two sample translation vectors, t1 
(figure a) and t2 (figure b), were used for positioning the 
polygon A. Figure a) exhibits better results (smaller 
occupied area) than b). 
 
Since more than one translation vector can satisfy the 
smallest container area condition, we have designed one 
additional criterion - placing operator. The operator 
concentrates on filling the empty space inside the 
container. Although this can generally enlarge the overall 
container area (see fig. 7), this strategy often leads to 
better utilized/covered internal space. 

 
a) 

b)  

 
Fig. 7: The placing operator has been designed to 
maximize occupied neighborhood around the newly 
placed polygon A. Such a neighborhood is highlighted 

by the hatched rectangle; its occupancy by already 
placed polygons is depicted by solid pixels in red. The 
higher number of occupied pixels, the higher the placing 
operator value. Figure a) shows a placing operator with 
value 104 that is better than figure b) with value 69. 
 
To combine the container area minimization approach 
with the placing operator application, we have designed 
the following empirical containment strategy procedure 
controlled by a single parameter weight: 

 
1. For each vector t, compute area and place values. 

The area is the final container area size; the place is 
the placing operator value. 

2. Find the minimal area value and store it as minimal 
area. 

3. Remove all vectors t having area > minimal area + 
weight. 

4. Among remaining vectors, find the one with the 
smallest place value and use that vector for 
positioning the polygon in the container. 

 
The weight says how much we accept worse solutions in 
terms of the container area size. However we are not able 
to determine the best weight value. In our tests, the 
optimal weight value was within the range from 0 to 200 
pixels (i.e. from 0 to 10% of current container area 
respectively). We observed certain dependencies on 
container area and placed polygon area. Our further 
experience is described in the following section. 

Strategy Evaluation and Experiences 
Based on measuring of various input sets, we have got the 
following observations. 

The first polygon added to the container affects the 
final texture atlas the most. That is why we implemented 
several selection techniques for the first polygon together 
with sorting other input polygons. We have got good 
results when sorting polygons top to down by their area 
size. Unfortunately, we have found several sets where 
random polygon selection behaved better. We also tried to 
compare more configurations for one set of input 
polygons. We have generated up to 100 random 
sequences of input polygons for the same scene and then 
we compared the created texture atlases. The result of 
such comparisons is shown in Fig. 10. 

If the created texture atlas area is similar to a square or 
rectangle with side ratio about 4:3 (see fig. 8), we 
generally get better results both from the perspective of 
file size and required texture memory. Here, the weight 
value helps to achieve such a square-like shape. Without 
using it, rectangles tend to be too long or high. 



 
 

 

 

 

Fig. 8: Texture atlas (left) and 3D model (right). The size of the atlas is 1605 x 1014 pixels. 

 
 

Fig. 9: Texture atlas generated using a placing operator with higher weight (10% of container area). The algorithm is 
trying to find the best position for every input texture using information from already placed polygons (the highest value 
of placing operator) but does not care about final rectangular container area size. We can see similarly shaped polygons 
placed near to each other. 

 



Number of 
bitmaps 

Summed file size 
[kB] 

Texture memory 
allocation [kB] 

Transfer 
time[s] Scene 

Input Output Input Output Input Output Input Output 

File size 
reduction 

[%] 

Transfer 
time 

reduction 
[%] 

Bell tower 30 1 182 168 5853 5013 20 15 8 25 

Tower-b1 13 6 169 146 1399 1553 13 9 14 31 

Tower-b2 15 7 79 64 1525 1110 8 7 18 12 

Bridge-b3 15 5 76 39 665 700 6 4 48 33 

Bridge with towers 42 17 278 236 3389 3163 23 17 15 26 

Maribor plague 116 64 869 730 11565 12602 64 47 16 17 

Town Hall 168 43 1077 1007 20220 21145 71 48 7 33 

Maribor synagogue 43 16 1093 978 13776 16261 50 41 10 18 

Turk well 66 1 289 166 4197 3662 15 8 43 47 

Table 1: A comparison of test scenes without and with texture atlases 

6 Results 
The algorithms described in the previous section were 
implemented in Java. Figure 8 shows an example (Bell 
tower) consisting of 30 JPG input images. In this case, 
the file size of the final texture atlas was 19% less than 
the sum of all input file sizes. We also measured the 
time for transferring a 3D scene (wrl file + bitmaps) 
over Internet using phone line. We observed a drop 
from 20 s for the original data set to 15 s for the scene 
with the texture atlas. 

The texture atlas in fig. 8 was computed in 16 
seconds on Pentium 1,5 GHz. Since a short processing 
time was not the primary goal of this work, we consider 
this value as acceptable. More results are shown in 
Table 1.  

Figure 9 shows the texture atlas for the same input 
set as for fig. 8, but with a setting that accepts worse 
container area, while emphasizing the placing operator. 

 
For several models, the size of allocated texture 
memory is bigger than for the original input. This 
occurs when input texture polygons fully fill their 
rectangular image areas, thus composition of textures in 
the final atlas cannot cover any unused space and stack 
up empty space leaved by placing algorithm. In this case 
is more obvious how much empty space is left by the 
placing algorithm. 

The quality of texture atlas can be expressed as 
decrease of final size (texture atlas size with respect to 
summed input files size) that affects the time needed for 
data transfer. It can be also expressed as reduction of 
necessary texture memory (similar to previous). 
Because our main intention is to transfer files faster 
over the Internet we focused at the first criterion. 
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Turk well Bell tower  

Fig. 10: Quality of texture atlas depending on the length 
of the iteration process in containment strategy. 

 
Figure 10 shows how the texture atlas quality increases 
with the number of tested configurations/permutations 
of a given input texture set. We measured two different 
scenes. The results were very similar. After processing 
the first five configurations, the resulting atlas sizes 
became better than for the input files. Then the next 
progress brought slightly better improvements, although 
not very distinguishable. For example, a difference of 
the atlas quality between the 10th and the 113th 
configuration was only 2% in terms of texture memory 
and about 1% in terms of files size. 



7 Conclusion and Future Work 
We have implemented a method that combines a set of 
texture images into a texture atlas. In most cases, this 
technique decreases the overall file sizes. Both lower 
size and lower number of files have a positive effect on 
data transfer over Internet. 

Algorithm works well for arbitrary-shaped textures, 
with normal size (big and small together) or small size 
textures. If there are more large textures than the small 
ones, or textures with rectangular shape, the placing 
algorithm leaves more empty space (it does not have 
any small textures to be placed to empty spaces).  

The content of the resulting texture atlas is still far 
from the optimum. We do not have the best solution and 
from the first look at our texture atlases, it is obvious 
that some polygons should lie at another place. In order 
to minimize unused space, we need to improve our 
containment strategy. One possibility is to increase 
the number of iterations in the searching process. We 
are also going to extend our concept with a rotation 
operator. Since smooth rotation of a polygonal shape 
would cause troubles with texture coordinates 
remapping and image quality degradation, we want to 
apply only rotations by multiples of π/2. 
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