
Design and implementation of games based on existing graphics
engines

Pawel Lekki∗

Grzegorz Labuzek†

Institute of Computer Graphics
Szczecin University of Technology

Szczecin / Poland

Abstract

Creating computer games using already made engines has
become very common practise. It is very difficult to cre-
ate a technologically up to date and interesting game. It
requires a large budget and a lot of time to catch up with
the development of constantly new technologies. The so-
lution to this problem is using a non commercial game en-
gine license. Creating a game based on an existing en-
gine saves us the trouble of implementing the basic func-
tionality. We can then focus on expanding such an en-
gine with additional modules and capabilities to create a
new and technologically innovative implementation. This
article describes the process of creating a game based
on the Source Engine [20]. The D.I.P.R.I.P. Modifica-
tion (www.diprip.com), developed by students of the
Szczecin University of Technology, is shown as an exam-
ple of this process.

Keywords: computer games development, 3d models,
textures, real time graphics

1 Introduction

Computer game development in the present has become
an increasingly complex process. The times when a single
man could write a whole game are long gone because of
the constantly increasing amount of technology and assets
that need to be put into a game. Modern games include the
most advanced systems for rendering, animation, sound,
networking and physics simulation.

This brings out the problem of time and money that are
needed to produce an entire game from scratch. Some
companies buy ready made solutions like Karma or Ha-
vok physics engines [12], from third parties and other buy
entire game engines like the Unreal, Quake, Source or Au-
rora [11, 13, 20, 3] engines. So is there still any place
left for people who want to make games that are up to
date with all of the current technology but do not have the
money to hire a big professional team to create a modern

∗plekki@wi.ps.pl
†glabuzek@wi.ps.pl

game engine?
The solution is using a commercial game engine on a

non commercial license. Games built using already pub-
lished game engines are commonly called Mods (from the
English word ”modification”) and are basically modifica-
tions of existing games. The amount of modification can
range from only changing the clip size of a weapon in
a first person perspective shooter, to creating completely
new game assets, changing the game genre and adding var-
ious technology modules like a new particle or rendering
system. Mods that result in a totally new game are com-
monly called total conversions.

This article discusses the process of creating a Mod us-
ing Valve Software’s Source Engine [20] and gives an
overview of the most important current game engines. As
an example of a total conversion, the D.I.P.R.I.P. Mod is
presented. It is a multiplayer game created by students
of the Faculty of Computer Science at the Szczecin Uni-
versity of Technology. The group was leaded by the au-
thors of this paper. The Mod is based on Valve Software’s
Source Engine [20].

The authors of this paper have taken active part in
the Mod’s creation. Pawel Lekki is responsible for the
D.I.P.R.I.P. Game Design Document as well as two game
environments. Grzegorz Labuzek is responsible for pro-
gramming game rules and special effects.

The section 2 of this paper lists the most popular game
genres and engines. It also describes the basic functions
of the Source Engine [20]. The third chapter goes through
all elements of the development process. It also explains
possible differences between making games based on dif-
ferent engines. The fourth chapter shows the development
process behind the D.I.P.R.I.P. Mod and the state of it’s
implementation. In the Conclusion section of this article
a short summary of the current achievements and future
works is given.

2 Background

Game MODs cover many game genres and existing titles.
The most popular game genres are First Person Shooters
(FPS) [20, 11, 13, 13, 5], Real Time Strategies (RTS) [18],

Turn Based Strategies (TBS) [1] and Role Playing Games
(RPG) [3]. They use the best and most popular game en-
gines that feature support for game Modding and working
Software Development Kits.

However a game Mod is based on a specific game en-
gine, thus a game genre, it can easily become a game of a
completely different type. This Modding approach is de-
scribed later on using the D.I.P.R.I.P. Mod example. The
most commonly Modded game genre is the FPS and it is
also the main scope of this article.

One of the most advanced and popular game engines
[17, 8], currently available, is the Valve Software’s Source
Engine. Currently it has about 1100 registered Mods listed
at the Mod Database website1.

This engine supplies solutions for many key problems
in creating a game. It is also very easily enhanced with ad-
ditional modules. It gives the possibility to concentrate on
creating new elements and not worrying about a basic im-
plementation. The most important features of this engine
are:

• Renderer:

– DirectX shaders version 2.0 written in the High
Level Shader Lanugage (HLSL) [10],

– vertex lighting, light mapping, dynamic lighting
[17],

– High-Dynamic Range (HDR) lighting [19],

– projected shadows.

• Materials system:

– one material can be made up of multiple tex-
tures,

– custom physics and sound properties can be as-
signed to materials,

• Multiplayer networking support:

– Local Area Network (LAN) and Internet con-
nectivity support,

– Prediction analysis for interpolating colli-
sion/hit detection.

• Physics simulation:

– constraint systems and ragdoll physics,

– kinematic animated bone followers,

– AI characters can interact with physically sim-
ulated objects.

• Sound:

– Custom software sound effects - Digital Signal
Processing (DSP),

– MP3 decompression,

1http://www.moddb.com/

– 5.1 surround sound.

• Artificial intelligence:

– determines relationships such as friend/foe sta-
tus of other entities,

– intelligent character interaction during non-
combat scenes.

• User interface:

– Server browser,

– VGUI (Valve’s Graphical User Interface) - a
universal set of tools for creating interactive
user interfaces.

Some of the best non commercial Mods have gathered
huge numbers of players and eventually they have been
bought by the companies that produced the original games
they were based on. The best example of such a mod is
Counter-Strike, based on the Half-Life Engine. According
to Valve Software’s Steam distribution system statistics,it
has an average of 100 000 players at all times and is the
most popular multiplayer FPS.

3 Development of games based on
existing game engines

This paragraph describes how a game Mod is created. It
also goes through the key elements in this process and tries
to give an explanation about their significance.

3.1 Development pipeline

The process of creating a Total Conversion using a modern
game engine is very similar to creating a new game. It
incorporates creation of 3D models, animation, textures
[9], sounds and programming. All these assets are then
gathered inside a 3D environment built in a dedicated map
editor. The process of creating a game Mod is presented
in Figure 8.

Schema (Figure 8) is a general representation of the
MOD creation process. The first and most important part
is the game project. Before the actual game development
a Game Design Document should be created [15]. It de-
scribes key game aspects and gives a clear overview of the
games goals and technologies that are going to be used.
After creating the Game Design Document the process is
divided into three major pipelines. All work concerning
them can be done in parallel.

The path for creating materials divides into creating a
base texture for the material and relevant shader code and
material properties. Older game engines were usually lim-
ited only to creating a base texture without any additional
information. Materials created in this part are used in tex-
turing static game environment geometry and dynamic in-
game 3D models.

The 3D modelling pipeline encompasses creation of
highly detailed object meshes. This process also involves
creating proper texture coordinates. Dynamic models also
require creation of proper animations. After creating all
components of a 3D model it is then prepared (compiled)
to comply with an engine’s standards.

The last major path is programming. This part includes
creating game rules and game entities. Game mechanics
are inseparable from the main code and usually take a lot
of time for balancing. Programming game entities is sim-
ply creating instructions and behaviour for certain game
characters, enemies or objects.

Game sound creation involves making custom sound
tracks and sound effects. It is not considered a major part
of the development process as it usually does not require
engine specific tools.

The last and most important part of the process is cre-
ation of game environments. A game environment is a
place where all the technologies meet together and are
shown to the player. All previously created game assets
have to be properly placed inside a game map where the
action will take place.

3.2 Environment modeling

Environments are a key element for every game and this
rule is also applicable to game Mods. Most of the modern
game engines divide the process of creating maps to:

• world geometry modelling and texturing - creation of
basic shapes inside a game editor on which other ele-
ments are then placed,

• placing highly detailed 3D decoration models created
inside advanced 3D modelling programs,

• placing light sources - placing all lighting informa-
tion,

• placing entities/actors - placing all game specific ob-
jects like enemies or scripted sequences controllers.

Complexity of map editors and the whole process dif-
fers depending on the game genre. For example building
a map (area) inside the Aurora Engine Toolset [3] limits
the creation of geometry to placing specific tiles from a
tile set. Also building geometry inside RTS editors like
the Command Conquer: Generals Worldbuilder [18] lim-
its the creation of geometry to editing terrain elevation and
texturing it.

The most technically advanced game genre is the FPS.
Most map editors enable level designers to create basic
geometry using primitive geometry like cubes, cylinders,
etc. In addition to that game environments are decorated
with highly detailed 3D models. Most FPS games have
dedicated map editors but there are also a few universal
map editors that cover a wide range of games, for example
Quark [2] and GtkRadiant [16].

3D models like for example game characters or highly
detailed environment decorations are created inside ad-
vanced 3D modelling programs. Specialised 3D modelling
applications support features like rendering shadows onto
previously created textures which can increase the visual
quality of 3D models and create effects that could not be
achieved in real time shadowing based from global illumi-
nation. They can also help by creating normal maps from
highly detailed geometry and applying that onto lesser res-
olution models.

There are currently many sophisticated 3D modelling
applications that use different file formats but most of the
game engines have special exporters featured in their Soft-
ware Development Kits for the most popular applications.
The best modelling programs like 3DSMAX, Maya or XSI
is usually not affordable for people who want to create
game Mods. Fortunately there are good free alternatives
like Blender or the XSI Mod Tool.

3.3 Changing game behaviour

The amount of programming changes is limited to the type
of licence that is used. A full commercial engine licence
enables access to the lowest level engine functions, thus
full modification of the game engine is possible. Non
commercial SDKs for the newest games never feature the
lowest level engine code like for example rendering code
or physics simulation code. A non commercial engine li-
cence is usually limited to expanding the existing game
engine with new modules and modifying high level parts
of the game like game rules.

Although a non commercial license has it’s limitations
it is available at a very low cost, because it only requires
the user to buy the game. It is usual that new engines base
on old engines. It leads to the conclusion that by expand-
ing an engine with new functions we can create something
new and innovative. This eliminates the need to start from
implementing the lowest level functions.

Figure 1: D.I.P.R.I.P. - an abandoned village

Figure 2: D.I.P.R.I.P. - an eastern European city district

Figure 3: D.I.P.R.I.P. - the surroundings of the building of
the Faculty of Computer Science at the Szczecin Univer-
sity of Technology

4 D.I.P.R.I.P. Implementation

D.I.P.R.I.P. is a multiplayer game Mod created by students
of the Faculty of Computer Science at the Szczecin Uni-
versity of Technology. It is based on Valve Software’s
Source Engine [20].

The goal of the project was to create a commercial class
multiplayer game utilizing the newest available technol-
ogy with very limited funding and time resources.

D.I.P.R.I.P. is a multiplayer game were players fight
each other using custom made armoured vehicles with var-
ious mounted weapons in modern post-war environments.
Players observe their vehicles from a third person perspec-
tive and can not exit them.

The most important features in the D.I.P.R.I.P. imple-
mentation are: new environments based on real locations,
new, upgraded vehicle implementation with networking
support and design of a new user interface.

4.1 3D Environments and material system

3D game environments (maps) are a key element, on
which the entire game action takes place. Three separate
maps have been created: an abandoned village (Figure 1),
an eastern European city district (Figure 2) and the sur-
roundings of the building of the Faculty of Computer Sci-
ence at the Szczecin University of Technology (Figure 3).
All of these environments differ from each other what in-
fluences the process of their creation. All maps have been
created using the Valve Hammer Editor.

Real life photographs were essential to the process of
creating realistic looking environment objects. They were
used to evaluate proportions of elements and to acquire
realistic textures (see Figure 4).

Figure 4: Model creation process

4.2 Vehicles and weapon system

The vehicle weapons system from the original Half-Life 2
game has been completely changed to fit the requirements
of the new game. The original system limited vehicles to
have only one weapon and there was no modular solution
similar to that used with human characters that would en-
able players to switch between weapons.

That required an implementation of a completely new
modular solution that would fit the vehicles. The new sys-
tem enables vehicles to have weapons attached to separate
mounting points with separate animation control and spe-
cial effects. It also created a need to change the vehicle
modeling and animation system. The number of skele-
tal animation files required to fully animate a vehicle has
increased proportionally to the number of new weapons
(currently four).

Pictures 5, 6, 7 illustrate the process of creating a vehi-
cle concept drawing followed by a highly detailed model
and an ingame model.

Figure 5: Model creation process: The Hummer - a vehicle
concept art drawing

Figure 6: Model creation process: The Hummer - a highly
detailed model

Figure 7: Model creation process: The Hummer - an
ingame model

4.3 Networking

A lot of upgrades in the networking system concerning
vehicles have been implemented in D.I.P.R.I.P. The origi-
nal network code did not have any optimizations for vehi-
cles. It was not possible to play a multiplayer game based
on vehicle combat without that. It was necessary to shift
a lot of code from the server to the client. This opera-
tion saved most of the bandwidth used by a vehicle. The
D.I.P.R.I.P. team created a new class for a player which
combined some functionality of the original player class
and the old vehicle class and that also saved some com-
munication between the server and the client. There have
also been changes in prediction tables which had to be
updated by new variables added in the new player class.
More about Source Engine networking can be read here
[4].

4.4 User Interface

The user interface in D.I.P.R.I.P. is based on VGUI (Valve
Graphics User Interface). VGUI is an implemented set of
commonly used elements like: windows, buttons, editable
fields, menus etc. It is a very flexible system which al-
lows the creation of a complex interface with minimum ef-
fort. Programming a user interface is mostly event based.
VGUI is able to use True Type fonts and render them
in a desired location as a texture. For the needs of the
D.I.P.R.I.P. Mod a new heads up display has been cre-
ated using the VGUI. It contains vehicle statistics which
are used by the player. The new user interface also has a
special panel which is used to change vehicles during the
game.

5 Conclusion and future work

The D.I.P.R.I.P. Mod for the Source Engine shows that it
is still possible to create a modern game using very lim-

ited resources. It is a completely different game from the
one that it is basing on - Half-Life 2. Among the imple-
mented features are a new third person camera, the change
from a human player character to a player controlled ve-
hicle and a new vehicle weapon system. Game maps have
been created in a different scale to fit the need for big open
spaces and semi realistic environments. The Mod also fea-
tures custom made models and textures which have been
created using real life photographs. New player controlled
vehicle models with physics behavior scripts.

Future works will include new shaders written in the
HLSL shader language, improved vehicle physics, an al-
gorithm for recovering stuck vehicles and additional net-
work code optimizations. New user interface elements like
a map/radar showing the player and enemy positions will
have to be created. Additional game assets including new
vehicle models, sounds, textures and maps.

Game engines can also be used to make ”serious”
MODs. The Source Engine is also being used to cre-
ate a medical simulation where players can learn human
anatomy or perform virtual operations [14, 7]. Another
example of it’s use is a forestry statistics simulation [7].
Game engines can also be used to create scientific simu-
lations by implementing AI learning algorithms to for ex-
ample game enemies or wild animals in an artificial envi-
ronment [6].

Another good implementation of using a game engine
can be a virtual museum where the player could see places
which are normally inaccessible because of hazardous en-
vironment or the possible danger that a tourist can create
to a monument. One of such projects has been started at
the Institute of Computer Graphics at the Technical Uni-
versity of Szczecin. It focuses on virtuall recreation of the
Wieliczka Salt Mine in Poland which is a monument of the
UNESCO World Cultural Heritage List.

These examples show that Mods can be created not only
for the purposes of entertainment. They can be also used
for educational projects and as help for scientific simula-
tions. Using an existing graphics engine can substantially
decrease the time needed to finish a project. The idea of
using existing graphics engines can help in the develop-
ment of many projects that would otherwise be very diffi-
cult to accomplish.

6 Acknowledgements

We would like to thank all members of the D.I.P.R.I.P.
team that did not participate in the writing of this article:

• Wojciech Lekki - project management, 3D modeling,
textures, environment modeling

• Mateusz Kotiuk - programming

• Wojciech Wozny - programming

• Krzysztof Miler - 3D modeling

• Konrad Wyremski - concept artwork

• Tomasz Tulikowski - environment modeling

• Pawel Stelmach - sound

References

[1] Multile authors. Civ4 - creation customiza-
tion. http://forums.civfanatics.com/

forumdisplay.php?f=158, visited: 4.02.2006.

[2] Multiple authors. Quark. http://quark.

planetquake.gamespy.com/, visited: 4.02.2006.

[3] BioWare. Introduction to the aurora neverwinter
toolset. http://nwn.bioware.com/builders/

toolsetintro.html, visited: 4.02.2006.

[4] The Valve Developer Community. Source mul-
tiplayer networking. http://developer.

valvesoftware.com/wiki/Source_

Multiplayer_Networking, visited: 4.02.2006
22:00.

[5] Crytek. Cryengine specifications.http://www.
crytek.de/technology/, visited: 4.02.2006.

[6] Mark DeLoura.Game Programming Gems. Charles
River Media, Inc., Rockland MA, 2000.

[7] Rusel DeMaria. Sgs 2005: Healthcare and
forestry half-life 2: Meet serious games mod-
ding, 2005. http://www.gamasutra.com/

features/20051103/demaria_01.shtml, vis-
ited: 4.02.2006.

[8] David Eberly.3D Game Engine Design: A Practical
Approach to Real-Time Computer Graphics. Morgan
Kaufmann Publishers, San Francisco CA, 2000.

[9] David S. Ebert, F. Kenton Musgrave, Darwyn
Peachey, Ken Perlin, and Steven Worley.Textur-
ing and Modeling: A Procedural Approach. Morgan
Kaufmann Publishers, 2002.

[10] Randima Fernando.GPU Gems. Addison-Wesley,
2004.

[11] Epic Games. Unreal engine. http:

//udn.epicgames.com/Main/WebHome, vis-
ited: 4.02.2006.

[12] Havok. Havok dynamics.http://www.havok.
com/, visited: 4.02.2006.

[13] id Software. id software’s technology licens-
ing program. http://www.idsoftware.com/

business/technology/, visited: 4.02.2006.

[14] Jorge A. Ramirez Klaudia Johnston. Texas a m
university-corpus christi awarded $4.3 million
grant to develop virtual learning space for cur-
rent and future healthcare professionals, 2005.
http://kanga.tamucc.edu/PublicAffairs/

press/2005/june/nursing/, visited: 4.02.2006.

[15] Tom Meigs.Ultimate Game Design: Building Game
Worlds. Brandon A. Nordin, 2003.

[16] Tristan J́herax́Blease / multiple authors. Gtkra-
diant. http://www.qeradiant.com/, visited:
4.02.2006.

[17] Tomas Mller and Eric Haines.Real-Time Rendering.
A. K. Peters, Ltd., Natick MA, 1999.

[18] EA Pacific. Command conquer generals: World-
builder, 2003.http://www.generalsmaps.net/
worldbuilder/worldbuilder.pdf, visited:
4.02.2006.

[19] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and
Paul Debevec.High Dynamic Range Imaging. Mor-
gan Kaufman, Elsevier, 2005.

[20] Valve Software. Source engine licencing, informa-
tion sheet. http://www.valvesoftware.com/

SOURCE_InfoSheet.pdf, visited: 4.02.2006.

Figure 8: MOD creation process

