
Diffusion-Based Applications for
Interactive Medical Image Segmentation

Laura Fritz∗

VRVis Research Center
Vienna, Austria

Figure 1: Nonlinear isotropic diffusion after 4, 10 and 25 iterations compared with the original data volume (left).

Abstract

Volume segmentation is an important part of medical
diagnostics, and fast solutions which nevertheless can
handle large datasets are required. This paper presents
a diffusion-based method that can be used for volume
smoothing and segmentation purposes, and has been im-
plemented on the GPU in order to achieve interactive
performance. We describe the nonlinear isotropic and
anisotropic diffusion methods, which – in combination
with seeded region growing – are also used for segmen-
tation purposes. The procedures are embedded in a high-
quality hardware based volume renderer and provide inter-
active data handling and parameter editing.

Keywords: volume smoothing, segmentation, GPU,
isotropic diffusion, anisotropic diffusion, region growing

1 Introduction

Medical image segmentation i.e., the identification of in-
dividual objects in images and volumetric datasets, is an
important topic in clinical diagnostics. Medical imaging
allows scientists and surgeons to glean important informa-
tion by peering noninvasively into the human body and
separating out anatomical structures (e.g. tumors). There

∗laura@vrvis.at

exists a huge amount of solutions, most semiautomatic, re-
quiring highly trained staff and parameter settings. There-
fore it is very important to achieve interactivity while
executing a lot of computations on large datasets. The
main topic of this work is diffusion based image smooth-
ing and segmentation, implemented on the GPU (graph-
ics processing unit), to ensure the highest possible inter-
activity for working with large datasets. We use nonlin-
ear isotropic and anisotropic diffusion models in combina-
tion with different nonlinear diffusivities, to obtain good
results for different datasets. In this approach, the power
of graphics hardware is used to obtain interactivity dur-
ing the smoothing and segmentation process. The GPU
is, nowadays, a fully programmable parallel processor and
therefore well suited for a high throughput of data that is
essential in medical volume handling. This encourages
interactivity because the computation of the volume pre-
processing (e.g. image smoothing) as well as the segmen-
tation and rendering of the volume are executed in paral-
lel to observe the progress of the algorithm. In our ap-
proach, image smoothing is mainly used for preprocessing
of the datasets before the segmentation is executed. In the
next section, we will first introduce the basic idea of dif-
fusion, especially the nonlinear isotropic and anisotropic
algorithms are explained. We also show the discretiza-
tion of these algorithms used in our implementation. In
Section 3, we show how to use our approach for medical
image segmentation. Especially the processing steps that
are essential to obtain good segmentation results are spec-

Figure 2: Uniform white noise is applied to the original dataset (first image in the top row) and isosurface rendered with
GPU raycasting. The smoothing is shown with anisotropic diffusion after 8 (about 4.08 sec), 14 (about 7.14 sec) and
24 (about 12.24 sec) iterations (top row) and with isotropic diffusion after 2 (about 0.116 sec), 5 (about 0.29 sec), 7
(about 0.406 sec) and 15 (about 0.87 sec) iterations (bottom row). It is obvious that the anisotropic diffusion preserves the
structure while removing the noise, whereas the isotropic diffusion destroys the structure using less iterations.

ified. Section 4 explains the implementation details of our
hardware-based algorithm where also an overview of the
shading language Cg is given. In Section 5, we demon-
strate our approach considering an example, where we il-
lustrate a stepwise segmentation of a head dataset. Sec-
tion 6 shows some results we have achieved.

Related Work
The image smoothing and segmentation techniques used
in this paper, are based on nonlinear diffusion algorithms
described in [12] and [13]. There exists various applica-
tions which uses modifications of one of the first nonlin-
ear diffusion formulations from [5] like [1, 2]. Because the
GPU is optimized for a high throughput of data, it is well
suited for implementations on medical image processing
as shown e.g. in [6, 7, 8]. The segmentation method using
diffusion-based seeded region growing, used in this work,
was first introduced by [10]. The segmentation tool for the
isotropic and anisotropic nonlinear diffusion is integrated
in a high-quality, hardware based volume renderer [4] by
Markus Hadwiger.

2 Diffusion Background

In our work, diffusion is used both for image smoothing,
as shown in Figure 2 and segmentation purposes, also de-
scribed in Section 3.

Continuous Diffusion Equation

A common intuitive notion of diffusion is a physical
process that equilibrates concentration differences without
creating or destroying mass as described in [13]. A com-
position ofFick’s law and thecontinuity equationresults
in the mathematical formulation of thediffusion equation:

∂ut = div(D ·∇u). (1)

The diffusion tensor Dis a positive definite, symmetric
matrix and describes the relation between∇u (the con-
centration gradientat positionu(x,y,z)) and the flux at
each timestept. div is the divergence operatordiv~v =
∂vx
∂x + ∂vy

∂y + ∂vz
∂z . ∂ut determines the modification of the

image dependent on the timet. In the anisotropic diffusion
equation, the diffusion tensorD is a matrix which controls
the orientation and intensity of the flux. In the isotropic
case a diffusivity functiong() is used instead, which con-
trols the intensity of the flux.

Nonlinear Isotropic Diffusion

To reduce artifacts due to linear diffusion filtering (like
blurring of important features or the dislocation of edges),
in the nonlinear isotropic diffusion filtering a feedback
system is established by adapting the diffusivityg to the
gradient of the evolving image:

∂tu = div(g(‖∇u‖)∇u). (2)

It depends strongly on the diffusivityg(‖∇u‖) how effi-
cient the blurring at edges is reduced and the localization is
increased.g(‖∇u‖) scales the gradient in the original im-
age to stop the flux along edges, shown in Figure 3(right).
Mainly we use the Perona–Malik model [5] (they call it
anisotropic) defined in Equation 3

g(s) = e−(s2/λ 2), (3)

and the Tukey/Biweight model [1] defined in Equation 4.
They turned out to be the most efficient models for the
diffusivity g(‖∇u‖).

g(s) =
{

1
2[1− (s

λ
)2]2 , |s| ≤ λ

0 otherwise
(4)

The parameterλ is the most critical value concerning the
success of image smoothing and segmentation. Therefore
we implemented a method to automatically estimateλ de-
pending on the underlying density values described in Sec-
tion 3.2.

Edge-Enhancing Anisotropic Diffusion

Instead of the scalar diffusivityg(), edge-enhancing
anisotropic diffusion [12] uses a tensorD as shown in
Equation 1. This tensor rotates and scales the flux in or-
der to preserve interesting features (e.g. parallel to edges
instead of smoothing across them preserves edges). Now,
the flux is no longer parallel to∇u which maintains the lo-
cation and strength of edges.
In the edge-enhancing anisotropic diffusion equation the
orthogonal system of eigenvectorsv1, v2 andv3 of the dif-
fusion tensorD for a three dimensional volume can be
written as follows:

D =
[

v1 v2 v3
] λ1 0 0

0 λ2 0
0 0 λ3

 v>1
v>2
v>3

 (5)

wherev1‖∇uσ , v2⊥∇uσ and v3⊥∇uσ . ∇uσ is the gra-
dient defined by using a Gaussian kernel with widthσ .
To obtain smoothing along the edges, the corresponding
eigenvalues can be selected asλ2 = λ3 = 1. λ1 is de-
fined using one of the diffusivities in Equation 3 or 4. If
λ1 = λ2 = λ3 = g() it results in the isotropic diffusion.

2.1 Discretization

In this section the discretization of the diffusion equations
is explained.

Figure 3: The diffusivity g() (in [0,1]; right) determines
how much the flux direction deviates from the gradient
∇u. Near edgesg() approaches zero, and the flux direc-
tion becomes orthogonal to∇uσ .

Nonlinear Isotropic Diffusion

The discretization of the diffusion equation 2 is introduced
in [5] and can be written as follows:

ut+1
x,y,z = ut

x,y,z
+ h·
·
[

g
(

ux−1,y,z−ux,y,z
∆x

)
·
(

ut
x−1,y,z−ut

x,y,z

)
+

+ g
(

ux+1,y,z−ux,y,z
∆x

)
·
(

ut
x+1,y,z−ut

x,y,z

)
+

+ g
(

ux,y−1,z−ux,y,z
∆y

)
·
(

ut
x,y−1,z−ut

x,y,z

)
+

+ g
(

ux,y+1,z−ux,y,z
∆y

)
·
(

ut
x,y+1,z−ut

x,y,z

)
+

+ g
(

ux,y,z−1−ux,y,z
∆z

)
·
(

ut
x,y,z−1−ut

x,y,z

)
+

+ g
(

ux,y,z+1−ux,y,z
∆z

)
·
(

ut
x,y,z+1−ut

x,y,z

)]
,

(6)

where ux,y,z denotes the density value of the volume at
the location(x,y,z). In this discretization method, the
divergence at time stept is calculated for each position
(x,y,z) by applying the diffusivityg() on the forward and
the backward differences in each direction and then again
calculating the forward differences of both values. The
parameterh depends on the neighbourhood used for diffu-
sion. This discretization scheme uses a neighbourhood of
six voxels, but we also extend this equation for eighteen–
and twenty-six neighbours by additionally fetching the re-
spective neighbour voxels. Generally, whenh is increased,
evolution of the diffusion process speeds up. The dis-
cretization of the nonlinear isotropic diffusion is also often
called anisotropic [5], because the diffusivity functiong()
is applied separately on the different gradient directions.
Figure 1 illustrates an example where the isotropic diffu-
sion is used to smooth a hand dataset rendered DVR (direct
volume rendering) shaded with raycasting on the GPU.

Edge-Enhancing Anisotropic Diffusion

In 3D, we denote the components of the diffusion tensor
D as

D =

 a d e
d b f
e f c

 (7)

and substitution in Equation 1 yields:

∂ut = div(D ·∇u) = div

 a∂xu+d∂yu+e∂zu
d∂xu+b∂yu+ f ∂zu
e∂xu+ f ∂yu+c∂zu

 . (8)

For discretization the inner derivatives are usually approx-
imated by central differences. It is crucial to use smoothed
gradientsuσ for the stencil calculation. Otherwise, the
diffusion stencil would degenerate to the isotropic case
because no rotation of the gradient takes place. There-
fore, the gradients have to be calculated (with a Sobel
or Gaussian kernel for example), in a preprocessing step.
This gradient volume, has high values at locations where
the intensity contrast is high (at edges) and low values at
homogeneous regions. As shown in Figure 3 the precalcu-
lated gradient∇uσ at a specific location, has another orien-
tation than the gradient at the same location from the orig-
inal density volume∇u obtained by central differences.
The gradient∇u is now scaled (because ofD), depend-
ing on the diffusivity progression shown in Figure 3 (right
side). If the region is homogeneous, the gradient is small
and the flux is high, which means that the diffusivity is
near one. Then the flux proceeds along the gradient di-
rection∇u. The more the diffusivity decreases to zero (at
edges), the more the flux direction differs from∇u. The
gradient∇u increases and the flow decreases and rotates
towards the tangent-plane. This causes the rotation of the
flux. The more different the precalculated gradients∇uσ

are from∇u, the more edge stopping is the function. So,
the intensity and the direction of the flux, can be controlled
by the smoothing kernel.

Considering the isotropic case, allλ parameters in
Equation 5 are the same. Therefore, the gradient∇u is
scaled uniformly, which means that no flux rotation takes
place. The propagation of the seeds depends only on the
gradient∇u and the diffusivity.

The semidiscretization of the convolution kernel can be
written as a stencil. The stencil weights for the standard
approximation of Equation 8 are in Tables 1 to 3. Hereh1,
h2 andh3 denotes the stepsize in thex, y andz direction
respectively, anda, b, c, d, eand f are the elements of the
diffusion tensorD at their specified location(x,y,z).

In our implementation, we have to divide the calcula-
tions into two render passes, in order to cache the result of
on-the-fly computation of smoothed gradients. In the first
pass we calculate the gradients for one slice respectively.
Therefore we use either a Gaussian or a Sobel kernel. In
the second pass, the stencils shown in Tables 1, 2 and 3 are
used together with the gradient volume to calculate the di-
vergence. In the last step, the stencil is applied on the orig-

− fx,y,z−1− fx,y+1,z
4h2h3

ex,y,z−1+ex−1,y,z
4h1h3

cx,y,z−1+cx,y,z

2h3
2

−ex,y,z−1−ex+1,y,z
4h1h3

fx,y,z−1+ fx,y−1,z
4h2h3

Table 1: The anisotropic diffusion stencil for thez=−1 po-
sition.

−dx−1,y,z−dx,y+1,z
4h1h2

bx,y+1,z+bx,y,z

2h2
2

dx+1,y,z+dx,y+1,z
4h1h2

ax−1,y,z+ax,y,z

2h1
2

−ax−1,y,z+2ax,y,z+ax+1,y,z

2h1
2

−bx,y−1,z+2bx,y,z+bx,y+1,z

2h2
2

− cx,y,z−1+2cx,y,z+cx,y,z+1

2h3
2

ax+1,y,z+ax,y,z

2h1
2

dx−1,y,z+dx,y−1,z
4h1h2

bx,y−1,z+bx,y,z

2h2
2

−dx+1,y,z−dx,y−1,z
4h1h2

Table 2: The anisotropic diffusion stencil for thez= 0 posi-
tion.

fx,y,z+1+ fx,y+1,z
4h2h3

−ex,y,z+1−ex−1,y,z
4h1h3

cx,y,z+1+cx,y,z

2h3
2

ex,y,z+1+ex+1,y,z
4h1h3

− fx,y,z+1− fx,y−1,z
4h2h3

Table 3: The anisotropic diffusion stencil for thez= +1 po-
sition.

inal density, added up and normalized. In Figure 2 the two
algorithms are applied on a hand dataset and compared.

3 Application to Medical Segmenta-
tion

The previous explained smoothing equations, are used in a
so calledhybrid methodtogether with region growing for
segmentation purposes.

3.1 Diffusion-Based Region Growing

In general, region-based techniques assume that neigh-
bouring voxels within the same region are homogeneous

Figure 4: Thesegmentation pipelinedemonstrates the whole segmentation process.

with respect to a defined, prespecified criterion (e.g. sim-
ilar intensity values). This homogeneity criterion is the
minimum difference between the voxel’s value (the initial
seed) and the average value of the region where the next
pixel should be appended. Starting from one (or multiple)
initial points (i.e. voxels), either user defined or automat-
ically estimated, the seeds evolve in each iteration of the
algorithm as long as this homogeneity criterion is satis-
fied. This yields closed regions in the final segmentation.
Therefore, the results strongly depend on the initial choice
of the seeds.

The advantage of using a hybrid of seeded region grow-
ing and diffusion filtering is, that region properties are not
tracked explicitly, but diffusion of seeds can be controlled
by partial differential equations (PDEs). This technique
operates locally by solving a large amount of PDEs and is
therefore well-suited to be implemented on GPUs. Usually
diffusion filters are applied directly to an intensity image,
but in case of diffusion-based segmentation approaches the
actual diffusion equation is applied to the seed image, in-
corporating the intensity image as additional term into the
equation.

Figure 5: The selection possibilities for the diffusion-
based segmentation process.

3.2 Segmentation Pipeline

The main advantage of this segmentation process is the
interactivity provided by the fast, hardware-based imple-
mentation. So the user can observe and influence the
smoothing and segmentation process anytime the segmen-
tation does not develop as desired. The user can stop the
process, change the parameter settings, paint new seeds

or delete wrong ones and continue the process as often
as necessary to obtain a satisfying solution. The possible
steps of the whole segmentation process are demonstrated
in Figure 4 and described below. The possible algorithm-
settings especially for the segmentation are demonstrated
in Figure 5.

Parameter Setting

The parameterλ is the most critical value concerning the
success of image smoothing and segmentation. In [2] the
filtering process is integrated in a closed-loop system, to
determineλ and the number of iterations automatically.
Therefore the results of the filtering are analysed in order
to adjust the parameters before the next iteration. In our
approach, the number of iterations is controlled interac-
tively. To estimateλ , we use the fact that for the flow
in image smoothing, the proportion between‖∇u‖ and
λ stays the same in all scales. The flow of the Perona–
Malik diffusivity (Equation 3) reaches its maximum at
‖∇u‖= 1√

2
λ ≈ 0.71λ and of the Tukey/Biweight diffusiv-

ity (Equation 4) at‖∇u‖= 1√
5
λ ≈ 0.45λ . ∇u is calculated

by building the difference of two density values from each
side of the edge. The user can estimate them interactively
by clicking on them in the slice viewer.

Volume Smoothing

Nonlinear diffusion filtering can be applied to images or
volumes (e.g. medical data), to remove noise and en-
hance edges. We mainly use smoothing as a preprocessing
step for segmentation, but it can also be used in the ray-
caster [7] for different visualization purposes.

Segmentation

Thresholding approaches expect one or more intensity
values, thethresholdsand segment a scalar image by cre-
ating a binary partition of the image intensities. This is
achieved by grouping all pixels with intensity greater than
the threshold into one class, and all other pixels into the
second class. Thresholding is a good basic method to gain
a fast segmentation in images where different structures
have contrasting intensities, or used as an initial step in a
sequence of imaging processing [11, 9].

(a) Segmentation of the paranasal sinuses. (b) Segmentation of the frontal sinus. (c) Back view of the segmented frontal sinus.

Figure 6: The segmented parts using diffusion-based seeded region growing are displayed in red (dark gray). These parts
are saved as separate masks.

For diffusion-based volume segmentationthe initial
user input (seeds) is saved in a seed masks, a second
volume (in addition to the density volume) where each
voxel has a corresponding seed point. The merging criteria
for the neighbouring seeds is based on diffusion filtering,
where the diffusion flow still depends on the underlying
image but is multiplied with the gradient magnitude of the
seed mask. Equation 1 can be modified for the seed flow:

∂ts= div(g(‖∇u‖)∇s), (9)

whereu indicates the image ands the seed mask. The
seeds progress along the flux until their expansion is
stopped at the edges, where the flow is slowed down. The
seeds expand fast if the seedflow in Equation 9 is large.
For the discretization of Equation 9, Equation 6 has to be
modified for the seedmask. Instead of the density volume,
st
x,y,z, the number of seeds in the seed mask at time stept

has to be calculated. Just for the calculation of the diffu-
sivities, the original density valuesu are taken. The stencil
for the anisotropic diffusion shown in Tables 1 to 3, can
also be modified for segmentation purposes when applied
on the seedmasks.

Mask Operations

If the user is satisfied with a partial segmentation result,
he can save the segmented part as a mask. In already seg-
mented volumes the data values are assigned to different
objects. To indicate the membership of each voxel, an ob-
ject ID volume is created that contains the object ID for
each voxel, as described in [4]. These objects are saved in
binary masks on the CPU and can be arbitrary assembled
together anytime. To achieve a quick update of the object
mask during the segmentation process, the most significant
bit of the object ID volume is used, to indicate whether the
voxel is part of the currently segmented volume or not.
Boolean operators can also be applied on combinations of
already existing masks to generate new segmented parts.

4 Implementation

The GPU is optimized for high throughput of data and
therefore well suited for solving diffusion equations which
are based on partial differential equations. These equa-
tions are implemented infragment shaders, which are
user-written programs that are executed once for each frag-
ment on the GPU and responsible for the final colour and
opacity of each fragment. Our fragment shaders for the
diffusion filtering and volume segmentation, are written in
Cg a high level shading language developed by NVIDIA.
What makes Cg and other shading languages different
from conventional program languages is that they are all
based on a dataflow computational model, where compu-
tation occurs in response to data that flows through a se-
quence of processing steps as described in [3]. Cg removes
the need to program with hardware assembly language and
provides a complete programming platform that is easy to
use and similar to C. The reason why we preferred Cg over
HLSL or the OpenGL Shading Language, is because it
provides the use of interfaces. Using interfaces makes it
possible to write different implementations of various al-
gorithms in one shader and choosing the desired ones at
compile time. This allows, to exclude as much as possible
from the Cg code that is not used in the specific – user de-
fined – situation, from being compiled by the Cg compiler,
which leads to reduced execution time. The compilation
into GPU assembly code can take place either in advance
or on demand at run time. This is very important when
using interfaces, because the actual interface implementa-
tions can be connected during run-time.

Performance

Table 4 shows the time in seconds used for one iteration
for the different algorithms respectively. One iteration up-
dates and renders the whole volume. Especially the perfor-
mance of the anisotropic case is very high considering the
amount of calculations performed on the whole volume. In

dataset size isotropic anisotropic
256x128x256 0.058 0.51
512x512x128 0.179 1.873

Table 4: This table shows the time in seconds used for one
smoothing iteration. Both algorithms are used with the
Perona–Malik diffusivity (Equation 3).

one iteration eighteen smoothed gradients of an 3x3 ker-
nel in a 3x3 neighbourhood have to be calculate. Then 18
different tensors are calculated for the 3x3x3 convolution
kernel and finally applied on the whole density volume.
Each iteration updates and renders the whole volume.

5 Segmentation Example

This section illustrates a possible segmentation process
of a 512x512x128 CT-head dataset, downsampled to
256x256x128.
After the dataset is loaded in the volume renderer [4],
it can be observed and modified in the3D view and in
the slice viewer. A main advantage is, that the develop-
ment occurred during different operations applied on the
dataset, can be immediately tracked in the 3D view as well
as in the slice viewer. So the user has full control over the
evolution of the volume smoothing and segmentation, can
stop the process and change the parameters whenever nec-
essary (Figure 5). The following steps are applied on the
dataset:

(a) (b)

Figure 7: The segmented part using thresholding
is displayed in Figure 7(a) in red. This part can
be saved and reloaded as a mask, Figure 7(b).

1. Smoothing is used as pre-processing to reduce noise
which often occurs in medical datasets. Before start-
ing the smoothing process, we have to choose one
of the diffusivity Equations 3 or 4. This is also
important for the parameterλ , because the calcu-
lation depends on the conditions described in Sec-
tion 3.2. Therefore, the gradient is determined by
estimating the different density values along an edge
to be preserved/enhanced during smoothing. We use
the Tukey/Biweight diffusivity (Equation 4) together
with the isotropic diffusion 2 and forλ = 0.245529.

After about 30 iterations we get the result smoothed
enough to continue with segmentation. All in all this
takes about 1.74 seconds.

2. Thresholding can be used to get a fast segmentation
when different structures have contrasting intensities.
Therefore, we use thresholding to segment the bones
of the skull, as shown in Figure 7(a). Here we use one
threshold from 191 to 3000 HU (Hounsfield Units).

3. Save maskis now used to save the segmented part
from Figure 7(a) as a separate mask shown in Fig-
ure 7(b). A main advantage of using masks is, that
a separate transfer function and render mode can be
applied to every single mask, as shown in Figure 8.
The objects can be arbitrarily enabled an disabled for
better visualization purposes, demonstrated in Fig-
ure 8(a) where only the segmented paranasal sinuses
and the frontal sinus are visible.

4. We usediffusion-based segmentationto segment
the paranasal sinuses. Therefore, we take the same
parameters as already used for smoothing purposes.
This is only reasonable if the original dataset was not
too noisy. Otherwise the density values changes too
much after smoothing– then a new lambda value has
to be estimated. The parameters turned out to be a
good choice, because after setting the initial seeds
and starting the region growing process, the disper-
sion of the seeds stops automatically after about 200
iterations which needs about 11.6 seconds. The seg-
mentation result is displayed in red in Figure 6(a).

5. Save mask is again used to save the segmented
paranasal sinuses.

6. Applying transfer functions before the segmenta-
tion process can sometimes lead to better results. The
differences in density can be enhanced by window-
ing the intensity input, which causes in better edge
detection of the desired regions. For segmenting the
frontal sinus, we first apply a transfer function which
enhances the bone compared to the soft tissue. This
leads to the darker appearance of the bone structure
shown in Figure 6(b) and Figure 6(c).

7. Thediffusion-based segmentationof the frontal si-
nus proceeds as before, with the difference that we
have to stop the segmentation process after about
300 iterations by hand. Otherwise the dispersion of
the seeds would continue into the nasal cavity. The
results of this segmentation step are shown in Fig-
ures 6(b) and 6(c).

8. Save Maskto store the segmented frontal sinus.

9. For the final data processing, we load the three
masks obtained in the segmentation steps described
before. Then we update the object IDs, as already
described in Section 3.2, to obtain one volume with

(a) Different transfer functions applied on the
masks of the paranasal sinuses and the frontal
sinus.

(b) Different transfer functions applied on all
segmented object masks.

(c) The back view of the object from Fig-
ure 8(b).

Figure 8: For better visualization purposes, different transfer functions are applied on the different object masks.

the segmented masks. For visualization purposes, we
apply a separate transfer function on each mask. The
final segmentation result can be view in Figures 8(b)
and 8(c).

6 Conclusions

This paper demonstrates that diffusion-based methods are
well suited for the implementation on GPUs. Neverthe-
less, the results show that diffusion is easier applicable for
image smoothing than for segmentation purposes. If the
density values have a high difference in contrast satisfy-
ing results are easily achieved. Then the intensity is high
at the edges, the parameters are easy to estimate and the
segmentation succeeds. But when the edges are weak, it
is often challenging to estimate fitting parameters. When
the dispersion of seeds does not stop, the seeds run out
and flood also other regions. Therefore this segmentation
method is well suited for combining with other methods
like windowing (as described above). In combination, sat-
isfying results can also be achieved with objects with weak
edges. Image smoothing is useful as preprocessing step for
segmentation but also for many other applications. Gener-
ally, the anisotropic diffusion turned out to be more edge
enhancing than the isotropic diffusion (Figure 2). But the
parameterλ and the number of iterations used to reach a
good smoothing result, differ completely depending on the
diffusion equation an the underlying data. So it is difficult
to give a meaningful comparison.

Acknowledgements

I want to thank Katja B̈uhler for the possibility to accom-
plish this internship at VRVis. Special thanks go to my ad-
visor Markus Hadwiger for his permanent encouragement
helping me with my work and for everything I learned dur-
ing the time at VRVis.

References

[1] M. J. Black, G. Sapiro, D. Marimont, and D. Heeger. Ro-
bust anisotropic diffusion.IEEE Trans. on Image Process-
ing, 7(3):421–432, 1998.

[2] J. Castellanos, K. Rohr, T. Tolxdorff, and G. Wagenknecht.
De-noising MRI Data – An Iterative Method for Filter Pa-
rameter Optimization. InProc. Workshop Bildverarbeitung
für die Medizin 2005, pages 40–44, 2005.

[3] Radima Fernando and Mark J. Kligard.The Cg Tutorial.
Addison-Wesley, 3rd edition, 2003.

[4] M.Hadwiger, C.Berger, and H.Hauser. High-quality two-
level volume rendering of segmented data sets on consumer
graphics hardware. InProceedings of IEEE Visualization
2003, pages 301–308, 2003.

[5] P. Perona and J. Malik. Scale-Space and Edge Detection
Using Anisotropic Diffusion. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 12(7), 1990.

[6] Martin Rumpf and Robert Strzodka. Nonlinear Diffusion
in Graphics Hardware. pages 75–84.

[7] Henning Scharsach. Advanced GPU Raycasting. InPro-
ceedings of CESCG 2005, pages 69–76, 2005.

[8] Stefan Schenke, Burkhard C. Wuensche, and Joachim Den-
zler. GPU-Based Volume Segmentation. InProceedings
of IVCNZ 2005, Dunedin, New Zealand, pages 171–176,
2005.

[9] M. Sezgin and B. Sankur. Survey over image thresholding
techniques and quantitative performance evaluation.Jour-
nal of Electronic Imaging, 13:146–165, January 2004.

[10] Anthony Sherbondy, Michael Houston, and Sandy Napel.
Fast volume segmentation with simultaneous visualization
using programmable graphics hardware. InIEEE Visual-
ization, pages 171–176, 2003.

[11] K. Udupa and G. Herman.3D Imaging in Medicine. CRC
Press, 1999.

[12] J. Weickert. Anisotropic Diffusion in Image Processing.
PhD thesis, University Kaiserslautern, 1996.

[13] J. Weickert. A review of nonlinear diffusion filtering.Scale
Space Theories in Computer Vision, pages 3–28, 1997.

