
Hardware Accelerated Rendering of Unprocessed Point Clouds

Claus Scheiblauer

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Vienna / Austria

Abstract

In this paper we present a method for rendering unpro-

cessed point clouds using commodity hardware. A point

cloud is a set of coordinates which are interpreted as points

in space. No assumptions have to be made for the point

clouds, and therefore the point clouds do not have to be

preprocessed. The method includes view-frustum culling

and a level-of-detail (LOD) algorithm which does not need

any additional geometry to the original point cloud. It ren-

ders always faster than the simple usage of vertex buffer

objects (VBOs). Data inside VBOs reside in graphics card

memory and can therefore be accessed very fast by the

GPU.

Keywords: real-time rendering, level-of-detail algo-

rithms, point-based rendering

1 Introduction

Points as rendering primitives are fairly new and were first

mentioned in 1985 by [4]. From then on it took more than

10 years that points were considered as an option as ge-

ometric primitives. The main reason is that many points

are needed to represent models with point clouds, and the

sizes of such point clouds can be hundreds of millions of

points. Only recently the computers have become power-

ful enough to handle such large point clouds. This is a mat-

ter of memory consumption and rendering performance.

Looking at polygon-based models, the geometric details

can be raised to a level where the sizes of the polygons

sometimes even fall below the size of a pixel on screen.

In such cases it would be a waste of resources to use a

polygon mesh and perform the setup process needed for

rendering.

Another example where points can be used for render-

ing is the output of a laser scanner. A scanner measures

the distance of objects on its scanning hemisphere. These

measurements can easily be converted into a point cloud.

When the scanner position and the angle between succes-

sive samples is known, an approximation of the surface of

the scanned object can be computed. It is an approxima-

tion in the sense, that no surface fitting algorithm is applied

to the point cloud, rather the point sizes are adjusted to fill

the spaces between the point samples (see section 5). Point

clouds can be used for different tasks, and it is desirable to

render them as fast as possible.

The rest of the paper is organized as follows. Section 2

gives an overview of current papers related to fast point-

based rendering. Section 3 lists the algorithms that were

implemented from papers. In section 4 our newly devel-

oped algorithms are introduced. Section 5 describes a fake

surface rendering method. Section 6 gives an overview of

the performance of the different algorithms. Finally sec-

tion 7 presents the summary of this paper.

2 Related Work

The QSplat algorithm [5] uses a very compact data struc-

ture for storing and rendering point clouds. The input for

the algorithm are either point samples from a laser scan-

ner, or models consisting of polygons which are then sam-

pled and represented as a point cloud in a preprocessing

step. The layout of the data structure is a bounding sphere

hierarchy. Every child bounding sphere is completely sur-

rounded by its parent. The points within the hierarchy con-

tain averaged informations, like colors and normals, from

their children. So an intermediate node represents all in-

formations from its children. These intermediate nodes

are used during rendering for a LOD mechanism, where

the recursion only steps down a level in the hierarchy if

the projected size of the bounding sphere of the current in-

termediate node covers more of the screen then a certain

threshold, else a splat with the attributes of the current in-

termediate node is drawn. The coordinates and attributes

of the points are quantized, and therefore need only little

space. But this is a trade-off, because the encoding of the

positions require the algorithm to use the CPU for decod-

ing the information during rendering.

The ρ-grids algorithm [2] is a means of rendering point

clouds on mobile devices that do not have a FPU. The ren-

dering pipeline of this algorithm is software based. ρ-grids

are a generalization of an octree. An octree divides a cube

into 2x2x2 equal-sized smaller cubes, whereas a ρ-grid

divides a cube in ρxρxρ equal-sized smaller cubes. The

memory on mobile devices is limited, and the ρ-grids

provide a very memory-efficient data structure for stor-

ing point clouds. In a ρ-grid the positions of points are

implicitly encoded as the filled cells of the ρ-grid. Dur-

ing rendering, the center of each cell is computed in a



clever way, which only needs additions and no multipli-

cations. When a leaf node is reached, a point is drawn at

the center of the leaf cell. A level-of-detail (LOD) algo-

rithm is also included. LOD is used to approximate the

model with fewer primitives when it is viewed from a dis-

tance. During build-up of the hierarchy the inner nodes

receive a color that is the averaged color of their children

cells. During rendering a screen-space bounding rectangle

for each cell is calculated, and if the bounding rectangle is

smaller then a pixel the traversal stops at the current node.

When the current node is an inner node, the point with

the color of the inner node is rendered to the screen. All

other nodes further down the hierarchy don’t have to be

processed. The screen-space bounding rectangle can also

be used for view-frustum culling.

The Sequential Point Trees (SPT) algorithm [1] uses an

octree as hierarchical data structure, which is sequential-

ized so that it can be processed on the GPU. The points

will be visualized as rectangular splats by using non-anti-

aliased OpenGL points. When traversing a hierarchy, it is

implicitly known if an ancestor node has been rendered,

because then the dependent subtree will not be processed.

If the data structure is sequentialized, it is not known if an

ancestor has already been rendered, so the algorithm has

to check for this case as well. The SPT algorithm calcu-

lates an rmin and an rmax for each point, which is the min-

imum and maximum distance of a point to the viewpoint

for which the point will be rendered. These distances can

be checked by a vertex program on the graphics card. If the

SPT is sorted by rmax, then the CPU can cull those nodes

whose rmax value is too small for the current viewpoint, so

that they will not be rendered. It then sends all points from

the first one in the rmax ordered list to the last one that will

not be culled to the GPU. The SPT is sorted by rmax only

once in a preprocessing step. All other computations can

be done directly by the GPU. The SPT is stored as VBO. A

disadvantage of the SPT algorithm is that within an SPT,

no view-frustum culling can be applied. Another disad-

vantage is that most of the time too many points are sent

to the GPU, from 10 to 40 percent. This can be avoided,

as described in section 4.3.

The Layered Point Clouds (LPC) algorithm [3] also uses

a very fast rendering algorithm. The input for the LPC is

a set of evenly sampled points. Then a hierarchy is built

up such that the points at each level are also evenly dis-

tributed. The sum of all levels of this point cloud’s hierar-

chy, starting at the root node, represents the whole model

at a certain level without producing new nodes. Each level

refines the representation from the upper levels. The hier-

archy is divided into an index tree and a point cloud repos-

itory.

The split of the data structure into an index tree and a

point cloud repository makes it possible to influence many

points with one decision, which significantly reduces the

time for traversal. The point clouds are then rendered as

VBOs. For large models, not all point clouds can be stored

on the graphics card. Therefore the algorithm manages a

least recently used cache to minimize the lag when swap-

ping VBOs in and out of graphics card memory.

The algorithms in this paper are limited to models that

fit in the graphics card memory. Out-of-core rendering will

likely be a task for future enhancements.

3 Implemented Algorithms

In the search for a fast point-rendering algorithm we were

looking for algorithms that optimize the rendering speed,

that is the frames per second (FPS), and the throughput,

that is million vertices per second (VPS). VPSs can be

used to check if an algorithm uses the GPU efficiently. On

new graphics boards performance counters can be used to

easily determine the VPS.

Many algorithms were tested with different strengths

and weaknesses. From a software-based rendering

pipeline [2] to a completely hardware-accelerated ap-

proach [1]. The advantage of a software-based rendering

pipeline is that the points can be stored in a compact rep-

resentation which can be decoded during run-time. The

disadvantage is that a software-based rendering pipeline

is CPU-bound, and that the processing power of the GPU

is neglected. The advantage of a completely hardware-

accelerated approach is that the CPU is relieved from pro-

cessing needs, but this can also be a disadvantage in some

situations. Today it is not possible to implement view-

frustum culling for a hierarchy that completely resides in

the graphics card’s memory. For a fast point-rendering al-

gorithm, the CPU is still needed to do some preprocessing

before rendering the points to screen.

3.1 Vertex Buffer Objects

The simplest way when trying to render a point cloud as

fast as possible is to use VBOs. Vertex buffer objects are

OpenGL vertex arrays stored in graphics card memory.

The main drawback of using simple VBOs is that they will

always draw the complete model, independent of the cur-

rent viewpoint. If the model is viewed from some distance,

so that some points will be projected to the same pixel and

therefore the pixel is overdrawn multiple times, the render-

ing will become even slower. This is why a level-of-detail

algorithm is desirable. Also view-frustum culling is not

possible when there is no supporting data structure.

3.2 ρ-grids

We next evaluated the ρ-grids [2] algorithm. Although

the rendering pipeline is software based, the level-of-detail

algorithm is very efficient for viewpoint positions in the

distance. To build up a ρ-grid, the points from the original

point cloud are sorted into the grid. When only one point is

left in a cell, or a user defined recursion depth is reached,

the cell becomes a leaf node. This way the point cloud



is resampled, and the points are represented as the cell-

centers of a hierarchical grid.

We modified the rendering pipeline for our implemen-

tation. In contrast to the original paper, during render-

ing the cell-centers are calculated in object-space coordi-

nates as well as in clip-space coordinates. The clip-space

coordinates are used for view-frustum culling in clip-

space, and the object-space coordinates are used for the

point positions, which are then in turn used for OpenGL

glVertex() calls. The points are visualized as non-

anti-aliased OpenGL points. To check if a cell appears

smaller than a pixel on screen, we project the diameter of

the bounding sphere of a cell to the viewport. If the diam-

eter is smaller then a pixel, the cell’s point is drawn and

recursion stops. Using the diameter is a conservative ap-

proximation, as the diameter is larger then the side of a

cell for most viewing positions. But it is never smaller.

Tests have shown that this method is most effective if

the points of the model are clustered in a region in space,

so that the ρ-grid is densely populated. If the model con-

sists of points that are spread over some region, the ρ-grid

becomes sparsely populated. This leads to an increase in

the number of inner nodes, which can become the domi-

nating part of the hierarchy. The memory requirements are

potentially low, because no point coordinates are stored.

But this could be a disadvantage, because during build up

the model will always be resampled. The center of a cell

only approximates the original coordinates of a point.

3.3 Sequential Point Trees

We also implemented the SPT algorithm [1], but with a

simpler error measurement as the one described in the

original paper. In [1] the error is made up of a perpen-

dicular error, which tries to alleviate errors along the sil-

houette, and a tangential error, that measures how well a

parent cell covers the children cells. For these error mea-

sures a normal vector for each point is required. For our

algorithm we only check if the bounding sphere diameter

of an inner node appears smaller than a pixel from the cur-

rent viewpoint or not. If it appears smaller than a pixel,

the recursion can stop at the inner node. For rendering an

SPT, first an octree is built up in memory. Then the octree

is sequentialized and saved as an array.

An SPT is an ordered sequence of point coordinates,

colors, and octree recursion level indices, which are all

needed for rendering. The ordering is done for increasing

recursion level. So all points that would first be rendered

at level i are tightly packed in this array, and after that all

points that would first be rendered at level i+1 follow. The

hierarchy and the sequentialized version of the octree can

be seen in figure 1. For maximum performance this array

is also saved in a VBO.

The rendering of an SPT is as follows. The SPT al-

gorithm checks down to which level the hierarchy would

have to be traversed, so that a cell would be smaller than

a pixel on screen. This is then the level down to which

Figure 1: The upper figure shows the hierarchy as a tree,

the lower figure is the sequentialized version. When leaf

nodes at a recursion level exist, they will be rendered from

that distance until the viewpoint is very close to the model.

points in the SPT are selected. This means that for view-

point positions that are in some distance of the model, not

all points in the VBO will be rendered. On the GPU a

vertex program is needed which has to decide if a point

should be rendered. The decision is done per point, and it

is checked if it lies within its allowed range. The range can

be derived from the recursion level at which the point lies

within the octree (see figure 2). For this the vertex program

has stored the distances for all recursion levels. The mini-

mum and maximum recursion level for a point are sent to

the vertex program. There is no overlapping distance be-

tween inner points from different recursion levels. This is

due to the simpler error measurement. The indices for the

recursion levels need memory and processing time, and

with some reordering of the data they can even be avoided

(see 4.3).

In figure 1 the red line marks some arbitrary distance of

the viewpoint to the cell that holds the SPT. Within the

orange and green recursion depths the inner points and

leaf points are mixed. All points from the left side of the

sequentialized hierarchy on to the green recursion level

are sent to the GPU. The magenta, blue, and orange in-

ner nodes will be culled by the vertex program. Figure 2

shows the areas in which the inner nodes from the differ-

ent recursion levels will be used. The leaf nodes will be

rendered as soon as the viewpoint crosses the border to

their recursion level area. When the viewpoint continues

to the next recursion level area, the leaf nodes of the pre-

vious recursion level will still be drawn. The red circle

corresponds to the red line in figures 1, 4, and 5.

One deficiency of the SPT algorithm is that it can-

not perform view-frustum culling. Its main advantage is



Figure 2: The black spot is the model as seen from above.

The colored areas around the model denote the recursion

level down to which the traversal goes, when the viewpoint

is in some distance to the model.

the speedup in rendering performance when looking at a

model from some distance. The speedup for viewpoint

positions in the distance is big. But for viewpoint posi-

tions that are within the model, like in a walkthrough, the

overhead of the additionally rendered intermediate points

cannot be neglected.

4 Developed Algorithms

The implemented point rendering algorithms in section 3

all have their limitations. So we tried to develop an al-

gorithm by combining a hierarchy that is traversed by

the CPU to enable view-frustum culling, and to store the

points in graphics card memory, so they can be rendered

as fast as possible.

4.1 Vertex Buffer Objects revisited

For the next algorithm we inserted VBOs with points in

an octree hierarchy. For the algorithm we use the original

points of a point cloud. From the point cloud an octree

hierarchy is built up, where each leaf node holds only one

point, or until a user defined depth is reached. This octree

is saved to harddisk. For rendering, the octree is again

built up in memory, but all points that are in leaf nodes

are put in VBOs. When during build-up of the rendering

hierarchy the number of leaf nodes below an inner node is

within a user defined threshold, then all points that are in

the leaf nodes are copied to the VBO. The inner nodes for

this part of the hierarchy are ignored. In figure 3 a subtree

of an octree hierarchy is shown. If the maximum size of

a VBO is 20 points, then branches a) to d) are in different

VBOs. The nodes at recursion depth 1 are the VBO nodes

of the octree hierarchy, as they hold the informations for

the VBOs. At recursion depth 0 the number of leaf points

is greater than 20. At recursion depth 1 the number of leaf

points is smaller than 20 for all nodes.

The traversal during rendering now is as follows. The

hierarchy is the same as in the ρ-grid algorithm (see 3.2).

When a leaf node is reached, and it lies within the view-

frustum, the VBO is rendered with all points that it con-

tains. The main disadvantage of this algorithm is that the

leaf nodes are rendered too early. The number of points

that are allowed in one VBO can not be set arbitrarily

low, because rendering a VBO includes an overhead on

the CPU for setup. The number of the VBOs has to be

limited. Therefore the size of the octree cell that a VBO

represents is rather big and will be larger than a pixel on

screen, even if the viewpoint is still far away. So although

the algorithm does contain a level-of-detail part, it is not

efficient. Because of view-frustum culling, this algorithm

is faster in some situations than the simple usage of VBOs

(see 6).

4.2 Sequential Point Trees revisited

So next we tried SPTs instead of simple VBOs in the hi-

erarchy to be able to use view-frustum culling combined

with SPTs. Even a small SPT with only a few levels of the

octree hierarchy has an performance improvement over a

simple VBO. The hierarchy is built up and saved on the

harddisk like in the previous section 4.1. When building

up the hierarchy in memory for rendering, a whole subtree

of the octree on disc is copied to a SPT, including the in-

ner nodes. The user can define the maximum number of

points that are allowed within an SPT. Compared to figure

3, all nodes of the shaded branches are used for the four

Figure 3: A subtree of an octree. The four shaded branches

of the subtree (a-d) are stored in four different VBOs. On

the right side the recursion depth of the subtree is noted.



different SPTs.

The traversal during rendering is the same as in sec-

tion 4.1, but when a node containing an SPT is reached,

the SPT algorithm is performed. Therefore not all points

have to be rendered when the viewpoint is in some distance

to the model.

We observed improved performance compared to the

algorithm of section 3.3. The view-frustum culling al-

lows for fast rendering when the viewpoint lies within the

model. In some situations, when the viewpoint is in the

middle of the model, the algorithm with VBOs inserted

into the hierarchy is faster. This is possible because the

VBOs contain less points as when the model is rendered

with SPTs in the hierarchy.

4.3 Enhanced Sequential Point Trees

The VBOs included in a hierarchy are fast for viewpoints

that lie within a model, as it is used in a walkthrough, and

SPTs included in a hierarchy are fast for viewpoints that lie

in a distance to a model, as it is useful when approaching a

model from the outside. Our next algorithm combines the

advantages of these two methods. An effect of the combi-

nation is that the memory requirements can be reduced.

The original SPTs mix up the inner nodes and leaf nodes

of the built up octree in one VBO (see figure 1). The differ-

ence between inner nodes and leaf nodes is that the inner

nodes are only rendered for a part of the distance when

approaching a model (see figure 2). When inner nodes

and leaf nodes are combined in one VBO, a vertex pro-

gram is needed to decide if the inner nodes should be ren-

dered or not. Leaf nodes will never be culled by the vertex

program. To speed up processing during rendering, inner

Figure 4: For the enhanced SPTs the inner nodes and the

leaf nodes are separated into two different VBOs.

nodes and leaf nodes of one SPT can be copied to two dif-

ferent VBOs. The points in both VBOs are still ordered

by increasing recursion level. With this rearrangement it

is now possible to make the decision which inner nodes

should be rendered completely on the CPU.

Since the error measurement in the original SPT also

pays attention to the curvature of the surface, the render-

ing distances of the inner nodes are not equal for cells of

the hierarchy. With the simpler error measurement, the

inner nodes of one level are rendered exactly for the same

distance. There is no overlapping distance necessary when

the viewpoint moves between the distances where differ-

ent recursion depths of inner nodes are used. In figure 2

the recursion level is changed exactly on the borders, if the

viewpoint moves towards or from the model.

The rendering is a little bit more complicated then be-

fore. The inner nodes of the hierarchy are still calculated

like in the ρ-grid algorithm (see 3.2). When a leaf node is

reached, and it lies within the view-frustum, the decision

has to be made whether the VBO with the inner nodes is

needed at all. If it is needed, the recursion level is cal-

culated down to which the hierarchy would have been tra-

versed, and the inner nodes for only this recursion level are

selected. This situation is shown in figure 4. The distance

of the viewpoint to the model is such that the level with the

green inner nodes is selected from the VBO #1. From the

VBO #2 all leaf points up to the green level are rendered.

If no inner points are needed, only points of the VBO with

the leaf nodes are rendered. Due to the rearrangement, no

vertex program is needed, which also means that no mini-

mum and maximum indices for each point is required. The

selection of the inner nodes is done on the CPU. The num-

ber of the rendered points is always lower or equal to the

number of the original points.

The presented enhancements cut the memory require-

ments of the SPT by 20 percent, which means that larger

models can be visualized (see section 6).

4.4 Memory Optimized SPTs

The enhanced SPTs still have one deficiency with respect

to the memory requirements, and that are the additionally

created inner nodes. The effect of them is that the model

will look from the distance as if it was filtered by a low

pass filter. This is similar to mipmapping without interpo-

lation between mipmap levels. The inner nodes are also

used for the level-of-detail algorithm. An inner node is

rendered when the cell is smaller than a pixel on screen.

The idea for the memory optimized sequential point

trees is to use some of the original points as the points

for the inner nodes. For this it is possible to use any point

of an octree cell, because if the cell appears smaller than a

pixel on the screen, then any point that lies within the oc-

tree cell will be rendered at the same position. For the pre-

sented algorithm an arbitrary choice is made, and the point

that is closest to the center of the cell is chosen as the point

for an inner cell. The selection is done during the initial



Figure 5: Memory optimized SPTs use for the inner nodes

and for the leaf nodes points from the original model.

Once the distance for a recursion level is passed, the points

from the inner nodes and from the leaf nodes will always

be rendered.

build up of the octree from the unorganized point cloud.

For the initial build up one point after the other is inserted

into the octree. If a point is closer to the center of a cell

than the point that is currently used as an inner point, then

the points are swapped, and the former inner point is now

used as the point that has to be inserted to the octree. It

is sufficient to continue at the cell where the points were

swapped, because the former inner point will certainly be

a part of that cell.

The rendering hierarchy consists of an octree with

VBOs as leaf nodes, which contain a sequentialized ver-

sion of the subtree they represent. Because the original

points are used for the inner nodes, the hierarchy uses 50

percent less memory than the original SPT algorithm, and

35 percent less than the enhanced SPTs. This can be an

advantage for very large models (see 6).

The rendering is simplified compared to the algorithms

before. Because there are no additionally created points,

the inner points of the outer octree runtime structure can

also be collected in a VBO and are always drawn to screen.

This is reasonable, because the total number of inner nodes

is only a few thousand, even for very large models (see 6).

Therefore it is faster to always draw a VBO then to per-

form view-frustum culling for each point and render it be-

tween a glBegin() ... glEnd() clause. The oc-

tree hierarchy is traversed nevertheless, and if a cell ap-

pears smaller then a pixel on screen, the recursion simply

stops. When a leaf node is reached, and it lies within the

view-frustum, the SPT algorithm is performed, and here

again no vertex program is needed. The algorithm is the

same as rendering only the ordered leaf points VBO for the

enhanced SPTs (see figure 5). When looking at figure 3,

then all nodes would contain original points. The node at

recursion depth 0 is part of the unordered VBO that will al-

ways be rendered if the model is within the view-frustum.

The memory requirements are comparable to the algo-

rithm with VBOs inserted into the octree. But in contrast

to this former mentioned algorithm, the level-of-detail part

works efficiently.

5 Dynamic Point Size

When a range scan is used as the original point cloud, then

the surfaces of objects in the scan can be approximated. It

is not a high-quality approximation, but it performs quite

fast. From a range scan the angle between two consec-

utive samples is known, and a point with a size that is

large enough to close the space between two samples can

be rendered. The point size is calculated for each SPT in

the hierarchy, using the sample that is farthest away from

the scanning position within the SPT. OpenGL needs the

screen-space point size, and this one is derived from the

object-space point size during rendering. The calculation

during rendering is not optimal for the performance, but

adaptive to viewport resizing.

6 Results

The performance tests are a bit complicated, because the

algorithms show their characteristics only if different sit-

uations are examined. As a typical model a scan from

the Stephansdom project is chosen for the performance

tests. In figure 6 the outer border of the model, as seen

from above, is visualized as black circle. Within this

circle the scanner has taken point samples. The differ-

ent positions where the performance measurements were

Figure 6: The different positions relative to the model,

where the performance measurements were taken.



Figure 7: The model as seen from the different measurement positions. On the left side a) shows the model from a

distance. In the middle b) shows the model from just within the border of the model. On the right side c) shows the model

as seen from the center. The viewing direction for all positions is the same.

taken are marked as blue spots. The red arrows symbolize

the viewing direction. The viewing direction is constant

throughout the measurement process. The three different

viewing positions as seen in the OpenGL viewport are de-

picted in figure 7. The viewport has a size of 640x640

pixels. It shows the model rendered with the memory opti-

mized SPTs (see 4.4). The visual quality of all algorithms

is nearly the same, only when the model is in great dis-

tance to the viewpoint then noticeable differences appear.

For the performance measurements we used a computer

with a 3,2 GHz Intel Pentium 4 processor and a NVIDIA

6800 GTO graphics board. The graphics board incorpo-

rates 5 vertex shader units. This is just enough so that the

vertex program for the SPTs is not the bottleneck in the

rendering pipeline.

For maximum throughput it was necessary to optimize

the API usage of OpenGL. The vertex program uses the

ARBVP1 profile, which is the simplest profile, but the ver-

tex program compiles to less instructions as when using a

more complex profile and executes faster. Another issue

was the data layout for the VBOs. A VBO is rendered

most efficiently when the number of bytes for the attributes

of one vertex is 16 or 32. This means when 3 attributes

like vertex coordinates, color and recursion level indices

are needed, then vertex coordinates and recursion level in-

Algorithm Distance Border Center

OneVBO 15 17 18

OneSPT 239 12 12

VBOsR 15 18 228

SPTsR 286 21 160

ESPTs 378 31 240

MOSPTs 300 28 228

Table 1: Frames per second for the different algorithms at

different positions.

Algorithm Distance Border Center

OneVBO 6609K 6609K 6609K

OneSPT 456K 10021K 10021K

VBOsR 6522K 6236K 480K

SPTsR 363K 5357K 696K

ESPTs 268K 3683K 454K

MOSPTs 356K 4065K 481K

Table 2: Numbers of points for the different algorithms at

different positions. K stands for thousand.

dices are stored as one intertwined array, which needs 12

bytes for the coordinates and 4 bytes for two short inte-

gers for the indices. The color with 4 bytes is stored as an

extra array. The last issue was the binding overhead for a

VBO on the CPU. The solution to this is to create one large

VBO and store the data arrays at different offsets. The off-

sets are aligned to 32 byte, because if they are not aligned

a performance penalty occurs when reading the data for

rendering.

We compare the algorithms of sections

3.1 (“OneVBO”), 3.3 (“OneSPT”), 4.1 (“VBOsR”),

4.2 (“SPTsR”), 4.3 (“ESPTs”), and 4.4 (“MOSPTs”). The

OneVBO algorithm can be seen as the benchmark which

we try to beat with our developed algorithms. The VBO

size is limited to 10000 points for all algorithms except

for the OneVBO and the OneSPT, which use one VBO

for all points. The point size for all measurements is 1.

Table 1 shows that the OneSPT performs very good

for viewpoints in the distance, but very bad for view-

points within the model, because then all points that are

contained in the SPT have to be processed (see table 2).

This behavior can also be seen with the SPTsR algo-

rithm, which needs more points and renders slower than

the VBOsR for viewpoints in the center of the model. The

MOSPTs and ESPTs algorithms are the fastest for any



Algorithm Distance Border Center

MOSPTs + dps enabled 167 27 224

MOSPTs + dps filling 167 27 214

Table 3: Frames per second when dynamic point size is

enabled without producing larger points (upper row), and

when dynamic point size is used to fill the spaces between

neighboring points (lower row).

viewpoint. The MOSPTs algorithm seems to be a less op-

timal method than using artificially created points for the

inner nodes as the ESPTs algorithm does.

The VPS for all algorithms is nearly the same, and close

to the theoretical maximum of the graphics board. Ac-

cording to NVIDIA the graphics board has a theoretical

maximum of 116 million VPS, and we observed VPS rates

from 113 to 114 for all algorithms. The VPS is measured

at the border position, because there the most points are

rendered, which hopefully minimizes the impact of the hi-

erarchy traversal.

Table 3 shows the difference in the FPS when using dy-

namic point size (DPS). In the center the difference be-

tween enabled DPS, which renders points with size 1, and

DPS that fills the spaces between the points is 5 percent,

which is due to the higher fill rate.

Figure 8 gives a comparison of the total number of

points that reside in the hierarchy of the different algo-

rithms, and the memory requirements for the hierarchy on

the graphics board. The algorithms are ordered by the min-

imum FPS that an algorithm has achieved in the compar-

ison, so this is some kind of classification. Only the MO-

SPTs and the OneVBO do not need any more points, than

in the original model are. For the VBOsR the inner nodes

of the octree hierarchy require additionally created points.

There are 500 of them.

Figure 8: Algorithms ordered by minimum FPS. Maxi-

mum minimal FPS equals 31, maximum number of points

equals 10021473, maximum memory requirements equals

202 million bytes. The bottom line is at zero.

At last a very large model, which does not fit into graph-

ics card memory, was tested. It contains about 28M points.

Only some 2000 points are not part of an ordered VBO and

reside within the octree hierarchy. The model uses point

samples from 10 different scanning positions. Points far

away from the model were cut by hand, and the density of

the points was reduced, so the point cloud for this model

is preprocessed. For the test only the memory optimized

SPTs were used. With this algorithm it is possible to main-

tain a throughput of 80M VPS, but this also indicates, that

points needed to be fetched from main memory over the

PCI-E bus. At some positions about 15M points are visi-

ble, which reduces the FPS to 5.

7 Conclusions

In this paper we have presented a method for rendering un-

processed point clouds, using only the points of the origi-

nal model. The method is fast for viewpoints from the dis-

tance and for viewpoints within the model. We compared

the algorithm to different implementations of the SPT al-

gorithm. The new method is not the fastest, but memory

efficient. Future enhancements to the algorithm could in-

volve an out-of-core part, because in this implementation

the algorithm is not well suited for very large models.

References

[1] Carsten Dachsbacher, Christian Vogelgsang, and Marc

Stamminger. Sequential point trees. In Jessica Hod-

gins and John C. Hart, editors, Proceedings of ACM

SIGGRAPH 2003, volume 22(3) of ACM Transactions

on Graphics, pages 657–662. ACM Press, 2003.

[2] Florent Duguet and George Drettakis. Flexible point-

based rendering on mobile devices. Computer Graph-

ics and Applications, 24(4):57–63, July-Aug 2004.

[3] Enrico Gobbetti and Fabio Marton. Layered point

clouds. In Marc Alexa, Markus Gross, Hanspeter Pfis-

ter, and Szymon Rusinkiewicz, editors, Eurograph-

ics Symposium on Point Based Graphics, pages 113–

120, 227, Aire-la-Ville, Switzerland, June 2004. Eu-

rographics Association. Conference held in Zurich,

Switzerland, June 2–5, 2004.

[4] Mark Levoy and Turner Whitted. The use of points

as a display primitive. Technical Report TR 85-022,

1985. The University of North Carolina at Chapel Hill,

Department of Computer Science.

[5] Szymon Rusinkiewicz and Marc Levoy. QSplat:

A multiresolution point rendering system for large

meshes. In Kurt Akeley, editor, Siggraph 2000, Com-

puter Graphics Proceedings, Annual Conference Se-

ries, pages 343–352. ACM Press / ACM SIGGRAPH

/ Addison Wesley Longman, 2000.


