
Exact and heuristic path planning methods
for a virtual environment

Petr Brož1,2

1 pebro@students.zcu.cz
2 This project is supported by the Ministry of Education
 of the Czech Republic – project No. LC 06008

Department of Computer Science and Engineering

University of West Bohemia
Pilsen, Czech Republic

Abstract
Path planning belongs to the best-known and well
explored problems in computer science. However,
in today’s real-time and dynamic applications, such
as virtual reality, existing algorithms for static
environment are considerably insufficient and,
surprisingly, almost no attention is given to
techniques for dynamic graphs. This paper
introduces two methods to plan a path in an
undirected graph with evaluated nodes whose value
can vary in time: a simple modification of
Dijkstra’s algorithm to find an optimal path while
processing considerably less nodes than the
standard Dijkstra’s algorithm and a heuristic
method to find a suboptimal path while processing
even smaller amount of nodes. The heuristic was
developed for a virtual reality path planning
application but its use is more general.

Keywords: Path planning, Dijkstra, Virtual reality,
Computer graphics

1 Introduction
Path planning belongs to the basic problems not
only in the computer science. For that reason, there
were developed many methods for determining a
path that satisfies one or more optimality criteria
according to a utilizing application. However, most
of these path planning methods assume that the
input structure, in most cases an evaluated graph,
does not change its topology or rating. Nowadays,
in time of the virtual and augmented reality, many
dynamic applications arise and surprisingly, almost
no attention was given to algorithms for the
dynamic path planning, namely for fast, suboptimal
solutions.

To follow requirements and context of our
currently developed path planning system for the
virtual reality, we focus on a slightly different

definition of a dynamic graph. The overall system
uses a 3D raster and an adaptive spatial structure
(Figure 1) with rated nodes to enable finding a
suboptimal path with the maximal clearance among
all obstacles and moving threats. Therefore, we
understand a dynamic graph as a graph with
varying evaluation of the nodes. As for our virtual
reality application the speed is more critical than
optimality, we concentrate on suboptimal approach.

Figure 1: A visualization of data structures in our
related VR project

In this paper, we present a modified Dijkstra’s

algorithm to plan an optimal path and a heuristic
method to plan a suboptimal path in a dynamic
graph without using any particular data structure.
Our simple heuristic uses path information from the
last graph traversal and provides suboptimal results
in a notably shorter time than repeated optimal path
computation. We compare this heuristic with the
optimum on a dynamic graph with different ways of
behavior.

Section 2 describes the best known techniques
for the static path planning and for the graphs with
the possibility to insert or remove an edge. Section
3 presents the proposed algorithms and section 4
outlines experimentally gained characteristics and
results. Section 5 then compares the presented
algorithms with other techniques.

2 State of the art
Path planning represents a general task of finding
an optimal path between two given spots in an
abstract environment representation, in most cases
in an undirected graph with weighted nodes or
edges. Depending on a utilizing application, an
objective of this task can be, e.g., the shortest path,
the fastest path or the cheapest path.

First, we shortly summarize the standard
algorithms for planning an optimal path in a static
graph. The best known algorithm, the so called
breadth-first search [3], finds shortest paths in any
graph with unit weight of all edges with the overall
running time O(|V|+|E|) where |V| means number of
the vertices and |E| represents number of the edges
in the graph. Dijkstra’s algorithm [4] finds optimal
paths in a more general graph whose edge lengths
are positive integers with the running time
O((|V|+|E|).log|V|). A simplified version of this
technique is shown in an Algorithm 1 – distance
property defines an integer distance between a
current node and a starting node; previous
property refers to a preceding node on the presently
found path.

Finally, the shortest paths in a graph whose
edges can be evaluated even with negative number
can be found with the Bellman-Ford algorithm [3]
with the time complexity O(|V|.|E|).

Next, we survey the algorithms for a graph with
the possibility to remove or insert an edge. There
are only few methods for planning an optimal path
in such a graph [1, 4, 7, 9]. Most of these methods
solve the so-called all pairs shortest path problem
and are based on a special data structure. For a
graph with unit edge costs, Ausiello and Italiano
presented a data structure [1] which is able to find
the shortest path between every pair in linear time
O(|E|). However, maintaining the data structure
requires the total time O(|V|3.log|V|) in the worst
case of insertion of at most O(|V|2) edges. Similar
approaches [4, 5, 6, 11, 12] were presented to solve
the all pairs shortest path problem, again by using a
special data structure.

Algorithm 1: A simplified graph processing using

the Dijkstra’s algorithm

3 The proposed methods
The presented methods come out from the standard
path planning algorithms for static graphs. The
heuristic is adapted to find a suboptimal path
without using any special data structure in dynamic
graphs with varying evaluation of their nodes. The
input graph can have nodes of different degree with
a positive integer evaluation which may vary in
time. The evaluation changes may be randomly
scattered over the whole graph but in the context of
virtual reality applications, we expect the changes
to be concentrated according to the movement of
„threatening“ avatars.

Our first technique was inspired by [10] and
assumes that after the evaluation change, the
existing path is affected mainly by the „near
changes“ of the graph evaluation. In addition, it
assumes that with each iteration, the starting
position – actually the momentary position of a
moving avatar – gets nearer to the fixed destination
point. Therefore, we use the standard Dijkstra’s
algorithm to find the path in the reverse direction –
from the destination node to the current starting
node. Let us denote this approach Backward
Dijkstra. In comparison with the forward direction,
fewer nodes are visited. Figure 2 shows the

Input: the graph G(V, E),
the starting node S,

the target node T

Output: evaluation of nodes in G

Auxiliary: P - set of complet. nodes

 U,W – auxiliary nodes

• P empty set

• For each node in V

o Set distance to infinity

o Set previous to null

• Set S.distance to 0

• Insert S to P

• While not (P contains all nodes)

o From V, find an edge between U∈P and

W∉P such that U.distance+W.weight is

minimal

o Set value of the W.distance to

U.distance+W.weight

o Set W.previous to U

o Insert W to P

o If W is the target node, break the cycle

algorithm planning a path from the starting node
S to the destination node T at the beginning and
after two iterations – the nodes visited during the
graph traversal are highlighted with gray color.

Figure 2: An example of path planning using the
Backward Dijkstra’s algorithm

Our second method uses the strategy that

preserves as much of the original path as possible
instead of finding the new optimal path after each
change in the graph. It updates the last found path
only in the nodes with changed evaluation. This
resulting path obviously does not satisfy the
optimality criteria. However, the mentioned virtual
reality project and similar applications insist on the
overall speed rather than on the path optimality. We
call this approach Gaps filling method because of
its corresponding behavior. In Algorithm 2, we
show how the Gaps filling method refreshes the last
found path. It can be seen that the technique stores
a list of nodes on the presently found path together
with their last known evaluations. In next iteration,
it preserves the nodes with equal or better
evaluation and spans the worse nodes with a new
subpath. Figure 3 shows an original path between
nodes S and T together with a new subpath through
nodes A, B after the original path was disconnected
in the middle node. In case that all nodes of the
previous path have worse evaluation, a complete
path from the starting node to the target node is
found.

Algorithm 2: A graph processing using the gaps
filling heuristic

Figure 3: An example of path planning using the
Gaps filling method

4 Experiments & results
For the purposes of comparison of the presented
algorithms, a simple C# application was prepared to
examine the behavior of the standard techniques
and the proposed methods applied on an identical
graph. The application was designed to enable easy
extraction of the results and properties of each
method. Figure 4 shows a screenshot of the
application with paths generated by the tested
algorithms and 3 additional windows showing the
trends of the particular methods.

Input: the graph G(V, E),
 the last found path W,

Output: the new suboptimal path W

Auxiliary: N – set of new nodes

• Move the starting node from W to N

• For each node X in N

o If X has equal or better evaluation or if it is

the target point, find a new path from

last(N) to X and insert the new nodes to N

For now, the proposed techniques have not yet
been used in the related VR project. However, we
test these methods on similar datasets – we use
graphs defined by an adaptive spatial structure
similar to an octree with a weight value in each
vertex of the smallest undivided areas.

Figure 4: A screenshot of the testing application
with 3 additional windows showing the trends of

the particular methods

Again for the purposes of the virtual reality
project, the testing data were a dense and nearly
regular graph with an adjustable probability of the
connection of adjacent nodes. Here, the 100%
probability means that each node is connected with
all neighbouring nodes, e.g., with 8 nodes within
the scope of our testing planar graph. The dynamics
of the graph is simulated by enabling to adjust the
evaluation change probability for its nodes or to
handle the evaluation changes directly through the
user input. The compared path planning approaches
were measured for the following cases:

• A graph with 32x32 nodes, connection
probability 75% and random changes of
the nodes evaluation with different
probabilities (25%, 50% and 75%).

• A graph with 32x32 nodes, connection
probability 75% and mouse driven changes
of the nodes evaluation. Weight of each
node was calculated according to its
proximity to the mouse cursor.

The first case should provide a general idea

about behavior of the methods, the second one
simulates moving threats in a VR application.

As representative qualities of the examined
techniques, the following properties were
measured:

• An overall path weight – a sum of the
weights of all nodes on the found path. An
optimal path represents a path with the
lowest overall weight.

• An amount of totally processed nodes – an

amount of graph nodes visited by the
particular graph traversal.

In order to concisely describe the suboptimal

results of the proposed path planning approaches,
an α-optimality term is used. The value α ≥ 1 stands
for a ratio between suboptimal and optimal results.
Following this definition, a 1,25-optimal path is
1,25 times longer or slower (according to the
definition of the optimality) than the optimal path.

Random changes

For a constant probability of the evaluation
change 50%, the proposed Gaps filling method
finds a path that is 1,1-optimal on average
(1,4-optimal in the worst case) and processes one
third of nodes processed by the standard Dijkstra’s
algorithm. Figure 5 displays the overall weights of
the paths found by the examined path planning
methods. It can be seen that the results for the
standard Dijkstra’s algorithm and for the Backward
Dijkstra are identical. Figure 6 then shows the
amount of visited nodes.

Figure 5: Overall path weight during the program
run for each presented method

Figure 6: Total number of visited nodes during the
program run for each presented method

It can be seen that Backward Dijkstra often

visits more nodes than the standard Dijkstra’s
algorithm which was a bit surprising result for us at
first but the explanation is simple – total number of
visited nodes obviously depends on the initial node
for the graph traversal. The probability of the
evaluation change highly affects the results of the
presented heuristic algorithm. For higher
probabilities, more nodes can deteriorate their
evaluation and the last found path has to be
recomputed in more segments but the suboptimality
is for that reason closer to the optimum.

Change
probability [%]

Processed
nodes [%]

Overall path
weight [%]

25 13,70 126,26
50 37,75 115,76
75 85,67 108,67

Table 1: Different properties of the Gaps filling for

the particular change probabilities

Another important factor for the quality of the
Gaps filling heuristic is the amount of nodes in the
graph. The higher is the amount of nodes the higher

savings can be achieved by this method. On the
other hand, there is a bigger chance of rising of a
new optimal path that will not be registered by the
presented Gaps filling method.

Driven changes

During the mouse driven changes in the graph
evaluation, the gaps filling method finds a
1,3-optimal path on average and traverses one sixth
of nodes processed by the Dijkstra’s algorithm.
Figure 7 shows an example of the testing
application based on a user interaction to change
the evaluation of graph nodes.

Figure 7: An example of the graph with mouse
driven evaluation of its nodes

Figure 8 shows the overall path weights during

the program run. Again, the results for the standard
Dijkstra’s algorithm and the Backward Dijkstra are
identical. Figure 9 displays the totally visited nodes
during the program run for each presented method.
The results presented in figures 8 and 9 are
measured for specific evaluation changes – all
nodes in the graph are continuously evaluated
according to their proximity to a potential point
which is moving from the bottom-left corner to the
upper-right corner of the area covered by the graph.

Figure 8: Overall path weight during the program
run for each presented method

Figure 9: Totally visited nodes during the program
run for each presented method

To show the difference of the Backward

Dijkstra’s algorithm, we offer results of the
measured techniques in case of a moving starting
point. In each iteration, the starting node of the path
moves to its successor – it continuously approaches
the target node. Figure 10 again shows the overall
path weight in about 90 iterations. It can be seen
that the results of the standard Dijkstra’s algorithm
and the backward Dijkstra’s algorithm are equal
while the weight of a path found by the gaps filling
approach stays a bit higher. Figure 11 then shows a
number of processed nodes during the same
measurement. There is a noticeable difference
between the amount of nodes processed by the
standard Dijkstra’s algorithm and the backward
Dijkstra’s algorithm. In this example case, the
backward approach finds an optimal path by
visiting 55% of nodes processed by the standard
technique and the gaps filling approach finds a
1,1-optimal path by processing 25% of nodes.

Figure 10: Overall path weight for the case of
moving starting point

Figure 11: Visited nodes for the case of a moving
starting point

5 Conclusion & future work
The Backward Dijkstra’s algorithm provides better
results when used for planning an optimal path
from a moving initial position. In these cases, it can
be a suitable alternative to the standard Dijkstra’s
algorithm.

The proposed Gaps filling approach provides
1,1-optimal results on the average for the graphs
with randomly changing evaluation and 1,3-optimal
results on the average for the user driven changes in
the graph. When applied on an adaptive mesh from
the mentioned virtual reality project, the described
approach found a 1,3-optimal path on the average
by visiting 26% of the nodes processed by the
standard Dijkstra’s algorithm.

Due to the local updates of the last found path,
the presented method does not perceive a possibly
much better path, which may arise far from the last
found path. A possible case may occur if there is an
evaluation improvement around the last found path
– the gaps filling method responds only to an
aggravation of the nodes evaluation and it can miss
the better path as well. However in the virtual
reality, the behavior of the avatars tends to stay on

the previously found path rather than walk around
in a completely new way.

In the future, we will incorporate the proposed
approaches into the mentioned VR system [2] and
we would also like to apply these methods in the
project related to searching and visualisation of
paths in chemicals (Masaryk University, Brno,
Czech Republic). Figure 12 – a screenshot from this
project [8] – shows a tunnel in protein molecules
with a path found by the standard Dijkstra’s
algorithm.

Figure 12: An example of a tunnel in protein
molecules [8]

Acknowledgements
I would like to thank to Dr. I. Kolingerová from the
University of West Bohemia, Pilsen,
Czech Republic, for supervision and help with the
paper preparation. I would also like to thank to
Prof. Z. Ryjáček and Dr. F. Vávra from the same
university for their consultations and valuable
suggestions.

References
[1] G. Ausiello, G. F. Italiano. Incremental

algorithms for minimal length paths.
J. Algorithms, 1990.

[2] P. Brož. Path planning in combined 3D grid
and graph environment. Proc. Central
European Seminar on Computer Graphics,
2006.

[3] S. Dasgupta, C. H. Papadimitriou, U. V.
Vazirani. Paths in graphs
(http://www.cse.ucsd.edu/users/dasgupta/mcgr
awhill/chap4.pdf).

[4] S. Even, H. Gazit. Updating distances in
dynamic graphs. Methods of Operations
Research, 1985.

[5] G. F. Italiano. Amortized efficiency of a path
retrieval data structure. Theor. Comput.
Science, 1986.

[6] G. F. Italiano. Finding paths and deleting
edges in DAG. Inform. Proc. Letter, 1988.

[7] P. N. Klein, S. Sairam. Fully dynamic
approximation schemes for shortest path
problems in planar graphs. Proc. 3rd Worksh.
Algorithms and Data Structures, 1996.

[8] P. Medek, P. Beneš, J. Sochor. Computation of
tunnels in protein molecules using Delaunay
triangulation. Proc. Winter School of
Computer Graphics, 2007.

[9] H. Rohnert. A dynamization of the all pairs
least cost path problem. Proc. 2nd Annual
Symp. on Theoretical Aspects of Comp.
Science, 1985.

[10] Z. Ryjáček. Personal Communication, 2006.

[11] P. M. Spira, A. Pan. On finding and updating
spanning trees and shortest paths. SIAM,
J. Comput., 1975.

[12] R. E. Tarjan. Depth-first search and linear
graph algorithms. SIAM, J. Comput., 1972.

