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Abstract 
Path planning belongs to the best-known and well 
explored problems in computer science. However, 
in today’s real-time and dynamic applications, such 
as virtual reality, existing algorithms for static 
environment are considerably insufficient and, 
surprisingly, almost no attention is given to 
techniques for dynamic graphs. This paper 
introduces two methods to plan a path in an 
undirected graph with evaluated nodes whose value 
can vary in time: a simple modification of 
Dijkstra’s algorithm to find an optimal path while 
processing considerably less nodes than the 
standard Dijkstra’s algorithm and a heuristic 
method to find a suboptimal path while processing 
even smaller amount of nodes. The heuristic was 
developed for a virtual reality path planning 
application but its use is more general. 
 
Keywords: Path planning, Dijkstra, Virtual reality, 
Computer graphics 

1 Introduction 
Path planning belongs to the basic problems not 
only in the computer science. For that reason, there 
were developed many methods for determining a 
path that satisfies one or more optimality criteria 
according to a utilizing application. However, most 
of these path planning methods assume that the 
input structure, in most cases an evaluated graph, 
does not change its topology or rating. Nowadays, 
in time of the virtual and augmented reality, many 
dynamic applications arise and surprisingly, almost 
no attention was given to algorithms for the 
dynamic path planning, namely for fast, suboptimal 
solutions. 

To follow requirements and context of our 
currently developed path planning system for the 
virtual reality, we focus on a slightly different 

definition of a dynamic graph. The overall system 
uses a 3D raster and an adaptive spatial structure 
(Figure 1) with rated nodes to enable finding a 
suboptimal path with the maximal clearance among 
all obstacles and moving threats. Therefore, we 
understand a dynamic graph as a graph with 
varying evaluation of the nodes. As for our virtual 
reality application the speed is more critical than 
optimality, we concentrate on suboptimal approach. 
 

 
 

Figure 1: A visualization of data structures in our 
related VR project 

 
In this paper, we present a modified Dijkstra’s 

algorithm to plan an optimal path and a heuristic 
method to plan a suboptimal path in a dynamic 
graph without using any particular data structure. 
Our simple heuristic uses path information from the 
last graph traversal and provides suboptimal results 
in a notably shorter time than repeated optimal path 
computation. We compare this heuristic with the 
optimum on a dynamic graph with different ways of 
behavior. 



Section 2 describes the best known techniques 
for the static path planning and for the graphs with 
the possibility to insert or remove an edge. Section 
3 presents the proposed algorithms and section 4 
outlines experimentally gained characteristics and 
results. Section 5 then compares the presented 
algorithms with other techniques. 

2 State of the art 
Path planning represents a general task of finding 
an optimal path between two given spots in an 
abstract environment representation, in most cases 
in an undirected graph with weighted nodes or 
edges. Depending on a utilizing application, an 
objective of this task can be, e.g., the shortest path, 
the fastest path or the cheapest path. 

First, we shortly summarize the standard 
algorithms for planning an optimal path in a static 
graph. The best known algorithm, the so called 
breadth-first search [3], finds shortest paths in any 
graph with unit weight of all edges with the overall 
running time O(|V|+|E|) where |V| means number of 
the vertices and |E| represents number of the edges 
in the graph. Dijkstra’s algorithm [4] finds optimal 
paths in a more general graph whose edge lengths 
are positive integers with the running time 
O((|V|+|E|).log|V|). A simplified version of this 
technique is shown in an Algorithm 1 – distance 
property defines an integer distance between a 
current node and a starting node; previous 
property refers to a preceding node on the presently 
found path. 

Finally, the shortest paths in a graph whose 
edges can be evaluated even with negative number 
can be found with the Bellman-Ford algorithm [3] 
with the time complexity O(|V|.|E|). 

Next, we survey the algorithms for a graph with 
the possibility to remove or insert an edge. There 
are only few methods for planning an optimal path 
in such a graph [1, 4, 7, 9]. Most of these methods 
solve the so-called all pairs shortest path problem 
and are based on a special data structure. For a 
graph with unit edge costs, Ausiello and Italiano 
presented a data structure [1] which is able to find 
the shortest path between every pair in linear time 
O(|E|). However, maintaining the data structure 
requires the total time O(|V|3.log|V|) in the worst 
case of insertion of at most O(|V|2) edges. Similar 
approaches [4, 5, 6, 11, 12] were presented to solve 
the all pairs shortest path problem, again by using a 
special data structure. 
 

 
Algorithm 1: A simplified graph processing using 

the Dijkstra’s algorithm 

3 The proposed methods 
The presented methods come out from the standard 
path planning algorithms for static graphs. The 
heuristic is adapted to find a suboptimal path 
without using any special data structure in dynamic 
graphs with varying evaluation of their nodes. The 
input graph can have nodes of different degree with 
a positive integer evaluation which may vary in 
time. The evaluation changes may be randomly 
scattered over the whole graph but in the context of 
virtual reality applications, we expect the changes 
to be concentrated according to the movement of 
„threatening“ avatars. 

Our first technique was inspired by [10] and 
assumes that after the evaluation change, the 
existing path is affected mainly by the „near 
changes“ of the graph evaluation. In addition, it 
assumes that with each iteration, the starting 
position – actually the momentary position of a 
moving avatar – gets nearer to the fixed destination 
point. Therefore, we use the standard Dijkstra’s 
algorithm to find the path in the reverse direction – 
from the destination node to the current starting 
node. Let us denote this approach Backward 
Dijkstra. In comparison with the forward direction, 
fewer nodes are visited. Figure 2 shows the 

Input:  the graph G(V, E), 
the starting node S, 

the target node T 

Output:  evaluation of nodes in G 

Auxiliary: P - set of complet. nodes 

  U,W – auxiliary nodes 

• P  empty set 

• For each node in V 

o Set distance to infinity 

o Set previous to null 

• Set S.distance to 0 

• Insert S to P 

• While not (P contains all nodes) 

o From V, find an edge between U∈P and

W∉P such that U.distance+W.weight is

minimal 

o Set value of the W.distance to

U.distance+W.weight 

o Set W.previous to U 

o Insert W to P 

o If W is the target node,    break the cycle 



algorithm planning a path from the starting node 
S to the destination node T at the beginning and 
after two iterations – the nodes visited during the 
graph traversal are highlighted with gray color. 
 

 
 

Figure 2: An example of path planning using the 
Backward Dijkstra’s algorithm 

 
Our second method uses the strategy that 

preserves as much of the original path as possible 
instead of finding the new optimal path after each 
change in the graph. It updates the last found path 
only in the nodes with changed evaluation. This 
resulting path obviously does not satisfy the 
optimality criteria. However, the mentioned virtual 
reality project and similar applications insist on the 
overall speed rather than on the path optimality. We 
call this approach Gaps filling method because of 
its corresponding behavior. In Algorithm 2, we 
show how the Gaps filling method refreshes the last 
found path. It can be seen that the technique stores 
a list of nodes on the presently found path together 
with their last known evaluations. In next iteration, 
it preserves the nodes with equal or better 
evaluation and spans the worse nodes with a new 
subpath. Figure 3 shows an original path between 
nodes S and T together with a new subpath through 
nodes A, B after the original path was disconnected 
in the middle node. In case that all nodes of the 
previous path have worse evaluation, a complete 
path from the starting node to the target node is 
found. 
 

 
 

Algorithm 2: A graph processing using the gaps 
filling heuristic 

 

 
 

Figure 3: An example of path planning using the 
Gaps filling method 

4 Experiments & results 
For the purposes of comparison of the presented 
algorithms, a simple C# application was prepared to 
examine the behavior of the standard techniques 
and the proposed methods applied on an identical 
graph. The application was designed to enable easy 
extraction of the results and properties of each 
method. Figure 4 shows a screenshot of the 
application with paths generated by the tested 
algorithms and 3 additional windows showing the 
trends of the particular methods. 

 
 

Input:  the graph G(V, E), 
  the last found path W, 

Output:  the new suboptimal path W 

Auxiliary: N – set of new nodes 

• Move the starting node from W to N 

• For each node X in N 

o If X has equal or better evaluation or if it is

the target point, find a new path from

last(N) to X and insert the new nodes to N



For now, the proposed techniques have not yet 
been used in the related VR project. However, we 
test these methods on similar datasets – we use 
graphs defined by an adaptive spatial structure 
similar to an octree with a weight value in each 
vertex of the smallest undivided areas. 
 

 
 

Figure 4: A screenshot of the testing application 
with 3 additional windows showing the trends of 

the particular methods 
 

Again for the purposes of the virtual reality 
project, the testing data were a dense and nearly 
regular graph with an adjustable probability of the 
connection of adjacent nodes. Here, the 100% 
probability means that each node is connected with 
all neighbouring nodes, e.g., with 8 nodes within 
the scope of our testing planar graph. The dynamics 
of the graph is simulated by enabling to adjust the 
evaluation change probability for its nodes or to 
handle the evaluation changes directly through the 
user input. The compared path planning approaches 
were measured for the following cases: 
 

• A graph with 32x32 nodes, connection 
probability 75% and random changes of 
the nodes evaluation with different 
probabilities (25%, 50% and 75%). 

 

• A graph with 32x32 nodes, connection 
probability 75% and mouse driven changes 
of the nodes evaluation. Weight of each 
node was calculated according to its 
proximity to the mouse cursor.  

 
The first case should provide a general idea 

about behavior of the methods, the second one 
simulates moving threats in a VR application. 
 

As representative qualities of the examined 
techniques, the following properties were 
measured: 
 

• An overall path weight – a sum of the 
weights of all nodes on the found path. An 
optimal path represents a path with the 
lowest overall weight. 

 
• An amount of totally processed nodes – an 

amount of graph nodes visited by the 
particular graph traversal. 

 
In order to concisely describe the suboptimal 

results of the proposed path planning approaches, 
an α-optimality term is used. The value α ≥ 1 stands 
for a ratio between suboptimal and optimal results. 
Following this definition, a 1,25-optimal path is 
1,25 times longer or slower (according to the 
definition of the optimality) than the optimal path. 
 
Random changes 
 

For a constant probability of the evaluation 
change 50%, the proposed Gaps filling method 
finds a path that is 1,1-optimal on average 
(1,4-optimal in the worst case) and processes one 
third of nodes processed by the standard Dijkstra’s 
algorithm. Figure 5 displays the overall weights of 
the paths found by the examined path planning 
methods. It can be seen that the results for the 
standard Dijkstra’s algorithm and for the Backward 
Dijkstra are identical. Figure 6 then shows the 
amount of visited nodes. 
 
 
 



 
 

Figure 5: Overall path weight during the program 
run for each presented method 

 

 
 

Figure 6: Total number of visited nodes during the 
program run for each presented method 

 
It can be seen that Backward Dijkstra often 

visits more nodes than the standard Dijkstra’s 
algorithm which was a bit surprising result for us at 
first but the explanation is simple – total number of  
visited nodes obviously depends on the initial node 
for the graph traversal. The probability of the 
evaluation change highly affects the results of the 
presented heuristic algorithm. For higher 
probabilities, more nodes can deteriorate their 
evaluation and the last found path has to be 
recomputed in more segments but the suboptimality 
is for that reason closer to the optimum. 
 

Change 
probability [%] 

Processed 
nodes [%] 

Overall path 
weight [%] 

25 13,70 126,26 
50 37,75 115,76 
75 85,67 108,67 

 
Table 1: Different properties of the Gaps filling for 

the particular change probabilities 
 

Another important factor for the quality of the 
Gaps filling heuristic is the amount of nodes in the 
graph. The higher is the amount of nodes the higher 

savings can be achieved by this method. On the 
other hand, there is a bigger chance of rising of a 
new optimal path that will not be registered by the 
presented Gaps filling method. 
 
Driven changes 
 

During the mouse driven changes in the graph 
evaluation, the gaps filling method finds a 
1,3-optimal path on average and traverses one sixth 
of nodes processed by the Dijkstra’s algorithm. 
Figure 7 shows an example of the testing 
application based on a user interaction to change 
the evaluation of graph nodes. 
 

 
 

Figure 7: An example of the graph with mouse 
driven evaluation of its nodes 

 
Figure 8 shows the overall path weights during 

the program run. Again, the results for the standard 
Dijkstra’s algorithm and the Backward Dijkstra are 
identical. Figure 9 displays the totally visited nodes 
during the program run for each presented method. 
The results presented in figures 8 and 9 are 
measured for specific evaluation changes – all 
nodes in the graph are continuously evaluated 
according to their proximity to a potential point 
which is moving from the bottom-left corner to the 
upper-right corner of the area covered by the graph. 
 



 
 

Figure 8: Overall path weight during the program 
run for each presented method 

 

 
 

Figure 9: Totally visited nodes during the program 
run for each presented method 

 
To show the difference of the Backward 

Dijkstra’s algorithm, we offer results of the 
measured techniques in case of a moving starting 
point. In each iteration, the starting node of the path 
moves to its successor – it continuously approaches 
the target node. Figure 10 again shows the overall 
path weight in about 90 iterations. It can be seen 
that the results of the standard Dijkstra’s algorithm 
and the backward Dijkstra’s algorithm are equal 
while the weight of a path found by the gaps filling 
approach stays  a bit higher. Figure 11 then shows a 
number of processed nodes during the same 
measurement. There is a noticeable difference 
between the amount of nodes processed by the 
standard Dijkstra’s algorithm and the backward 
Dijkstra’s algorithm. In this example case, the 
backward approach finds an optimal path by 
visiting 55% of nodes processed by the standard 
technique and the gaps filling approach finds a 
1,1-optimal path by processing 25% of nodes. 
 

 
 

Figure 10: Overall path weight for the case of 
moving starting point 

 

 
 

Figure 11: Visited nodes for the case of a moving 
starting point 

5 Conclusion & future work 
The Backward Dijkstra’s algorithm provides better 
results when used for planning an optimal path 
from a moving initial position. In these cases, it can 
be a suitable alternative to the standard Dijkstra’s 
algorithm. 

The proposed Gaps filling approach provides 
1,1-optimal results on the average for the graphs 
with randomly changing evaluation and 1,3-optimal 
results on the average for the user driven changes in 
the graph. When applied on an adaptive mesh from 
the mentioned virtual reality project, the described 
approach found a 1,3-optimal path on the average 
by visiting 26% of the nodes processed by the 
standard Dijkstra’s algorithm. 

Due to the local updates of the last found path, 
the presented method does not perceive a possibly 
much better path, which may arise far from the last 
found path. A possible case may occur if there is an 
evaluation improvement around the last found path 
– the gaps filling method responds only to an 
aggravation of the nodes evaluation and it can miss 
the better path as well. However in the virtual 
reality, the behavior of the avatars tends to stay on 



the previously found path rather than walk around 
in a completely new way. 

In the future, we will incorporate the proposed 
approaches into the mentioned VR system [2] and 
we would also like to apply these methods in the 
project related to searching and visualisation of 
paths in chemicals (Masaryk University, Brno, 
Czech Republic). Figure 12 – a screenshot from this 
project [8] – shows a tunnel in protein molecules 
with a path found by the standard Dijkstra’s 
algorithm. 
 

 
 

Figure 12: An example of a tunnel in protein 
molecules [8] 
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