
Implementing Lightcuts

Miroslav Mikšı́k∗

Department of Computer Science and Engineering
FEE, Czech Technical University

Prague / Czech Republic

Abstract

Conventional techniques for computing direct illumination
have linear cost with growing number of light sources.
Lightcuts is a new technique which has sublinear cost
and thus becomes very useful when rendering scenes
with a great number of lights. This report describes
the basic version of lightcuts technique and provides in-
sight into the implementation problems. We also de-
scribe an extension to lightcuts—lightcuts with multiple
representatives—which suppresses some visual flaws of
the basic version. Finally, the implementation will be ver-
ified on a set of test scenes and benchmarks.

Keywords: direct illumination, ray-tracing, shadows

1 Introduction

Conventional techniques for computing direct illumination
have linear cost with growing number of light sources.
Lightcuts [5] is a new technique which has sublinear cost.
This technique becomes very useful in applications with a
great number of lights such as replacing area lights with
point lights, illumination by HDR environmental maps or
indirect (global) illumination.

In this report we describe the basic version of lightcuts.
There are several extensions to lightcuts such as recon-
struction cuts [5] and especially multidimensional light-
cuts [4] providing an effective way to create effects such
motion blur, depth of field or volumetric lighting. We will
not deal with these extensions in this report but we will de-
scibe an extension to basic lightcuts based on multidimen-
sional lightcuts—lightcuts with multiple representatives—
which suppresses some visual flaws of the basic version.

The general idea of lightcuts is to reduce the number of
lights used for computing illumination by grouping the
similar lights into the clusters. The technique works in
two phases. Before the scene is rendered, all the lights
are grouped hierarchicaly based on their mutual similar-
ity. This hierarchy is represeneted as the tree of clusters.
During the rendering, such a cut of the tree is found that
provides the best illumination meeting the given error cri-
terion.

∗e-mail: micro@sin.cvut.cz

2 Lightcuts Technique

Given the set of all lights S in the scene, the amount of
light L received from the surface point x in the direction ~ω
is:

LS(x, ~ω) = ∑
i∈S

Mi(x, ~ω) Gi(x) Vi(x) Ii (1)

The material term Mi(x, ~ω) represents reflective proper-
ties of the material from which the direct light is reflected.
Usually, it is a product of the BRDF (Bidirectional Re-
flectance Distribution Function) function and the cosine of
angle between the direction of illumination and the surface
normal. The geometric term Gi(x) represents geometry of
the light source and attenuation of the light with growing
distance. The visibility term Vi(x) describes whether the
light is visible or not. Ii is the intensity of the light.

As we may see, the computation of illumination is directly
proportional to the number of lights. We may reduce the
number of lights by grouping several lights into clusters
C⊂ S.

LC(x, ~ω) = ∑
i∈C

Mi(x, ~ω) Gi(x) Vi(x) Ii ≈

≈ MC(x, ~ω) GC(x) VC(x) ∑
i∈C

Ii (2)

The more similar lights we group, the better result we get.
Material, geometric and visiblity terms of the cluster come
from a representative light of the cluster. This representa-
tive is chosen during the cluster creation and it does not
vary during scene rendering. The representative of the
cluster is chosen from its children with probability pro-
portional to thier intensities. An individual light is its own
representative. A set of clusters such that each light is in-
cluded in exactly one cluster is a valid partitioning of lights
into clusters.

Using single partitioning over the whole scene will not
give good results. We have to find a fast way to get good
partitioning adaptively for each scene point.



2.1 Light Tree

To create a cluster partitioning we use a helper structure—
light tree. Light tree is a binary tree where each leaf repre-
sents an individual light in the scene and each inner node
represents a cluster which contains lights represented by
the leaves under the node. If we create a cut such that
for each path from a leaf to the root we pass exactly one
node of the cut, we get a valid partitioning of lights into
the clusters represented by the nodes of the cut. Because
each light will be present in exactly one cluster. We will
call this cut a ligthcut.

To gain the best result we want clusters to group the most
similar lights. First of all, we separate the lights by its type
(point, directional and oriented) and build a light tree over
each type separately. We get 3 trees which we can think of
as subtrees of one great tree.

Light tree construction starts with individual lights. In
each step we group those 2 lights/clusters which will cre-
ate the smallest cluster. This procedure is repeated until
one big cluster is left—we got the root of the light tree.

The size of the cluster is determined by the similarity met-
rics:

‖C‖= IC
[
α

2
C + c2 (1− cosβC)2

]
, (3)

where IC is intensity of the cluster (i.e. the sum of grouped
lights’ intensities), αC is diagonal length of the cluster
bounding box and cosβC is half-angle of the cone bound-
ing maximum emission directions of grouped lights. Max-
imum emission direction is considered only for oriented
lights. Point lights does not have such direction. The di-
rection of directional lights will be treated as the position
on the unit sphere. Constant c defines proportion between
spatial and directional similarity. For oriented lights we
set it to the diagonal length of the scene’s bounding box.
For point and directional lights it has no meaning so we
set it to zero.

Tree building is not sublinear and it can be expensive but
we need to build it only once. Moreover, we can use the
same tree for multiple animation frames as far as the lights
are kept unchanged.

2.2 Light Cuts

When computing illumination on the surface point x, we
need to find an optimal tree cut which will be a compro-
mise between the cut size (and hence the number of the
lights used) and the error caused by the cluster approxi-
mation. This cut is created by progressive refinement of
the partitioning until the maximum error criterion (usually
2% of total radiance) is met.

We start with a very coarse cut (e.g. the root of the tree).
For each cluster in the cut we compute the estimated ra-
diance (2) and its upper bound (4). Then we select the
cluster with the greatest upper bound. If its relative error
(i.e. ratio of the error upper bound (4) and the total esti-
mated radiance (2)) is greater than our error criterion we
replace this cluster by its children. This is repeated until
all the clusters have relative error less than the criterion.
In dark places the size of the cut can grow unduly so we
define a maximim limit of the cut size (usually 1000).

Since both the exact (1) and the estimated (2) radiance
is less than the radiance upper bound, the radiance upper
bound is also an upper bound of the maximum error εC
(i.e. the absolute difference of exact and estimated radi-
ance). The radiance upper bound is calculated from the
Equation (2):

εC ≤ Lq
C(x, ~ω) = Mq

C(x, ~ω) Gq
C(x) V q

C(x) ∑
i∈C

Ii (4)

All we need to do now is to find upper bounds of material,
geometric and visibility terms of a cluster.

2.2.1 Visibility Term

The visibility term has values between 0 (totally invisible
light) and 1 (totally visible light). It is difficult to calculate
its upper bound so we have to do with V q

C(x) = 1.

2.2.2 Geometric Term

The geometric term for point, oriented and directional
light is:

Light Type Point Oriented Directional

Gi(x) =
1

fA(‖yi−x‖)
max(cosφi,0)
fA(‖yi−x‖)

1
,

where yi is the light position, fA(d) is the attenuation func-
tion in form of A + Bd +Cd2 (coefficients A, B, C are
non-negative) and φi is the angle between the direction of
maximum emission and the direction x−yi.

Upper bound of directional light is obvious: Gq
C(x) = 1.

For point light we have to find a lower bound of the
function fA(d). Since this function is non-decreasing we
have to find a lower bound of the distance d which is
the distance of the point x from the cluster C, therefore
Gq

C(x) = 1/ fA(‖C,x‖). Oriented light is similar to point
light but in addition we have to find an upper bound of co-
sine of the emission angle φi. We could use simple bound
of one but we can do better that this.



Figure 1: Lower bound of the angle (and hence the upper
bound of its cosine) for the bounding volume.

Consider a simpler case shown in Figure 1. For each point
p = [px, py, pz] we have an angle θ between the origin-to-p
direction and the z-axis. Cosine of that angle is:

cosθ =
pz√

p2
x + p2

y + p2
z

By maximalizing the nominator and minimalizing or max-
imalizing the denominator (depending of the sign of the
nominator) we get an upper bound of the cosine:

cosθ ≤


max(pz)√

min(p2
x)+min(p2

y)+(max(pz))2
max(pz)≥ 0

max(pz)√
max(p2

x)+max(p2
y)+(max(pz))2

otherwise
(5)

Figure 2: Transformation of the cluster of oriented lights.
After this transform we can use Equation (5) to get an up-
per bound of the emission angle.

This approach can be generalized by the transform de-
picted in Figure 2. For each light let’s have pair of points
[yi,x]. We translate each pair by the vector −yi result-
ing all lights to be positioned to the origin and creating a
cluster of points xi = x−yi. This cluster has the same di-
mensions as the original cluster of lights. Consecutively,
we apply such transform that projects bounding cone ori-
entation onto the z-axis. We got the problem from Figure 1
and thus we can use Equation (5). If the bound angle is less
than the half-angle of the bounding cone (i.e. it lies within
the cone) we use the cosine upper bound of one. Other-
wise we use cosine of the difference between the bound
angle and the bounding cone half-angle.

2.2.3 Material Term

The material term has usually form of a product of the
BRDF function and the cosine of the angle between the
surface normal at x and the direction yi−x. To bound the
cosine we use the method descibed in the previous sec-
tion leaving the BRDF function to bound. Equation of the
modified Phong BRDF is:

fr(Θi,Θo) = kd
1
π

+ ks
n+2
2π

cosn
α, (6)

where kd is diffuse reflectivity, kr is specular reflectivity,
n is specular exponent and α is angle between the perfect
reflection direction and the eye direction. Only the angle
α depends on the light position and it can be bounded by
the already known method.

Not only Phong, but any BRDF can be used if we are able
to estimate its upper bound. For example, upper bound of
Ward BRDF can be found in [3].

3 Building a Light Tree

In section 2.1 we have introduced the light trees as they
are defined in the original lightcuts paper [5]. However,
the paper does not descibe how to build such a tree, even
though it is the most expensive part of the lightcuts tech-
nique. If we used a naive approach we would have to com-
pare all cluster to each other in each step of clustering, se-
lect the closest ones, group them and start over again. This
approach has cost O(n3). But we have a way how to build
it at a better cost of O(n logn).

Figure 3: Example of a kd-tree in 2D.

We start with individual lights. For each light1 we find
its closest neightbour in metrics (3) and we insert this pair
into a heap priority queue. We fetch from the queue the
pair with the smallest distance. If this pair is valid (i.e.
the clusters have not been grouped so far) we create a new
cluster out of them, find its closest neighbour and put this
new pair into the queue. In the case we have fetched a pair
where the first cluster (i.e. the cluster for which we have
been looking the closest neighbour) is already grouped,
the pair can be discarded. If the second cluster is already

1We may think of the individual lights as of the clusters having one
light, therefore from now on, we will refer to lights as the clusters.



Figure 4: Searching for the closest neighbour of point 8.
We search the subtree of node 8 considering the entire
space. Each time we find a closer neighbour as we have
we determine the distance boundary where it is possible to
find a closer neighbour. The space beyond this boundary
is left out from search.

grouped we find the new closest neighbour and insert the
new pair into the queue again. This action is repeated until
one big cluster is left—the root of the tree.

To find the closest neighbour effectively we use a kind of
BSP tree (Binary Space Partitioning Tree)—a kd-tree [1]
in our case. In kd-tree, each node represents a point which
defines a plane (always perpendicular to one of the coor-
dinate axes) splitting the space into two halves. As we go
deeper into the tree the space is being split into smaller
parts. Figure 3 shows a simplified example of a kd-tree.

A kd-tree is built as follows. We choose a coordinate axis
(e.g. x) and we sort all points2 by this coordinate. We
choose the median point and create a node out of it. The
node contains a pointer to the associated light. We repeat
the procedure on the newly created halves but with the y-
coordinate, etc. We rotate the axes consecutively and re-
peat until all the points are in the tree. At this stage each
node represents one light.

We should understand that the kd-tree is used only for the
nearest neighbour lookup. The way of choosing the split
plane does not affect the final light tree at all.

Metrics (3) respects not only positional similarity but also
clusters’ intensities and orientations, therefore the kd-tree
search must be modified (see Fig. 4). Searching for the
closest neighbour of the point A, we start with the sub-
tree of the node A and then go to the upper levels of the
tree. The search is stopped when we are sure there is no
better solution. Each time we find a point closer than we
have we determine the distance boundary where it is pos-
sible to find a closer neighbour. This boundary is usu-
aly greater than the Euclidean distance between A and the
found point because it also respects intensities and orien-
tations of lights (see Appendix A).

When two lights are grouped into a cluster we update the
corresponding kd-tree nodes so that they point to the newly
created cluster. Even more, we may remove one of the kd-
tree nodes to prevent cluster from being tested more than
once. Usually, when a node is removed the entire kd-tree
should be rebuilt. That is expensive. Instead of that, we
mark this node as invalid and we do not remove it until its
entire subtree is invalid (see Fig. 5). To decide which node
sould be marked we use the one that is on the lower level
in the kd-tree.

4 Lightcuts With Multiple Represen-
tatives

The basic lightcuts version we described uses the same
representative light for cluster during entire rendering pro-
cess. Even though the representative is chosen randomly

2By “point” we mean position of the light.



Figure 5: Removing of the nodes during clustering. Af-
ter grouping two lights, one of the corresponding nodes is
marked as invalid. The node is removed if its entire subtree
is invalid.

during the light tree construction this feature induces a bi-
ased error resulting in artifacts. These artifacts are usualy
below visibility threshold but they become visible in shad-
ows’ penumbrae (caused by loose upper bound of visiblity
term). Having several representatives would allow us to
choose actual representative randomly for each pixel and
thus to convert a biased error into noise which is perceptu-
ally more pleasant (see Fig. 6).

Multidimensional lightcuts can handle multiple represen-
tatives and we have incorporated similar functionality into
the basic lightcuts. Each cluster is given a list of its rep-
resentatives. Representatives of a cluster are chosen from
representatives of its children during the tree construction.
Similarly to basic lightcuts, the probability of child’s rep-
resentative to be chosen is proportional to its intensity. The
number of cluster’s representatives is determined as fol-
lows.

Having clusters C and D which are children of cluster
C∪D, let λ (C) be the number of representatives of clus-
ter C. Assuming λ (C) ≥ λ (D), cluster C∪D will have
either λ (C) or λ (C)+ 1 representatives with probrability
proportional to λ (D):

P
[
λ (C∪D) = λ (C)+1

]
=

λ (D)
λ (C)

(7)

This means that if both child clusters have the same num-
ber of representatives the parent cluster will have one
more. Otherwise the number of representatives will be in-
cremeted with probability proportional to balance between
child clusters.

Because λ can increacse in each step at most by one the
root will have at most h representatives, where h is the
height of the light tree. For most scenes the light tree is
almost balanced but there is possibility we get a very un-
balanced tree, therefore we should define a maximum limit
of λ (usually 16).

When computing illumination for the cluster we randomly
choose one actual representative from representative list
with probability proportional to representatives’ intensi-
ties. To be able to find such representative the list is

Scene Overview

Reference Single Multiple
Representative Representatives

Edges Detected by Roberts’ Operator

16×Difference

Figure 6: Comparison of basic lightcuts with one represen-
tative and modified lightcuts with multiple representatives.
A biased error is converted into noise which is perceptu-
ally more pleasant.

sorted by increasing intensity and each item of the list con-
tains precomputed value of cumulative distribution func-
tion. The representative is found by picking a random
number 〈0,1) and by scanning the list (using binary parti-
tioning) for the first representative with distribution value
greater than the random number.



5 Results and Conclusion

Lightcuts have been implemented in our C++ ray-tracer
GOLEM [2]. To test our implementation we have used
several scenes with high number of lights (see Appendix
B). Table 1 compares the render times for conventional
technique and lightcuts. According to measured times we
may pronounce our implementation to be successful. Ac-
celeration is obvious and output image quality is compara-
ble to reference images. We may see that gained speedup
varies a lot because it depends on the distribution of the
light sources in the scene. We may also see that using
multiple representatives produces almost no overhead.

Appendix C compares output quality of lightcuts for dif-
ferent error thresholds. Thanks to using multiple repre-
sentatives, the recommended error threshold of 2% may
be increased up to 10% without significant loss of quality
and gaining about three times greater speedup. For pre-
view rendering we may also use higher values.

Lightcuts have a great potential. Having strongly sublin-
ear cost, this technique becomes very useful in applica-
tions with a great number of lights such as replacing area
lights with point lights, illumination by HDR environmen-
tal maps or indirect (global) illumination. However there
are still possibilities of improvement: we may look for
tighter bounds or we may find a way to predict dark ar-
eas where light cuts grow excessively. At the time being,
we work on implementation of multidimensional lightcuts
which will allow us to illuminate multiple points in a sin-
gle cluster refinement pass.

Model
Stairs Cornell Box Living Room

(800x600) (800x800) (800x600)

Number 14826 32 31492
of polygons
Number 10000 10000 12000
of lights
Render time 1:51:03 1:56:01 1:40:56
(conventional)

Tree build 1.1 0.9 1.2
duration [sec]
Average 185 203 237
cut size
Render time 0:06:22 0:07:24 0:10:41
(basic lightcuts)
Render time 0:06:24 0:07:31 0:11:23
(mult. repr.)

Speedup 17.4× 15.4× 8.9×

Table 1: Comparision of render times for conventional
technique and lightcuts (both the basic version and the
version with multiple representatives). Render times are
given in hours : minutes : seconds.

References

[1] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[2] Vlastimil Havran. GOLEM Rendering System, 1997.
http://www.cgg.cvut.cz/GOLEM/.

[3] Bruce Walter. Notes on the Ward BRDF. Techni-
cal Report PCG-05-06, Cornell Program of Computer
Graphics, April 2005.

[4] Bruce Walter, Adam Arbree, Kavita Bala, and Don-
ald P. Greenberg. Multidimensional lightcuts. ACM
Trans. Graph., 25(3):1081–1088, 2006.

[5] Bruce Walter, Sebastian Fernandez, Adam Arbree,
Kavita Bala, Michael Donikian, and Donald P. Green-
berg. Lightcuts: A scalable approach to illumination.
ACM Trans. Graph., 24(3):1098–1107, 2005.

A Determining a Distance Boundary
for kd-tree Search

Given a cluster C with intensity IC and axis-aligned
bounding box defined by minimum and maximum coordi-
nates BC = [[x0,y0,z0], [x1,y1,z1]], let d = ‖C∪D‖ be the
distance of clusters C and D in the metrics (3). By mini-
mizing the intensity and orientation similarity terms in the
Equation (3) we get an upper bound of diagonal length
αC∪D of the box bounding both clusters C and D:

α
2
C∪D ≤

‖C∪D‖
IC

(8)

Coordinates of that box are therefore:

Bq
C∪D = [[x1−u,y1− v,z1−w], [x0 +u,y0 + v,z0 +w]] ,

u =
√

α2
C∪D− (y1− y0)2− (z1− z0)2

v =
√

α2
C∪D− (z1− z0)2− (x1− x0)2

w =
√

α2
C∪D− (x1− x0)2− (y1− y0)2

(9)

where u is the maximum width, v is the maximum height
and w is the maximum depth of a bounding box of diago-
nal length αC∪D.



B Lightcuts Test Scenes

Stairs Cornell Box Living Room

Reference

Lightcuts (with multiple representatives)

16×Difference

Cut Size (i.e. the actual number of lights used for illumination)



C Comparing Lightcuts Visual Quality for Different Error Thresholds

Result Detail 16×Difference Error Threshold Render Time Speedup
[hrs : min : sec]

90% 0:00:59 118.0×

70% 0:01:03 110.5×

50% 0:01:11 98.0×

20% 0:01:50 63.3×

10% 0:02:33 45.5×

5% 0:03:54 29.7×

2% 0:07:31 15.4×

1% 0:13:21 8.7×


