
Interactive GPU-based Segmentation
of Large Medical Volume Data with Level-Sets

Oliver Klar∗

VRVis Research Center and University of Koblenz-Landau

Abstract

Automatic or semi-automatic segmentation of anatomical
structures in three-dimensional datasets is still an ambi-
tious challenge in medical image computation. The scope
of application contains visualization, diagnosis, and pre-
planning of operations. This paper presents a 3D GPU-
based level-set solver for segmentation which focuses on
segmenting and rendering large volumes. Neither the vol-
ume nor the level-set have to be resident on the GPU in
their entirety. Only those parts of the volume which are
relevant for computation are held in memory and are dy-
namically swapped in and out of GPU memory. The level-
set solver is integrated in a high-quality GPU based ray
caster.

Keywords: Segmentation, Level Sets, Bricking, Volume
Rendering

1 Introduction

An important challenge in medical image analysis is track-
ing the progress of diseases. For instance identification of
a tumor in medical datasets it is essential to identify the
exact position and to obtain an accurate description of the
anatomical structures. Determining which parts of an im-
age or volume belong to a given object of interest is called
segmentation. To find the tumor‘s shape, segmentation ap-
proaches which are based on surface representations are
very powerful. A technique for deforming and evolving
implicit surfaces is the level-set method.

This paper presents a segmentation tool based on the
level-set method which can be used for applications like
operation planning and diagnosis. We introduce a 3D
level-set solver which is combined with a high quality
GPU raycaster. This combination provides immediate vi-
sual feedback of the segmentation process in real time and
with high quality.

While the level-set computation is in progress, the user
must be able to adjust the segmentation parameters if the
level-set evolves in an undesired way. Therefore, the sys-
tem must instantly react to all changes done by the user.
To speed up the application, hardware based acceleration
techniques for rendering and segmentation are used. Fur-

∗klar@uni-koblenz.de

thermore, our system focuses on segmentation and render-
ing of large volumes, where neither the volume nor the
level-set have to be resident on the GPU in their entirety.

We introduce a dynamic 3D memory management
which handles large medical datasets and overcomes the
restrictions of GPU memory. Only those parts of the vol-
ume which are relevant for computational purposes are
held in memory and are dynamically swapped in and out
of GPU RAM.

In contrast to previous work, especially [5, 6, 8], our
system works entirely on 3D textures and computes the
level-set evolution on the same format that is concurrently
used for rendering. In previous approaches, bricking has
only been used to speed up the level-set computations. In
our work, we use a general bricked virtual memory scheme
that is employed for both the density volume and the level-
set volume, which allows scalable and flexible memory
management for large volumes. A system for high-quality
ray-casting [2] has been extended to simultaneously ren-
der the density volume and the embedded semi-transparent
iso-surface that is the level-set, with accurate intersections
between the areas rendered with direct volume rendering
and the surface.

In the next section we will give an overview of related
work. Afterwards, Section 2 introduces the main idea of
the level-set approach. The 3D level-set solver with its
three main steps is presented in Section 3. Furthermore,
Section 4 gives an overview of the interactive segmenta-
tion application and the workflow. Finally, performance
numbers and some results are discussed.

Related Work

The level-set method was introduced by [12], as a versa-
tile method for computing and analyzing the motion of im-
plicit curves or surfaces in two or three dimensions. It is
used in a wide field of applications. The approach has been
used to solve several problems [1], [11], [10]. Because
of the fast evolution of commodity graphics hardware and
their highly parallel architecture, it is worthwhile trying to
implement the level-set method on the GPU. The use of
level-sets for segmentation purpose on commodity graph-
ics hardware was first proposed in [13]. They presented
a two dimensional level-set solver with a time-invariant
speed function.

Figure 1: These images show the segmentation of a human brain. The implicit isosurface deforms into the shape of the
brain.

In [9], [7] the first GPU-based level-set solver with cur-
vature flow is introduced. The speed function in their
approach is created by combining a pre-computed data-
driven speed with mean curvature. Lefohn [4] presented
a general purpose segmentation tool that relies on inter-
active deformable models implemented as level sets. It is
the first GPU approach that utilized the sparse nature of
level-sets.

The possibility of intervention and steering the process
of segmentation by the operator is a very desirable goal.
Integrating the segmentation application in a real-time vol-
ume renderer can solve this problem [4], [8]. Addition-
ally, the application introduced there uses the advantages
of GPUs by packing the level-set iso-surface data into a
dynamic sparse texture format. If the contour is evolving,
this sparse data structure is updated via a GPU to CPU
message passing scheme that uses automatic mipmap gen-
eration to create compact encoded messages. The data is
packed in a single huge 2D texture.

2 The Level-Set Method

In this paper we use the level-set approach for segmenta-
tion. Isolating objects in images or volumes often means
finding a good approximation of the boundary of an ex-
amined object. The idea of model based segmentation ap-
proaches is to start with a simple initial contour and de-
form it over time until it approximates the desired object
with sufficient accuracy. The level-set method represents
an n-dimensional contour by embedding it in a (n+1)-
dimensional function φ (x).

The contour is deformed by solving a partial differential
(PDE) equation on a voxel grid. One can find a detailed
description of level-set techniques in [11]. To propagate
φ (x) over time we use the simple convection equation:

∂φ (x)
∂ t

= F |∇φ (x)| , (1)

where F is the so called speed function and |∇φ (x)| is the
gradient magnitude of φ (x). However, solving Equation 1
for every voxel is computationally demanding. Therefore
in this paper the narrow band approach is used to accel-
erate the level-set computation. The central idea of the

narrow band method is to solve the PDE only in the neigh-
borhood of the tracked level-set instead of the whole vol-
ume [1].

Level-Set Speed Function

The propagating level-set will expand or contract depend-
ing on the speed function F . This function can consist
of arbitrary complex terms that influence the evolution.
Our choice of speed function consists of two terms. The
first parameter is based one the underlying density vol-
ume. Thus, the propagating front will expand or contract
depending on the gray values of the medical data set.

The second term that is used for the level-set solver
is computed from the level-set itself and basically is the
mean curvature of the level-set at that point. This term
is necessary to keep the deformable surface together and
avoid singularities. The speed function F used in this work
is defined as:

F (x) =
(

αD(I (x))+(1−α)div
∇φ

|∇φ |

)
. (2)

The first term D represents the influence of the density vol-
ume and is defined as

D(I (x)) = ε −|I (x)−T | . (3)

I (x) is the image intensity at a given position x.T approxi-
mates the average intensity of the object of interest, ε con-
trols the range around T that is considered to still be inside
the object. Therefore, a small ε yields a lower variance
around T .

3 3D Level-Set Solver

This section describes the implemented 3D level-set solver
with its main steps shown in Figure 2. The first step repre-
sents the setup of the solver. It performs the initialization
of the volume as a distance field, representing a sphere, see
Figure 3. Step two includes the subsequently described
kernel execution for each grid point in the computational
domain. Step three presents the update of the computa-
tional domain. Step two and three are executed for each
iteration.

3.1 Signed Distance Field

In our level-set solver φ (x) represents a signed distance
function that is scaled and biased to fit into the range [0,1]
in order to be easily compatible with texture format. A
simple implicit form of the sphere equation, depicted in
Figure 3 initializes the level-set volume. Thus, the com-
putational domain contains distance values. The values
φ(x) < 0, which define the exterior of the initial sphere,
will be clamped to zero. The values φ(x) > 1 are set to
one. This is a helpful property for deciding at which side
of the level-set a given position is located.

Therefore |∇φ(x)| is nonzero near the level-set 0.5.
Even though φ is defined on the whole domain, the idea
of the narrow band will keep the computational cost of the
distance field creation small. The distances are only com-
puted on a narrow band around the level-set.

3.2 Level-Set Calculation

This section describes how the discretized level-set equa-
tion is solved in a fragment program for every voxel. The
discretization of the curvature and the final update of the
PDE for one time step is based on the work presented
in [5].

φ (t +∆t) = φ (t)+∆tF |∇φ | (4)

To solve Equation 4 for one voxel, where F is the speed
function and |∇φ | is the gradient magnitude, the upwind-
ing described in [11] and the curvature are computed on
a 3×3×3 neighborhood. First, for the center voxel of the
3×3×3 mask, the forward, backward and central differ-
ences are computed. Afterwards the components of the
speed function, see Equation 2, are processed. The target
density T and ε required to compute D, see Equation 3,
adjusted by the operator in the GUI, are transferred as uni-
forms to the fragment program. With the difference of nor-
mals method used in [5] the mean curvature is computed
by the derivatives mentioned above. This method uses
two differently approximated normals n+ and n−, which
are basically computed from forward and backward differ-
ences respectively. From these, the kernel then computes
the components of the divergence in Equation 2 as

∂nx

∂x
= n+

x −n−x , (5)

Level - Set Setup
1. Execute

 Kernel
Sparse Volume
 Update

2.

3.

Figure 2: Overview of the main steps of the three dimen-
sional level-set solver. In the setup step the signed distance
field is initialized. The kernel solves the partial differential
equation for every time step. After each iteration the data
structure has to be updated for the next computation pass.

r

1.0

0.0

0.5

Figure 3: The distance field is initialized by a signed
distance function of a sphere. Values in the interior are
clamped to 1.0 and values in the exterior to 0.0. Only
in a narrow band the values are in between [0.0,1.0].The
tracked level-set is 0.5.

∂ny

∂y
= n+

y −n−y , (6)

∂nz

∂ z
= n+

z −n−z . (7)

Then, the mean curvature of the implicit surface at that
location is approximated as

κ = 0.5
(

∂nx

∂x
+

∂ny

∂y
+

∂nz

∂ z

)
. (8)

The upwinding approach decides depending on the sign of
the speed function F , how to approximate ∇φ .

Therefore, as presented in [5] the next step in the ker-
nel execution is to compute ∇φmin and ∇φmax. For F > 0,
the shader solves the PDE with |∇φ | = |∇φmax|. Other-
wise, ∇φ is computed by |∇φ | = |∇φmin|. With the cor-
rect choice of the gradient magnitude and κ for the speed
function, a fragment program is executed for every voxel
of every active brick in the level-set cache. Bricking is
described in the following section.

3.3 GPU Level-Set Data Structures

Because the level set is constricted to a subset of the en-
tire volume, it is not necessary to compute the PDE on
the whole voxel grid. Therefore, restricting the computa-
tional effort to areas where it is absolutely required is a
very important part of the system presented here. Thus
we introduce a dynamic memory management that han-
dles large datasets, decouples the segmentation applica-
tion from the GPU memory restrictions and caches rele-
vant data in GPU.

Because the level-set deforms and evolves over time,
the dynamic memory layout of the cache has to be updated
after each iteration. One has to determine which voxels are
active concerning the expansion of the surface, and which
voxels can be ignored according to the width of the narrow
band in the updating process.

cache brick

volume brick

virtual level-set volumelevel-set cache

Figure 4: The relationship between the level-set cache and its corresponding virtual volume is shown. A dynamic mapping
scheme between both volumes ensures that the 3D level-set solver fetches the correct neighbors while processing.

3.3.1 Cache Layout

The 3D level-set solver manages and operates on two
cached volumes simultaneously: The cached density vol-
ume and the level-set cache. The caches are realized as
one 3D texture each and exist only in GPU memory. They
contain the actually active data and are divided into bricks
of size 343. A brick consists of a 323 interior area and a
one voxel wide border area on all sides. The border areas
are required for filtering and for the neighbor activation
which is described subsequently. The bricks in the cache
are stored in an arbitrary order. Therefore, neighboring
voxels are not necessarily adjacent in the cache anymore.
However, for computation it is required to know the neigh-
bors of every active brick. Thus, an additional volume is
required. We call this virtual volume because it holds no
data. The virtual volume is divided into 323 tiles. The re-
lationship between this volume and the cache is depicted
in Figure 4.

The important difference between the cache and the vir-
tual volume is that adjacent tiles in the virtual volume are
in opposite to adjacent bricks in the cache real neighbors.
This information is encoded in a dynamic mapping scheme
between bricks in the cache and bricks in the virtual vol-
ume that ensures that the level-set solver fetches the right
neighbors while processing. This mapping is depicted in
Figure 4. Only those tiles of the virtual volume which en-
close the narrow band are mapped to bricks in GPU mem-
ory.

While the process is running and the tracked level-set
evolves over time, the cache is filled up step by step with
more bricks. Naturally, bricks that are not necessary any-
more are flushed out of memory. Thus, the content of the
cache is dynamically changing and with it the mapping
between the two volumes.

3.3.2 Indirection Textures

The mapping between bricks of the cache and bricks of the
virtual volume is stored in an additional texture. For every
active brick in the cache these indirection textures hold an
offset to the corresponding position in the virtual volume.
An indirection texture stores one voxel for each brick and
vice versa. Furthermore it holds additional information.

During one iteration, the GPU analyzes a flag stored in
the alpha channel of the indirection texture. This flag com-
prises the status information of the current brick.There are
three different life time cycles. A brick can have the status:

• active

• inactive

• must be initialized

According to this flag each brick is treated in a different
manner in the computation shader. If the brick has active
status, the kernel is executed. If the flag is inactive, the
algorithm skips for all fragments of this brick. Otherwise
the brick is in the initialization phase and all its voxels
have to be initialized.

3.3.3 Brick Activation

In the beginning, only the bricks that are initialized by the
signed distance function in the setup step have valid val-
ues. If the update step of the level-set solver decides to
map a new brick because the narrow band enters a previ-
ously inactive area, the values of this new brick are not
initialized.

Depending on which side of the narrow band the new
brick is located, the interior of this brick is initialized by
1.0 or 0.0. To ensure that the level-set can cross the border
between an active brick which has triggered the memory
request, and the new adjacent brick, the borders of these
bricks must have the same values. Therefore border areas
of new bricks are initialized by the borders of their neigh-
bors, for a detailed description see [3].

3.4 Sparse Volume Update

After each iteration of the level-set calculation the compu-
tational domain has to be updated. For efficiently man-
aging and updating the GPU memory a communication
scheme between CPU and GPU is necessary. This com-
munication consists of two main tasks:

• GPU-CPU Memory Request

• CPU-GPU Memory Allocation

While the segmentation process is running, the level-set
cache holds all bricks required for solving the PDE in one
time step. The dynamic nature of this sparse data structure
requires updating the mapping and the cache. The CPU
tells the GPU which parts of the virtual domain are active.
The algorithm has to request the required data for solv-
ing the partial differential equation, always one time step
before they are needed.

The communication in the direction from GPU to CPU
consists of two steps. A reduction step and a neighbor ac-
tivation step. The result of both is passed from the GPU to
the CPU encoded as a bit state. Afterwards the CPU ana-
lyzes this bit code, activates the right neighbors in virtual
volume space and allocates memory for the next iteration.

3.4.1 Reduction Step

After the level set solver has finished one iteration, it has
to be detected if the current cache layout has to be up-
dated. For this reason, the reduction step computes for
every brick in cache memory a flag which gives a active-
inactive status feedback about all the bricks currently in
the cache. This flag is computed by packing the cache in
the three main axes, as seen in Figure 5. First it is reduced
in z-direction, depicted in Figure 5 (a). To accelerate the
packing two slabs of bricks are reduced simultaneously.
The result of two adjacent slabs is written into the rgba
channels of one texel of a 2D destination buffer. In pass
two, shown in Figure 5 (b), the result of the previous step
is packed along the x-direction. Finally, the cache has to
be reduced in the vertical dimension, see Figure 5 (c). The
resulting flag for each brick is evaluated by the CPU and
decides for every brick if it is required in the next segmen-
tation pass.

3.4.2 GPU Neighbor Activation

If the narrow band is coming closer to the border of an
active brick, the neighbors, depending on which side the
narrow band leaks out, have to be activated. Additionally,
if the level-set has left a cache brick, the brick has to be

edgecorner
interior

brick surface

Figure 6: The algorithm has to determine where the evolv-
ing surface leaks out. The goal is to activate the minimal
number of bricks for the next pass. Therefore, for each
face of a brick nine boundary cases have to be checked
where the evolving front could cross the border.

resident brick

init brick

face +y

face -x

Figure 7: 27 cases where the level-set could cross the bor-
der of each brick are determined by processing only six
faces on the GPU. The edge of the currently processed
brick in red color activates the new brick because of set
bits in face -x and face +y. For the corner case three adja-
cent faces must have their bits set.

deactivated. The more bricks are activated the higher the
computational cost in the next pass is. For this reason,
the challenge is to activate the smallest number of bricks.
However, reducing the computational cost requires a com-
plicated case differentiation. The neighbor activation com-
putes a bit state of active-inactive flags for all bricks in the
cache. In Figure 6 for one side of a brick in the cache,
all cases where the contour could leak out are shown in
different shades of green. Depending on the case, a dif-
ferent number of neighbors has to be activated for the fol-
lowing pass. To reduce the number of bricks to be acti-
vated, twenty six cases, composed of eight corners, twelve
edges and six faces, plus the interior has to be checked.
This information is extracted from the border areas of ev-
ery active brick. If the level-set flows from one brick into
another it naturally passes its borders. The GPU detects
this alteration in the border areas and notifies the CPU by
sending this information encoded in a bit state. The CPU
again decodes it to update the cache with adjacent bricks.
The algorithm that we introduce in this paper performs the
neighbor activation, with all 27 cases mentioned above, by
testing only the six brick faces on the GPU and determin-
ing all cases from their intersections on the CPU.

Depending on the resulting bits a different number of
adjacent bricks has to be activated. One case of the neigh-
bor activation is shown in Figure 7. The result yields a
valid bit for the brick face +y and a second valid bit for
the face −x of the currently processed brick. The combi-
nation of these bits leads to the conclusion, that the edge
colored in red has to activate the new brick in Figure 7.
The information for the faces is encoded on the GPU and
sent to the CPU. The six bits for the six faces are stored in
one floating point value.

3.4.3 CPU Neighbor Activation

The filling of the cache for the next pass is done by evaluat-
ing the request from the GPU. The request includes the bit
state for every brick for neighbor activation and further the
status flag for each currently active brick. The CPU pro-

(a)

Brick 2

1 x 1 x 34

Brick 1

one reduced
voxel per brick

(b)

34 voxels in x reduced to 1

(c) Source Destination

34 voxels in y reduced to 1

Figure 5: The reduction step computes a flag which gives a active-inactive status feedback for every brick in the cache in
three steps. The cache is reduced first in z-direction, shown in (a), afterwards in x-direction, depicted in (b) and finally in
the y-direction (c).

DVR

DVR

ISO

Figure 8: The raycaster displays a combination of direct
volume rendering (DVR) in front of the iso-surface, iso-
surface-shading and DVR behind the shaded surface. The
opacity of the iso-surface is adjustable.

cesses the request from the GPU by decoding the passed
information.

If a required brick is actually in the cache, nothing has
to be done. Otherwise, it has to be paged down into GPU
ram for the next iteration. As previously described new
bricks have to be initialized in the calculation shader.

3.5 DVR-ISO-DVR Rendering

To be able to follow the propagating interface embedded
in the underlying density volume the iso-surface, i.e., the
level-set, and the volume must be shown simultaneously
in the 3D view. Only this gives the feedback whether the
parameter settings work well and the level-set evolves to-
wards the object borders of interest. For visualization, a
special rendering mode renders a combination of unshaded
DVR in front of a shaded iso-surface in the middle and un-
shaded DVR behind the surface, see Figure 8.

The algorithm contains three main steps. Along each
generated viewing ray it takes samples in regular intervals
of the cached density texture and accumulates them until
a density value of the packed level-set volume exceeds the
iso-threshold. It is important to mention that the combi-
nation of these two rendering approaches is done in one
fragment program. Therefore, while iterating along the
ray, the fragment program operates on both cached vol-
umes simultaneously. If the iso-threshold is exceeded, the
gradient at that position is estimated for shading the level-
set surface. The determined location of the iso-surface is

taken as starting position for the last DVR step. The ray-
caster now continues until the ray leaves the volume or any
other early ray termination criterion has been met such as
fully accumulated opacity. The final output color consists
of the composited color of the DVR step in front of the
surface, the shaded iso-surface itself, and the color of the
unshaded DVR behind the level-set surface.

4 Interactive Segmentation Applica-
tion

Figure 9: The 3D view is generated by the high quality
raycaster. Properties like the sampling rate or different
render modes are adjustable.

This section gives an overview of the developed seg-
mentation tool and its user interface. Furthermore, we
show the work-flow of the presented tool with a segmenta-
tion example. The level-set segmentation application con-
sists of three main panels. A 2D slice viewer, depicted
in Figure 10, the segmentation panel shown in Figures 11
and 12 and the 3D view generated by the raycaster shown
in Figure 9.

The segmentation panel consists of two main panels.
The setup panel depicted in Figure 11 includes all features
for the initialization of the segmentation process and the
level-set calculation panel is depicted in Figure 12. In the
following, a short overview of the work-flow of the seg-
mentation process is given with a example segmentation
of a human brain.

4.1 Initialization Parameter Settings

Figure 10: The sliceviewer in the segmentation tool pro-
vides a detailed view on every layer of the volume. With a
mouse click in the desired region of interest, the user sets
the center of the sphere in the setup step.

After a data set is loaded it is shown in the 3D view by
the raycaster, as well as in the 2D slice viewer. The opera-
tor has the possibility to find the region of interest in both
views. When the area to be segmented is roughly defined,
the level-set surface can be initialized by the spherical
drawing tool. The center of the sphere is defined by click-
ing in the 2D slice viewer. The radius is adjustable in the
level-set setup panel depicted in Figure 11. Furthermore,
the user can define the width of the narrow band in that
panel. When the painted sphere approximates the region
of interest insufficiently, a reset of the spherical initializa-
tion can be done.

4.2 Speed Function Adjustment

To adjust the parameters of the speed function, which de-
fines the motion of the evolving front, is the next step. The
first parameter, depicted in Equation 9, which has to be
set is a weight alpha that determines the influence of the
density and the curvature, respectively:

F = α ∗Density+(1−α)∗ curvature (9)

The curvature setting influences the smoothness of the
level-set surface. If the α is set to 0.0, the speed function
is solely curvature-driven speed. Thus, it defines a weight-
ing between the fraction of density driven speed and cur-
vature. The second parameter in the level-set panel adjusts

Figure 11: The radius of the initial sphere and the width
of the narrow band are adjustable is adjustable in the first
panel.

Figure 12: The second segmentation panel contains the
speed function controls and the calculation controls.

the epsilon region. This parameter determines the variance
around the density value of interest. The target density is
specified in the same manner as setting the sphere‘s center,
i.e. by a mouse click in the slice viewer. Both together, the
density and the epsilon, let the level-set surface evolve if
the underlying densities are in the interior of that epsilon
range, otherwise it contracts, see Equation 3.

4.3 Segmentation Process

After the adjustments are complete the segmentation pro-
cess can be started. If the front leaks out, the operator is
able to adjust the segmentation process by changing the
parameters at runtime.

Figure 13: Level-Set segmentation of a human brain
(512x512x184). The deformable model expands over time
until it converges into the shape of the brain. Different
views of the level-set shape are shown.

5 Performance

LEVEL-SET SOLVER STEPS ELAPSED TIME

sphere setup 0.08
one iteration 0.68

Table 1: 512x512x184 MR-brain is the tested dataset for
the time measurements of this table. It shows the perfor-
mance numbers for the setup step including the distance
field computation and the time in seconds for one iteration
of the 3D level-set solver.

In Table 5 performance numbers of the 3D level-set
solver are depicted. The benchmarks are run on a GeForce

8800 GTS with 768 MB of video memory. The seg-
mentation process is tested with a 512x512x184 MR-brain
dataset. The first row shows the time in seconds used for
the sphere initialization. It comprises the distance field
computation. The time for one full iteration of the 3D
level-set solver is depicted in the second row. It includes
the level-set computation and the update step with the
GPU-CPU memory request and the CPU memory alloca-
tion.

6 Conclusions

This paper presents an interactive segmentation applica-
tion that focuses on segmentation and rendering of large
volumes. The application combines a high quality ray-
caster with a three dimensional sparse grid level-set solver.
Both are working on the same packed data format. Thus,
no intermediate data structure is required for rendering.
The challenge was how to overcome the problem of the
sparse nature of level-sets on the one hand, and exploiting
the power of graphics hardware when working on large
continuous data streams on the other hand. To reach in-
teractivity the conceptual design of the level-set solver is
focused on packing the sparse data structure for efficient
processing on the GPU.

The level-set brick caching algorithm stores only the ac-
tive subset of the virtual level-set volume. This cache can
be processed either by the level-set solver or directly be
used for rendering by the raycaster. Solving the level-set
equation is done completely by the fragment processor on
the GPU. For updating the modified cache, a GPU-CPU
communication scheme was presented. This communica-
tion ensures that the subset of the entire volume that is
required for the next computation pass is available to the
fragment processor. A customized render mode has been
introduced, which is a combination of direct volume ren-
dering and iso-surface shading. It is well suited for the
segmentation application because the operator can directly
follow the evolution of the level-set shaded iso-surface.

7 Acknowledgments

This work has been carried out at the VRVis Research
Center for Virtual Reality and Visualization in Vienna
(http://www.vrvis.at). The medical data sets are courtesy
of the Department of Neurosurgery at the Medical Univer-
sity Vienna and Agfa Vienna.

References

[1] David Adalsteinsson and James A. Sethian. A fast
level set method for propagating interfaces. J. Com-
put. Phys., 118(2):269–277, 1995.

[2] Henning Scharsach Markus Hadwiger An-
dre Neubauer, Stefan Wolfsberger and Katja
Buehler. Perspective isosurface and direct volume
rendering for virtual endoscopy applications. In
EUROVIS - Eurographics /IEEE VGTC Symposium
on Visualization, pages 315–322, 2006.

[3] Oliver Klar. Interactive gpu based segmentation of
large medical volume data with level-sets. Master‘s
Thesis, VRVIS, 2006.

[4] Aaron Lefohn and et al. Interactive, gpu-based
level sets for 3d segmentation. In Medical Im-
age Computing and Computer-Assisted Interven-
tion - MICCAI 2003, 6th International Conference,
Montréal, Canada, November 15-18, Proceedings,
Part I, pages 564–572, 2003.

[5] Aaron E. Lefohn. Interactive computation and visu-
alization of level-set surfaces: A streaming narrow
band algorithm. Master‘s Thesis, 2004.

[6] Aaron E. Lefohn, J. Kniss, C. Hansen, and
R. Whitaker. Interactive deformation and visualiza-
tion of level set surfaces using graphics hardware.
2003.

[7] Aaron E. Lefohn, Joe M. Kniss, Charles D. Hansen,
and Ross T. Whitaker. Interactive deformation and
visualization of level set surfaces using graphics
hardware. In VIS ’03: Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), page 11, Washington,
DC, USA, 2003. IEEE Computer Society.

[8] Aaron E. Lefohn, Joe M. Kniss, Charles D. Hansen,
and Ross T. Whitaker. A streaming narrow-band al-
gorithm: Interactive computation and visualization
of level sets. 2004.

[9] Aaron E. Lefohn and R. Whitaker. A gpu-based,
three-dimensional level set solver with curvature
flow. In University of Utah tech report, pages 02–
017, 2002.

[10] Frank Losasso, Tamar Shinar, Andrew Selle, and
Ronald Fedkiw. Multiple interacting liquids. ACM
Trans. Graph., 25(3):812–819, 2006.

[11] Stanley Osher and Ronald Fedkiw. Level set methods
and dynamic implicit surfaces. Springer, 2003.

[12] Stanley Osher and James A Sethian. Fronts propa-
gating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations. Journal of
Computational Physics, pages 12–49, 1988.

[13] Martin Rumpf and Robert Strzodka. Level set seg-
mentation in graphics hardware. In Proceedings of
IEEE International Conference on Image Processing
(ICIP’01), volume 3, pages 1103–1106, 2001.

