
A Simple Haptic User Interface Library

Juraj Czigányi∗

Faculty of Informatics

Masaryk University

Brno / Czech Republic

Abstract

This paper briefly describes a development of a simple

Haptic User Interface (HUI) library. The HUI library pro-

vides two classes of haptic widgets, buttons and sliders,

which can be used as basic control elements for assem-

bling more complex haptic interfaces.

Keywords: haptic user interface, haptic control element,

stereo rendering

1 Introduction

Haptic research has opened new areas for designing train-

ing and entertainment applications. In nowadays ap-

plications, we can combine visualization of 3D objects

with their haptic exploration and modelling. This can

be achieved by merging visual and haptical spaces using

stereoprojection techniques and mirrored views. One such

solution is Reachin DisplayTM (See Figure1) [2] that uses

CRT display and shutter glasses for stereo rendering and a

PHANTOMTM [1] as a force-feedback device.

Figure 1: Reachin DisplayTM

Programing for Reachin DisplayTM is supported by de-

velopment platform Reachin API that enables a usage of

various programming laguages (C++, Phyton, VRML) and

OpenGL. In my bachelor thesis, I have designed a sim-

ple Haptic User Interface (HUI) library for creating haptic

widgets. It is not intended to replace sophisticated haptic

∗cziganyi@mail.muni.cz

libraries used by professional developers. My goal was to

prepare a template solution where students could test var-

ious designs of haptic widgets.

2 Haptic rendering

A mechanoreceptor is a sensory receptor that responds to

mechanical pressure or distortion. In a simplified way,

they are placed in skin layers and they are capable of ”feel-

ing” deformation of skin about 10 µm, see [9]. Haptic ren-

dering, assigning forces to each operational point, stim-

ulates these receptors creating thus an illusion of objects

which can be ”touched”. The operational point, or points,

is the physical location on the haptic interface where posi-

tion, velocity, acceleration, and sometimes force, are mea-

sured. With displaying a virtual environment, there are

some problems that must be considered[8]:

Finding the point of contact – This is a problem of col-

lision detection, which becomes more difficult and

computationally expensive as the model of the virtual

environment becomes more complex.

Generation of contact forces – This creates the ”feel” of

the object. Contact forces can represent the stiffness

of the object, damping, friction, surface texture, etc.

Dynamics of the virtual environment – When the user

manipulates objects in the virtual environment, they

collide with each other and may move in a compli-

cated way.

Computational rates must be high and latency low

– Inappropriate values of both these variables can

cause hard surfaces in the virtual environment to feel

soft as well as create system instabilities. The update

rate of the haptic feedback loop should be at least 1

kHz ([4]).

There are many applications based on this

technology[3]:

Medicine – surgical simulators for medical training; ma-

nipulating micro and macro robots for minimally in-

vasive surgery; remote diagnosis for telemedicine;

aids for the disabled such as haptic interfaces for the

blind

Entertainment – video games and simulators that enable

the user to feel and manipulate virtual solids, fluids,

tools and avatars

Education – giving students the feel of phenomena at

nano, macro, or astronomical scales; ”what if” sce-

narios for non-terrestrial physics; experiencing com-

plex data sets

Industry – integration of haptics into CAD systems such

that a designer can freely manipulate the mechanical

components of an assembly in an immersive environ-

ment

Graphic Arts – virtual art exhibits, concert rooms, and

museums in which the user can login remotely to

play the musical instruments, and to touch and feel

the haptic attributes of the displays; individual or co-

operative virtual sculpturing across the internet

3 General Principles

While a user moves a generic probe, the haptic device

”senses” it’s new position and orientation. In case of a

collision between the probe and a virtual object, the device

calculates the reaction force from the penetration depth of

the probe into the virtual object. The force vectors may

then be modified depending on the objects surface details

and the resulting force is excerted as a feed-back to the

user.

Similarly to computer graphics, the representation of

3D objects to be explored haptically, can be surface-based

or volume-based. In both cases, modelled objects can be

eplored using two types of haptic interactions:

point-based – Only the haptic interface point (HIP), also

known as the end effector point, interacts with the

object. The collision detection algorithm checks

whether the HIP is inside or outside the object. If

it is inside the depth of penetration is calculated from

the distance of the HIP and the nearest surface point.

ray-based – The generic probe is modeled as a finite ray

with orientation and the interaction is calculated from

the interaction between the ray and the virtual object.

The reaction force is usually calculated from the linear

spring law,

F = k ∗ x,

where k is the stiffness of the object (high value causes

the feel of rigid objects) and x is the depth of penetration.

For frictionless surface, the vector of the reaction force is

a normal to the polygonal face the generic probe collides

with.

The two main issues that any haptic interaction

paradigm should specify, are the collision detection be-

tween the generic probe and the virtual object and the col-

lision response, i.e. how to calculate the reaction force

after a collision has been detected.

4 Collision detection

Collision detection is similar, but not the same in computer

graphics and haptic rendering. While in computer graphics

the main goal is to detect collision between the objects, in

haptic rendering the main goal is to detect the collision

between the generic probe and the object. If the generic

probe is inside of a virtual object, it is still counted as a

collision, and the depth of penetration is used to calculate

the proper response.

The collision detection algorithm cyclically detects the

position of the generic probe and checks if it is in col-

lision with any point of the virtual objects. The naive

algorithm compares each object with the position of the

generic probe.

Algorithm 1 Naive collision detection algorithm for hap-

tics
1: loop

2: get the position of the generic probe

3: for all virtual objects do

4: if the generic probe is in collision with the virtual

object then

5: calculate the proper response from the depth

of the penetration

6: end if

7: end for

8: end loop

If the virtual objects are only basic 3D shapes (box,

cone, cylinder, sphere) the naive algorithm is ”acceptable”.

However, for more complex objects the collision detection

would be very time-consuming and the collision response

would not be realistic. To speed up the collision detection,

usually bounding volumes are used.

The algorithm checks the collision between the generic

probe and the virtual object only when the generic probe is

inside of the bounding volume containing the virtual ob-

ject. Due to this only a small percentage of objects are

tested for collision.

Algorithm 2 Collision detection with bounding volume

1: loop

2: get the position of the generic probe

3: for all virtual objects do

4: if the generic probe is inside the bouding volume

of the object then

5: if the generic probe is in collision with the vir-

tual object then

6: calculate the proper response from the depth

of the penetration

7: end if

8: end if

9: end for

10: end loop

Another way to reduce the number of objects for test-

ing is to use a binary space partitioning. The main idea is

to divide the space into smaller regions, and continue the

testing only in the selected smaller region. After division

the algorithm works only with the region containing the

generic probe. If the region contains more than one virtual

object the algorithm divides the space again, otherwise it

checks the collision for the object in the region. A sim-

plified example of space partitioning and it’s binary tree is

shown in Figure 2.

Figure 2: Binary space partitioning

5 Haptic User Interface Library

Control elements in the implementation are simple objects

designated to create a simple HUI. They are not sufficient

for creating professional HUIs but they can be used as a

base for creating more complicated control elements. I

have implemented them in an object oriented C++, theirs

usage is specified in the HUI library documentation in [5].

The class diagram in Figure 3 shows the inheritance struc-

ture of HUI classes & objects.

Figure 3: The class diagram of basic HUI classes

5.1 Control set

A ControlSet is a basic class, which is an ”imaginary” ob-

ject. Only this control element has absolute position, the

other control elements have to be connected to a parent

ControlSet class (or to a class derived from ControlSet)

and their absolute position is calculated from their rela-

tive position and the absolute position of the parent object.

Each of the control elements are inherited from the Con-

trol Set, so each of them can be a parent of other control

elements.

5.2 Control element

A ControlElement class is derived from the ControlSet

class. It serves as a base class for inheriting visible control

elements. The boolean attribute isVisible designates the

visibility of the control element. If isVisible is set to f alse

then the control element will not be rendered.

5.3 Haptic control element

A HapticControlElement class serves for inheriting con-

trol element classes with haptic feedback. It’s boolean

attribute isActive decides if a control element ”can be

touched” (true value means that the object has a haptic

response).

5.4 Control function

A ControlFunction virtual class serves as a base class

for deriving objects, which can response to a control

element event (these events will be explained at particular

control elements). The class contains one virtual method

ControlFunction :: controlFunction(position,value)
which is a response for an event. Where the position is

the position of the generic probe at the moment, when the

event arises and the value is float number from 0 to 1 (it’s

value will be explained at particular control elements).

5.5 Abstract Button

An AbstractButton class serves as a base class for inherit-

ing button type control elements. This class contains two

attributes pressFunction and releaseFunction. Both of

them are instances of the ControlFunction class. Their

meaning can be different from one button to the other.

5.6 Simple Button

A SimpleButton class represents a button, which is visu-

alized as a thin rectangular plate. The class has attributes

height and width, which are the height and width of the

rectangle. Also the class has two color attributes: color1

is the color of the button, when it is not pressed, color2 is

the color of the button while it is pressed. The button is

pressed (the pressFunction is called with value attribute

set to 1), when the user touches it and it get released (the

releaseFunction is called with value attribute set to 1),

when the user moves off the generic probe from the rect-

angle area.

5.7 Button

A Button class represents a button, which is a more so-

phisticated button than the Simple Button. This button is

a solid object, it consists of two cuboid objects. One of

them is the passive part of the button, which has a haptic

response, but does not generates any events. The second

one is an active part, which has a haptic response and can

be ”pushed” into the passive part (it pushes out automat-

ically to a basic position, if the user is not pushing it to

the opposite direction). The user can push the active part

into the passive part until it’s front face get to the same

plane as the front face of the passive part. The button have

two states (pressed, released), which can be alternated by

pushing the button. Pushing the button means to push the

active part until it’s front face reaches the plane of the pas-

sive button’s front face. Before another state change the

active part have to get back to it’s basic position. When the

button changes it’s state an event is generated. Depending

on the new state the pressFunction or the releaseFunction

is called and the value attribute is set to 1. The button dis-

plays it’s state by the colored a rectangle area placed in the

middle of the passive parts front face. The class is derived

from the SimpleButton class. The attribute color1 is the

color of the passive part, the attribute color2 is the color

of the active part. The attributes height and width sets the

height and width of the passive part, height and width of

the active part are 90 % of the attributes height and width.

The height and width of the rectangle showing the buttons

state is 95 % of the attributes height and width. The Button

class also contains attributes:

thickness1 – Specifies the thickness of the passive part.

thickness2 – Specifies the thickness of the active part.

o f fColor – Specifies the color of the rectangle showing

the buttons state, when the buttons state is equal to

released.

onColor – Specifies the color of the rectangle showing

the buttons state, when the buttons state is equal to

pressed.

5.8 Abstract Slider

An AbstractSlider class serves as a base class for inherit-

ing slider type control elements. This class contains two

attributes f unction and value. The attribute value is the

actual value set on the slider. The attribute f unction is

an instance of ControlFunction class, which contains the

function, which is called when, the actual value of the

slider changes. The actual position of the generic probe

and the actual value of the slider are handed over to this

function.

5.9 Simple Slider

A SimpleSlider class instantiates a slider in the form of

a thin rectangular panel. The area is split into a passive

part and a movable marker, which shows the actual value

of slider. Attributes width and heigth set the geometry of

the passive part, the marker’s width is initially set to 6 %

of the attribute width and its height is 96 % of the attribute

heigth. By touching the passive part the marker is imme-

diately set to a new position and actual value is adjusted

accordingly. The actual value depends on the relative dis-

tance from the ”lower” side of the passive part. The slider

has three color attributes:

color1 – Specifies the color of the left side of the passive

part.

color2 – Specifies the color of the right side of the passive

part. The color of the passive part between the right

and left side changes smoothly and it is calculated

using linear interpolation between color1 and color2.

color3 – Specifies the color of the marker.

5.10 Slider

The Slider class represents a slider similar to the slider

created by the SimpleSlider class, but this slider has thick-

ness. There are two thickness attributes thickness1 and

thickness2, which specify the thickness of the passive part,

and the thickness of marker. The marker is positioned on

the passive part. The actual value of this slider can be

changed by pushing the marker from the left or right side

to the wanted value.

Figure 4: Button, slider, etc.

6 Stereo rendering with OpenGL

Stereoscopic rendering is any technique capable of repro-

ducing three-dimensional visual information or creating

the illusion of depth in an image. The illusion of depth

in photographs, movies, or other two-dimensional images

is created by presenting a slightly different image to each

eye. The stereopsis is a process, which allows humans

to calculate the distance of the objects from two images.

The eyes, being approximately 7 cm far from each other,

observe the same objects from a different angle. By differ-

entiating the angles the brain is capable of deciding the ob-

jects position and its distance from the observer. In stereo

rendering we need to reverse the process – to create two

different images from the knowledge of the objects posi-

tion and distance.

For creating the depth illusion on the Reachin Display

device with the help of the OpenGL quick alternating be-

tween two slightly different pictures are needed. Draw-

ing of the two pictures requires a special function for set-

ting up the projection matrix and another one for setting

up the viewing matrix. I have implemented these two

special functions from the procedural base [7] into ob-

ject oriented form, they are represented in the implemen-

tation by the method SetStereoPerspective() and method

SetStereoLookAt() of the class Stereo.

6.1 SetStereoPerspective()

SetStereoPerspective() is built on function glFrustum(),
which is used to set the ”mono” perspective projection ma-

trix. glFrustum() has six attributes[6]:

le f t, right – Specifies the coordinates for the left and

right vertical clipping planes.

bottom, top – Specifies the coordinates for the bottom

and top horizontal clipping planes.

near, f ar – Specifies the distances to the near and far

depth clipping planes.

To set pair of projection matrixes for stereo, method

SetStereoPerspective() uses the following attributes, see

Fig.5:

near, f ar – same as in the mono rendering.

f ovy – Specifies the field of view angle, in degrees, in the

y-direction.

aspect – Specifies the aspect ratio that determines the

field of view in the x-direction. The aspect ratio is

the ratio of x (width) to y (height).

eyeSep – Specifies the distance between the two eyes of

the spectator.

f ocalLength – Specifies the distance between the eyes of

the spectator and the projection plane. The spectator

is focused on the projection plane, so this distance is

the focal length.

eyeMode – Specifies the active eye (for which is the pro-

gram rendering).

Figure 5: Rendering for stereo display from the top.

(source: http://pds5.egloos.com/pds/200706/07/74/

stereo viewing coding.ppt)

The attribute top is calculated as

top = near ∗ tan(DTOR∗
f ovy

2
)

where DTOR is a constant used for conversion from de-

grees to radians and vice versa. The value bottom is simply

calculated as −top. The attributes le f t and right depend

on the eye for which is the projection is used. For this dif-

ference a new variable is defined, the stereoAd justment,

which is calculated as

stereoAd justment =
eyeSep ∗ near

2 ∗ f ocalLength
.

With the variable hal f NearWidth, which is the half of the

width of the field of the view at the near clipping plane

(hal f NearWidth = aspect ∗ top),

, the attributes le f t and right for the right eye are calcu-

lated as:

le f t = −hal f NearWidth− stereoAd justment

right = hal f NearWidth− stereoAd justment

6.2 SetStereoLookAt()

SetStereoLookAt() is built on the function gluLookAt(),
which is used to set ”mono” viewing matrix. gluLookAt()
has nine attributes[6]:

eyeX , eyeY , eyeZ – Specifies the position of the eye point

(the point between the two eyes of the spectator).

centerX , centerY , centerZ – Specifies the position of the

reference point (the point the spectator is looking at).

upX , upY , upZ – Specifies the direction of the up vector.

Algorithm 3 GLvoid Stereo::SetStereoPerspective()

1: GLdouble left;

2: GLdouble right;

3: GLdouble top = near*tan(DTOR * fovy/2);

4: GLdouble bottom = -top;

5: GLdouble halfNearWidth = aspect * top;

6: GLdouble stereoAdjustment = eyeSep/2 * near / fo-

calLength;

7: if RIGHT == eyeMode then

8: left = -halfNearWidth - stereoAdjustment;

9: right = halfNearWidth - stereoAdjustment;

10: else

11: left = -halfNearWidth + stereoAdjustment;

12: right = halfNearWidth + stereoAdjustment;

13: end if

14: glFrustum(left, right, bottom, top, near, far);

Figure 6: Calculation of the eyes position

The SetStereoLookAt() works with the same attributes

and with the attributes eyeMode and eyeSep, which are the

same as in the subsection SetStereoPerspective() on the

page 6. For stereo rendering only the position of the eye

has to be changed according to the eyeMode. The subtrac-

tion of the point centre and eye adds the vector in, which

is pointing from the eye to the centre.

in = centre− eye

The cross product of the vector in and the point up is the

vector realEyeCor pointing from the eye towards the spec-

tators right eye (the vector −realEyeCor is pointing to-

wards the spectators left eye).

realEyeCor = in×up

The position of the right (left) eye is calculated as the ad-

dition of the eye and the relative position of the right (left)

from the eye. The relative position of the right (left) eye

from the eye is the multiplication of the vector realEyeCor

(−realEyeCor) with the proportion of the length of the

vector realEyeCor and the half of the attribute eyeSep.

rightEye = eye + realEyeCor ∗
eyeSep/2

|realEyeCor|

le f tEye = eye− realEyeCor ∗
eyeSep/2

|realEyeCor|

Algorithm 4 GLvoid Stereo::SetStereoLookAt()

1: GLdouble inX = centreX - eyeX;

2: GLdouble inY = centreY - eyeY;

3: GLdouble inZ = centreZ - eyeZ;

4: GLdouble factor = (eyeMode==RIGHT)?1:-1;

5: GLdouble realEyeCorX = factor * (inY*upZ -

upY*inZ);

6: GLdouble realEyeCorY = factor * (inZ*upX -

upZ*inX);

7: GLdouble realEyeCorZ = factor * (inX*upY -

upX*inY);

8: GLdouble length = sqrt(realEyeCorX*realEyeCorX

+ realEyeCorY*realEyeCorY +

realEyeCorZ*realEyeCorZ);

9: GLdouble corLengthFactor = eyeSep/(2*length);

10: realEyeCorX *= corLengthFactor;

11: realEyeCorY *= corLengthFactor;

12: realEyeCorZ *= corLengthFactor;

13: gluLookAt(eyeX + realEyeCorX, eyeY +

realEyeCorY, eyeZ + realEyeCorZ, centreX, centreY,

centreZ, upX, upY, upZ);

7 Conclusion

The HUI library can be used for creating haptic inter-

faces with haptic widgets such as buttons and sliders for

the Reachin Display device. The user can use the basic

OpenGL (also GLU and GLUT) functions for drawing.

Solid objects are rendered in stereo.

Figure 7: Simple application for exploration of point-

based models

HUI library is simple and serves only as a base for cre-

ating more complex haptic widgets. In the future, I plan to

extend it with the following functionality:

multiplatform and multilanguage – The library should

provide interfaces for various platforms (Windows,

Linux) and languages (C++, Java, Python)

compatibility update – The header file could support dif-

ferent methods of stereo rendering.

improved stereo–rendering – Stereo rendering with the

consideration of parallax.[7]

additional control elements – A broader repertoir of

control elements, and new physically based features

(colors, textures, stiffnes, mechanics) for creating

complex HUIs.

HUI toolkit – a toolkit for assebly of basic haptic controls

similar to GUI toolkits.

This work is a part of my Bachelor’s thesis, February

2008, Masaryk university, Brno, the Czech Republic.

References

[1] The PHANTOM Desktop device home

page. http://www.sensable.com/

haptic-phantom-desktop.

[2] The Reachin Display device home page. http://

www.reachin.se/products/.

[3] C. Basdogan and C. Ho. Principles of hap-

tic rendering for virtual environments. http:

//network.ku.edu.tr/˜cbasdogan/

Tutorials/haptic_tutorial.html, 2007.

[4] C. Basdogan, C. Ho, and M. Srinavasan. NASA

tech briefs - algorithms for haptic rendering of

3D objects. http://www.techbriefs.com/

content/view/1063/32/, 2007.

[5] J. Czigányi. GUI for point-based haptic rendering.

Bachelor’s thesis, Faculty of Informatics Masaryk

University, 2008.

[6] Khronos Group. OpenGL - the industry standard

for high performance graphics. http://www.

opengl.org/, 2007.

[7] K. Hyun-Chul. Stereo viewing coding.

http://pds5.egloos.com/pds/200706/

07/74/stereo_viewing_coding.ppt, 2007.

[8] A. M. Okamura. Literature survey of haptic ren-

dering. http://www.haptics.me.jhu.edu/

publications/old/hapticlit.html, 2007.

[9] S. Trojan et al. Medical Physiology (in Czech). Grada

Publishing, 2003.

