
Real-time Rendering of Dynamic Vegetation

Alexander Kusternig∗

Institute of Computer Graphics
Vienna University of Technology

Austria

Abstract

This paper presents a new approach to shading realistic
leaves at high frame rates. The proposed physically based
translucency model allows the accurate simulation of sub-
surface scattering in leaves while accounting for the leaf
micro-structure. This approach is based in the local frame
of the leaf, so it can be instantiated to any number of leaves
without needing to generate new data. Besides rendering
leaves in a realistic way, a method is proposed to animate
trees in wind in a physically based and efficient manner.
This method allows the bending of branches as well as the
movement of individual leaves according to the wind. A
small set of parameters allows an artist to tweak the ap-
pearance of the animation to her liking in real-time.

Keywords: Real-time Rendering, Natural Phenomena,
Natural Scene Rendering, Physically Based Rendering,
Tree Animation, Brown Noise, Natural Motion

1 Introduction

Natural scene rendering is an important research topic in
real-time rendering. As research is constantly pushed for-
ward by new generations of graphics hardware, new meth-
ods are developed to increase the realism of the generated
images. There are three main problems when rendering
vegetation: The first problem is the realistic appearance
of the leaves of vegetation. The second one is animating
the geometry in a realistic way on a frame by frame basis
by constantly changing wind influence. The third problem
is the one of geometric complexity needed to represent a
tree or bush. These problems are discussed in detail in the
following paragraphs.

Leaves are not simply flat green surfaces. Instead they
consist of multiple layers of different tissues, and their sur-
face properties vary depending on the plant type. In gen-
eral, the front side of a leaf has high specularity whereas
the back side is mostly diffuse in the respective reflec-
tive behaviour. In addition to the reflective properties of
a leaf, translucency plays a important role in the appear-
ance of a leaf. This translucency is a result of light trans-
mitted through the thin layers of the leaf and subsurface
scattering. Most state of the art leaf rendering techniques

∗kchustl@cg.tuwien.ac.at

Figure 1: Translucent leaves rendered with our method.

use some simplified forms of the 8D bidirectional sub-
surface scattering reflectance distribution function (BSS-
RDF) that would be needed to fully describe the appear-
ance of a translucent leaf fully. Due to the highly scatter-
ing media in a leaf the viewer-angle-dependencies can be
neglected when dealing with the translucency properties
of a leaf, so simplifications are possible. However, pre-
processing lighting information for a whole plant is a very
CPU-intensive process, and even during rendering large
amounts of illumination data have to be present to evalu-
ate the lighting correctly. These methods are discussed in
section 2.

This paper uses precomputed lighting information only
for the translucency part of the lighting, while rendering
the direct illumination with advanced per pixel lighting
techniques to handle the complex specular behavior. Also,
the translucency information is precomputed on a per leaf
basis, so the data can be re-instantiated for all leaves on
a tree, saving massive amounts of data. This could be
achieved by employing the “Half Life 2” basis which al-
lows calculating precomputed radiance transfer in local
leaf space. Details on our method are found in section 3.

Static vegetation rendering poses a lot of problems on
its own, but believable animation is another very com-
plex topic. Most techniques available today use physi-
cally based models or procedural motion generation for
the branches of a tree. This tends to by very CPU heavy
and permits only a small number of branches. Also, these



branches stay inflexible during animation, which does not
compare to reality, where small twigs tend to bend in the
wind. New interesting approaches come from computer
games which need to render large numbers of trees at high
frame rates but neglect the physical background on gen-
erating the motion data. These methods are explained in
section 4.

This paper presents a new method that combines these
different approaches by precomputing hierarchy informa-
tion for a tree, but allowing flexible and fast animation that
is entirely handled by the GPU. It includes a handful of an-
imation parameters that can be tweaked by an artist to her
liking to allow any animation behavior intended. Section 5
displays our animation method in detail.

The geometric complexity of vegetation poses another
problem on efficient rendering, but this is not in the scope
of this paper because we assume a tree to be rendered at
maximum detail. Nonetheless, the methods proposed by
this paper can be easily combined with existing level of
detail methods.

Section 6 shows the performance that was achieved in
our DirectX 10 implementation and possible future extan-
sions of our method.

2 Related work on leaf rendering

2.1 Precomputed radiance transfer

Precomputed radiance transfer (PRT) works by calculating
coefficients for the exiting radiance of surfaces at different
conditions of incoming light in the hemisphere above the
surface. These solutions do not operate in euclidian space
but in other basii such as Spherical Harmonics (SH) [19]
or Wavelets (which were introduced to avoid overshoot-
ing at shadow boundaries). The big advantage of PRT is
that once these coefficients are computed (which is a very
time-consuming CPU-intensive process), the lighting con-
ditions in the scene can change in real-time, and direct and
indirect lighting will adapt accordingly. The final eval-
uation process of the lighting is a very simple task that
consists of multiplying the coefficients on the surface with
the ones from the light source, and adding them up. How-
ever, the geometry has to stay static in the scene, because
shadows are “baked” into the coefficients.

The precision of the solution depends on the number
of coefficients used. This is especially important for di-
rect lighting which introduces high frequency illumination
changes due to shadows. On the other hand, changes in in-
direct lighting are of low frequency and could be approxi-
mated with only a few coefficients.

Normally, the color values resulting from the PRT eval-
uation on a per vertex or per texel basis are interpo-
lated linearly, which is a problem with surfaces that have
non-uniform reflectance attributes or a noticeable micro-
structure, which is the case with leaves. Sloan et al. [18]
propose a method to combine PRT with normal mapping

in order to retain the detailed micro-structure on surfaces.

2.2 Subsurface scattering

Full subsurface scattering would require the evaluation of
an 8D BSSRDF (bidirectional subsurface scattering re-
flectance distribution function) [12] to handle self shad-
owing, changes in reflectance, and thickness. Instead, ex-
isting methods rely on the 4D BTDF (bidirectional trans-
mission distribution function). Wang et al. [22] use a 4D
BTDF to calculate the light transmission in plants. They
produce impressive results, but also state that over 60 MB
are needed to store the coefficients of a plant with about
15 leaves. This makes the method not feasible for larger
trees.

2.3 Ray casting

A technique proposed by Govaerts et al. [8] represents the
internal structure of leaf tissue as 3D geometry data, and
performs ray casting to calculate subsurface scattering and
translucency information. This produces accurate results
for light propagation inside leaves, but obviously it is not
possible to evaluate the model in real-time.

3 Rendering realistic leaves

3.1 Overview

We photographed real leaves to get real-world reflectance
properties for diffuse lighting as well as translucent light-
ing coming from the backside. Afterwards we took 3D
scans from both sides of the leaves to gain thickness infor-
mation and generate a normal map from the 3D model.

Our leaf rendering model is split into direct and indi-
rect illumination. The direct illumination is rendered using
normal mapping with shadow mapping for shadows from
direct illumination and a Cook Torrance specular term for
the upper side of the leaves to simulate the very broad
specular reflection properties of the leaf. The indirect il-
lumination is handled by precomputed ambient occlusion
data that takes into account the translucency properties of
the leaves.

The translucency is also evaluated per pixel and handled
by a new solution based on precomputed radiance trans-
fer that takes into account subsurface scattering and local
thickness variations along the leaf surface. The method is
based on the “Half Life 2” basis that is easy to evaluate
and also works in local leaf space, allowing instancing of
the coefficients on all leaves in the scene. This produces
a very detailed and accurate translucency appearance in
combination with the normal map.

3.2 Acquiring the data

Our rendering technique requires four textures for each
side of the leaf: A surface albedo map to modulate the



Figure 2: From left to right: albedo map, normal map,
HL2 coefficients map, translucency color map

diffuse incoming light, a normal map to capture the fine
details on the leaf surface, a translucency map to modulate
the light transmitted through the leaf, and a “Half Life 2”
coefficients map to calculate the amount of light transmit-
ted. All textures are at a resolution of 1024*1024. Figure 2
shows one set of four textures for the front side of a leaf.

3.2.1 Photographing leaves

Photographs of real leaves were taken under controlled
lighting conditions. The leaves were placed in a fixing
frame, and lit by a 1000W large box diffuser once from
the front side to get the surface albedo, and once from the
back side to get the translucent color. This process was
done for both sides of the leaf. A Canon EOS 20D digital
camera was used to take the photographs. Specular high-
lights were removed from the albedo map with standard
image processing tools.

3.2.2 3D scanning of the leaf geometry

The leaf geometry was scanned using a Minolta V1-910
scanner. Again, both sides of the leaf were scanned. The
resulting 3D model was processed with GeoMagic and
Maya to remove 3D scanning errors and get a watertight
model of the leaf. A thickness map was computed from
the model, and a normal map was generated directly from
the geometry.

3.3 Direct lighting

The direct lighting consists of an ambient, a diffuse, and a
specular term. The ambient shading is done by using the
per vertex ambient occlusion color. The diffuse shading
part is done by a per pixel normal mapping shader. The
specular term is handled by a modified Cook Torrance re-
flectance model [4]. Roughness and refraction indices are
taken from data measured from real leaves by Bousquet [3]
in 2005. This model creates a broad specular reflectance
that matches the rough surface of real-world leaves more
accurately. Also, the Fresnel term in this reflectance model
leads to higher specular intensity at grazing angles.

Figure 3: (a) PCF filtering (b) 6 PCF Poisson Taps (c)
VSM

3.3.1 Shadows

Shadows are handled by directional shadow mapping. The
shadow map is focused on the tree with a resolution of
4096*4096 pixels, and a bit depth of 32bit. The 32bit float-
ing point precision is used to perform percentage closer
filtering (PCF) [16] on the graphics hardware directly.
Multiple shadow mapping techniques have been evaluated
for their performance and appearance. The best results
were achieved with using a sum of 6 Poisson-filtered PCF
lookups. These 6 lookups do not noticeably reduce the
shader performance when compared to one single lookup.
This is due to the lookups being performed in parallel to
the complex arithmetic instructions in the pixel shader.
However, using six lookups instead of only one produces
much softer shadows and reduces the “flickering” of texels
that would appear when the leaves move in the wind.

Variance shadow mapping (VSM) [5] was implemented,
but resulted in shadows that appeared too hard. Besides,
blurring of the depth values of the shadow map is very
costly, and also produces shadows that are larger than the
objects casting them. Usually this is no problem, but with
lots of very small objects in the shadow map that only fill
a few texels each, the resulting shadows “bleed” into one
another, and produce a much denser shadow area on the
ground. This can be seen in the comparison figure 3. The
Poisson-filtered PCF lookups produced softer and fuzzier
shadows, which look more natural on the rough surfaces
of leaves, tree bark, and the ground.

3.4 Indirect lighting

Indirect lighting is precomputed on a per vertex basis.
However, this poses no problem in animation, as the
changes of indirect illumination are of very low frequency,
and the overall form of a tree top stays the same even under
strong wind influence. Ambient occlusion (AO) is used to
calculate the indirect illumination. The AO solver takes
into account the translucency attributes of the leaves, so
the AO colors become more greenish if the light hits the
bark after traveling through multiple layers of leaves.

As can be seen in Figure 4, the indirect illumination
greatly increases the realistic look of the generated images
and also gives the viewer a cue about size and depth of the
treetop.



Figure 4: The indirect lighting term only. Note how the
leaves and the bark get gradually darker inside the tree top.

3.5 Translucency and the “Half Life 2” basis

Normal mapping is used to render the ambient, diffuse,
and specular properties of the leaves, but a PRT solution
is used to handle the calculation of the light transmitting
the leaf slab to model the translucency on the back sides of
leaves. We use the recently developed “Half Life 2” (HL2)
basis [10] introduced by the Source Engine in 2004. Tra-
ditional PRT methods work on Spherical Harmonics bases
or Wavelets which need costly transformation of the light
into coefficients for these bases. The HL2 basis on the
other hand allows us to work in local leaf space, because it
is defined by only three orthogonal basis vectors. That al-
lows us to instantiate these HL2 coefficients for all leaves
in the scene, as opposed to SH or Wavelet simulations.

One drawback of the HL2 basis is that it uses only three
basis vectors, so only very low frequent lighting is possi-
ble. Fortunately this is no problem because we only store
information for the light transmission in the HL2 coeffi-
cients and no information about direct illumination. The
low frequency light changes even support the subsurface
scattering effect.

The three HL2 basis vectors are orthogonal and dis-
tributed uniformly across the hemisphere above the sur-
face. During rendering the weighting of the coefficients
is evaluated by a simple dot product between the incident
light vector and these basis vectors. This means that also
negative weights are possible (as with SH). Simply adding
up the results from these three dot products gives the over-
all intensity of transmitted light for a given light vector. By
multiplying this light intensity by the translucency color
map, we get the final translucency color. Additionally, this
intensity can be modulated by the shadow term of direct
illumination.

3.5.1 Calculating the HL2 coefficients

The calculation of the HL2 coefficients relies on a tech-
nique to simulate subsurface scattering for thin slabs by

Figure 5: The translucency term at different incident light
angles: f.l.t.r.: Light coming directly from behind the leaf,
and moving to the right.

Donner et al. [6]. The thickness map gained from the 3D
scanning is used to weigh the amount of light transmitted
through the multiple layers of the leaf slab. The transmis-
sion properties on the other hand are assumed to be the
same over the whole surface of the leaf. Details on the
calculation of the coefficients and error measurement can
be found in Habel 07 [9]. We found that the error is only
3% between our solution and Donner’s method. Applying
a full PRT solution would require the calculation of three
HL2 coefficient maps for each color channel. We calculate
the coefficients for the dominant wavelength of green light
(510nm) only. Also, the view dependency usually found
in BRDFs is dropped in our solution because the translu-
cency properties of leaves are practically diffuse [2]. This
results in only one 3-component texture to store the three
HL2 coefficients.

3.5.2 Efficiency

We can instantiate the same HL2 coefficients map for all
leaves in the scene because our approach works in local
leaf space. This is a great advantage over SH or Wavelet-
based methods that would need unique data for every leaf.
Reusing the same data set for all leaves allows us to use a
1024*1024 HL2 coefficients map, which captures all the
small details on a leaf surface like self shadowing and
bulges. Figure 5 shows how the translucency changes at
grazing angles, revealing the detailed structure of the leaf.
Looking up the amount of light transmitted through the
leaf slab only takes three dot products between the light
vector and the basis vectors, and adding up the results of
these dot products, which makes for very fast and efficient
shader code.

4 Related work on tree animation

4.1 Scientific models

Most of the existing methods for animating trees work by
separating the model into individual branches and creat-
ing a skeleton with bones assigned to them. These bones
are rotated depending on the wind influence [7]. Rota-
tion information normally comes from physically based or



stochastic models. This is mostly done on the CPU and de-
mands the propagation of the hierarchical transformations
from the parent bones to their children. The performance
goes down with an increasing number of branches. Wong
et al. [23] report an average of about 30 frames per sec-
ond for small plants with about 20 large leaves (whereby
each leaf is attached to multiple bones). A big disadvan-
tage of these models is that the branches cannot bend and
stay inflexible during the animation. This does not match
to reality, where small twigs are bent by wind.

Jos Stam [21] uses modal analysis to generate motion
data. This produces very accurate results, but also requires
a large processing time. This method cannot run at interac-
tive frame rates for trees with a number of branches similar
to the tree model we use in our implementation.

Ota et al. [13] try a hybrid method that combines
stochastic motion from 1/ f β noise to move the individ-
ual leaves with a mass spring model to move the branches.
The endpoints of the leaves are moved along their local
frame, and the whole leaf is rotated around the petiole
axis. They confirm that the motion of individual leaves
is a very important factor in the believability of plant an-
imation, a fact that is missing in the methods that rely on
branch movement only.

4.2 Artist-controlled animation

In recent years computer games have presented new meth-
ods for vegetation animation. Their models are based on
completely different priorities: The main issue with games
is performance and believability, not physically based sim-
ulations. This results in methods that operate on the ver-
tices directly instead of calculating branch hierarchies.
One particularly impressive example is the game “Crysis”
from the company CryTek [11]. Their wind animation
system is entirely artist-controlled, with artists painting
movement information for every single vertex on a plant
by hand. This is tedious work and takes weeks per plant
until perfected, but the results are impressive.

This type of animation is limited by the strength of the
wind and the overall look of the plant: If the wind gets
too strong, then the vertices start to move around wildly
in a seemingly uncorrelated fashion. Also, this method
only works for plants with one long stem, like palm trees.
The model would not work correctly for weeping willows,
for example. Details on the implementation of the Cry-
sis plant animation can be found in Sousa’s GPU Gems 3
article [20].

5 Efficient physically based anima-
tion

Our method combines the physically based hierarchical
swaying motion of branches with a fast and efficient ren-
dering method that is based on per vertex displacement
only. We also ensured that the animation parameters are

easily controllable by a user to meet the needs for all dif-
ferent types of trees. Our method calculates a hierarchy of
branches moving in the wind in a preprocessing step, but
then all the data is distributed locally to the vertices. The
leaves are transformed together with this hierarchy and are
additionally moved independently but in a correlated mo-
tion, depending on the wind.

5.1 Generating the animation data

Our weights generator takes an existing 3D tree model as
input data. The model has to be split into one object for the
trunk and all branches, and one object for the leaves. This
model can be created by a standard tree generation pack-
age like XFrog or NatFX, no branch or bone information
is demanded. The whole weights generation process con-
sists of two passes: The weights for the trunk and branches
are generated in the first pass. In the second pass, the leaf
weights data is generated.

5.1.1 Building a branching hierarchy

The trunk model is separated into branches by identifying
continuous segments of triangles. This is how generated
tree models come from generators like XFrog and NatFX.
Each segment of triangles is treated as a branch. They are
ordered by their diameter, the branch with the largest di-
ameter is assumed to be the stem. A hierarchy is generated
by starting with the stem, and finding all branches inter-
secting with it. This is repeated until the whole hierarchy
information for the tree is built.

5.1.2 Weights, phases, and motion vectors

Animation information for up to four levels of hierarchy
are supported in the current implementation, since this is
the maximum of components that one vertex attribute set
can hold. Also, the tree used in our implementation only
has four hierarchy levels which already sums up to about
1500 branches. Any branches that would lie beyond the
fourth hierarchy level would generate no unique weights
data, but simply take the one from their parent branches.

Our animation method relies on four different anima-
tion attributes. All of these attributes are stored for up
to four levels of hierarchy: The first attribute is a set of
weights that define the amplitude of the swaying motion
and are unique for every vertex. The second attributes are
the phases that define an offset value in the noise texture
lookup and are unique per branch. They result in each
branch swaying at its own time, but with the same fre-
quency as the other branches of the same hierarchy level.
The last two attributes are the up an right vector of the
branch frame in model coordinates. They control the di-
rections of the actual displacement of the vertices, and are
per branch attributes like the phases, too. Applying val-
ues from the noise texture to control the swaying results in



Figure 6: The weights are propagated from the top level to
the children

two independent swaying motions along the X and Y axis
of the branch

The weights are stored directly per vertex into the vertex
buffer, while the other attributes are stored in a texture per
branch and looked up in the vertex shader.

5.1.3 Assigning weights

Weights are generated for all vertices of a branch. They
are distributed linearly along the branch, starting at 0 for
the branch starting point. The weights are normalized for
each hierarchy level, so the longest branch of each hier-
archy level receives a weight of 1 at its endpoint. This
allows for weights data in the range of 0 to 1 for all hierar-
chies, which allows efficient tweaking for the final look of
the animation, but also ensures that the individual branch
lengths have an influence on the bending behavior.

Since the weights are generated for the branches in or-
der of their hierarchy level there is always weight data
available from the parent branch. The weights data from
the parent branch is simply propagated to the current
branch. This ensures that the vertices on twigs of a sinle
branch adopt the same animation behavior as the parent
branch, since their motion computation relies on the same
per vertex information as the vertices of the parent branch,
plus their own animation information. Figure 6 displays
how the weights are propagated from the parent branch to
the children.

5.2 Animating the branches

The branches are animated in a fast and efficient way. The
weights for a hierarchy of up to four levels is known per

vertex, as are the phases that modulate the lookup into the
noise texture and the branch movement vectors that finally
displace the vertex. The noise texture is a tiling 2D 1/ f β

noise, which is suitable to represent natural motion [14].
A β value of 2 is used to gain smooth swaying motion.
Bending of branches and twigs is possible by modulating
the weights to be applied in a non-linear way.

5.3 Animating the leaves

Leaves adopt the weights and branch index data from the
trunk vertex nearest to the petolia. This results in the
leaves moving correctly together with the branches that
they are attached to.

Additionally, the endpoints of each leaf move around
independently a little bit, controlled by “rolling” the 2D
noise texture over the tree in wind direction, and taking
the noise values for each leaf position as displacements.
This leads to independent, but also correlated, motion for
all leaves, as one can see gusts of wind moving through
the tree. This technique is similar to the one proposed by
Bakay et al in “Real-Time Animated Grass” [1]. Also,
each leaf is rotated into the direction of the wind, resulting
in all leaves bending in approximately the same direction,
giving an additional visual cue to where the wind comes
from.

6 Results

6.1 Implementation performance

The DirectX 10 implementation renders to a framebuffer
of the size of 1024*768 pixels. The tree model used
has about 70000 triangles for the trunk, and about 12000
leaves which are represented as alpha tested quads. The
leaves textures need about 50 MB on the GPU. The whole
scene is rendered into a floating point target for HDR ren-
dering, and tone mapped by a modified Reinhard tone
mapper [17]. The light shafts are computed in a separate
pass and applied to the image before tone mapping. A sim-
ple 7*7 separable bloom is applied to the scene afterwards.

The main bottleneck of the rendering pipeline is the
leaves pixel shader, which has 119 instructions according
to the DirectX 10 FX compiler output. Interestingly, the
computation of the translucency only takes about 15 in-
structions. The evaluation of the Cook Torrance specular
model currently takes the biggest part of the shader to-
gether with the final combination of all the different light-
ing terms and weighting them to get a visually pleasing
output. An early Z pass is used to reduce the pixel shader
load and ensure that only the fragments of the leaves near-
est to the camera have to be rendered with the full shader.

The sky is currently rendered using the Preetham Sky-
light model [15] and is evaluated per vertex for a sky
dome. The sun position and color is updated every frame



on the CPU, and the sunlight color values also come from
Preetham’s algorithm.

The shadow map used in the application has a size of
4096*4096 pixels, and uses 32bit floating point precision.
The 32bit precision allows using hardware PCF [16] in
DX10. A 6 taps Poisson filter is used for lookups in the
shadow map. Also, Variance Shadow Mapping [5] with a
5*5 blur kernel was applied to the scene, but was dropped
later on because the shadows resulting from it appeared
too hard and degraded the believability of the generated
image. Besides, VSM have a noticeable impact on perfor-
mance, because the shaders to evaluate the VSM lookup
use almost only arithmetic instructions.

The wind animation poses a high workload on the ver-
tex shader with 12 texture lookups needed per vertex to
obtain the weights information necessary to transform ev-
ery vertex. This has to be performed three times per frame
in the current implementation: Once while rendering into
the shadow map, once for the early Z pass and once for
the bright pass. Using render-to-vertex-buffer capabilities
should dramatically reduce this overhead to only once per
frame, which is planned for future work.

The overall frame rate varies from 60 to 110 frames per
second on a Intel Core 2 Duo at 2.67 GHz and a Geforce
8800 GTX. The actual frame rate depends on the size of
the tree in the frame buffer due to the number of fragments
rendered with the complex leaves pixel shader.

6.2 Future work

Future work on the rendering side could include applying
a sophisticated level of detail blending algorithm to blend
between the current high-polygon model where each leaf
is shaded per pixel to a simpler per vertex lighting model,
and finally down to simple billboard rendering. Using an
advanced level of detail technique will allow us to render
a large number of trees, which is important for believable
natural scenes.

Future work regarding the wind animation includes ap-
plying a more sophisticated transformation algorithm to
the leaves. At the moment, the endpoints of the leaves are
displaced only in world coordinates. A possible extension
is for the leaves to rotate around the petolia axis, which can
be performed effectively in the shader since the leaf’s lo-
cal frame is already well defined by normal, tangent, and
binormal. 3D noise could be used to model a full wind
motion field.

7 Conclusion

We present a method to render highly detailed trees in a
very realistic and efficient manner. The methods intro-
duced in this paper can be applied to any existing render-
ing pipeline without much work because preprocessing is
done offline and online rendering only involves updating
the vertex and pixel shaders.

Our leaf rendering model is based on a combination of
physically based methods to render specular reflectance
and translucency for highly detailed leaves close to the
camera. The detailed micro-structure on a leaf surface and
inside the multiple layers of leaf tissue are simulated ac-
curately by using normal maps in combination with the
HL2 maps. The HL2 basis allows a very fast and efficient
lookup at runtime, and using the same HL2 map for every
leaf gives us the opportunity to instantiate the leaves and
therefore render large numbers of them.

The wind animation is based on hierarchical motion of
branches, the actual motion is based on 1/ f β noise, which
is found in many natural phenomena. The fast per vertex
evaluation permits us to transform a very large number of
branches, and also bend these branches according to the
wind influence. Every parameter in the animation system
can be artist controlled and tweaked in real-time until it is
visually pleasing, without the need to preprocess the hier-
archy information multiple times.

References

[1] Brook Bakay and Wolfgang Heidrich. Real-time an-
imated grass. In Proceedings of Eurographics (short
paper), 2002.

[2] G. Baranoski and J. Rokne. Efficiently simulating
scattering of light by leaves. The Visual Computer,
17(8):491–505, 2001.

[3] L. Bousquet, S. Lacherade, S. Jacquemoud, and
I. Moya. Leaf BRDF measurements and model for
specular and diffuse components differentiation. Re-
mote Sensing of Environment, 98:201–211, 2005.

[4] R. L. Cook and K. E. Torrance. A reflectance model
for computer graphics. ACM Trans. Graph., 1(1):7–
24, 1982.

[5] William Donnelly and Andrew Lauritzen. Variance
shadow maps. In I3D ’06: Proceedings of the 2006
symposium on Interactive 3D graphics and games,
pages 161–165, New York, NY, USA, 2006. ACM.

[6] Craig Donner and Henrik Wann Jensen. Light diffu-
sion in multi-layered translucent materials. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Papers, pages
1032–1039, New York, NY, USA, 2005. ACM Press.

[7] Thomas Di Giacomo, Stéphane Capo, and François
Faure. An interactive forest. In Proceedings of the
Eurographic workshop on Computer animation and
simulation, pages 65–74, New York, NY, USA, 2001.
Springer-Verlag New York, Inc.

[8] Y. Govaerts, S. J. M. Verstraete, and S. Ustin. Three-
dimensional radiation transfer modeling in a dy-
cotyledon leaf. Applied Optics, 35(33):6585–6598,
1996.



Figure 7: A tree from the outside and from the inside. Notice the indirect illumination and translucency visible from the
inside.

[9] Ralf Habel, Alexander Kusternig, and Michael Wim-
mer. Physically based real-time translucency for
leaves. In Jan Kautz and Sumanta Pattanaik, edi-
tors, Rendering Techniques 2007 (Proceedings Euro-
graphics Symposium on Rendering), pages 253–263.
Eurographics, Eurographics Association, June 2007.

[10] G. McTaggert. Half-Life 2/Valve Source Shading.
Technical report, Valve Corporation, 2004.

[11] Martin Mittring. Finding next gen: Cryengine 2. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses,
pages 97–121, New York, NY, USA, 2007. ACM.

[12] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W.
Ginsberg, and T. Limperis. Geometrical consider-
ations and nomenclature for reflectance. Jones and
Bartlett Publishers, Inc., USA, 1977.

[13] Shin Ota, Machiko Tamura, Tadahiro Fujimoto,
Kazunobu Muraoka, and Norishige Chiba. A hybrid
method for real-time animation of trees swaying in
wind fields. The Visual Computer, 20:613–623(11)],
dec 2004”.

[14] Heinz-Otto Peitgen and Dietmar Saupe, editors. The
Science of Fractal Images. Springer-Verlag New
York, Inc., New York, NY, USA, 1988.

[15] A. J. Preetham, Peter Shirley, and Brian Smits. A
practical analytic model for daylight. In SIGGRAPH
’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques,
pages 91–100, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[16] William T. Reeves, David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth
maps. In SIGGRAPH ’87 Proceedings, pages 283–
291, New York, NY, USA, 1987. ACM Press.

[17] Erik Reinhard, Michael Stark, Peter Shirley, and
James Ferwerda. Photographic tone reproduction for
digital images. ACM Trans. Graph., 21(3):267–276,
2002.

[18] Peter-Pike Sloan. Normal mapping for precomputed
radiance transfer. In SI3D ’06: Proceedings of the
2006 symposium on Interactive 3D graphics and
games, pages 23–26, New York, NY, USA, 2006.
ACM Press.

[19] Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre-
computed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In
SIGGRAPH ’02 Proceedings, pages 527–536, New
York, NY, USA, 2002. ACM Press.

[20] Tiago Sousa. Vegetation procedural animation and
shading in crysis. In Hubert Nguyen, editor, GPU
Gems 3, chapter 16, pages 373–386. Addison Wes-
ley, July 2007.

[21] Jos Stam. Stochastic dynamics: Simulating the ef-
fects of turbulence on flexible structures. Computer
Graphics Forum, 16(3):C159–C164, 1997.

[22] Lifeng Wang, Wenle Wang, Julie Dorsey, Xu Yang,
Baining Guo, and Heung-Yeung Shum. Real-time
rendering of plant leaves. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Papers, pages 712–719, New
York, NY, USA, 2005. ACM Press.

[23] Jason C. Wong and Amitava Datta. Animating
real-time realistic movements in small plants. In
GRAPHITE ’04: Proceedings of the 2nd interna-
tional conference on Computer graphics and inter-
active techniques in Australasia and South East Asia,
pages 182–189, New York, NY, USA, 2004. ACM.


