
Fluids and Solids on Octree Structure

Kupka Milan∗

supervised by Roman Durikovic

Faculty of Mathematics Physics and Informatics Comenius University

Abstract

Our fluid simulation runs on an unrestricted octree data
structure which uses mesh refinement techniques to enable
higher level of detail and solves Navier Stokes equations
for multiple fluids. We also show our solution for floating
objects and unmoving obstacles by setting up the boundry
conditions and solving the velocity of objects using a sim-
ple rigid body solver. We propose technique for discretiz-
ing the Poisson equation on this octree grid. The resulting
linear system is symmetric positive definite enabling the
use of fast solution methods. The standard approximation
to the Poisson equation on an octree grid results in a non-
symmetric linear system which is more computationally
challenging. For solving advection velocity of fluid we
use the semi-Lagrangian characteristic tracing technique.
To track the fluid surface we use Volume of fluid (VOF)
method.

Keywords: VOF, Octree, Navier-Stokes, Floating ob-
jects, Obstacles

1 Introduction

Interaction between fluid and solid is very common in real
world and in computer graphics animation. It can be var-
ious objects falling into water, floating on the surface or
acting as unmoving obstacle for the flow of fluid. This is
also the basic dividing of interactions between fluid and
solid objects.

First type of interaction is one-way solid-to-fluid cou-
pling where the motion of solid is predetermined and is
not influenced by the velocity of fluid, but the solid influ-
ence the velocity of the fluid so it can splash the water as
it falls into water or it can be an unmoving obstacle.

Second type of interaction one-way fluid-to-solid cou-
pling where the fluid moves the solid without the solid af-
fecting the fluid. This is why the size of the solid can be
from tiny to big object without affecting the motion of the
fluid.

Most interesting in the way of simulation and visual ef-
fect is the two-way coupling of solids and fluid. It is the
‘real world‘ way of interaction where also the properties
of solid, like density, take count in the computation. This
type of coupling is a difficult problem. In our solution we

∗kupka.milan@gmail.com

combine the velocity of solid that we handle specific when
solving N-S equations.

2 Previous work

First one who solved three dimensional Navier-Stokes
equations was Kass and Miller 1990 [6], and Chen and
Lobo 1995 [1] solved the two dimensional Navier-Stokes
equations converting to 3D by using height field based
on the pressure.They demonstrated both types of one-
way coupling. This kind of coupling became common in
many other researches. The full three dimensional Navier-
Stokes equations were solved in Foster and Metaxas 1996,
Foster and Metaxas 1997 and Foster and Metaxas 1997
Siggraph [3] [7] [4] for both water and smoke. Big
steps in efficiency were made introducing the use of semi-
Lagrangian numerical techniques by Stam 1999 [8]. An-
other improvemnet of fluid-solid interaction was the tan-
gential movement of fluid along the obstacles presented
by Foster and Fedkiw 2001 [2] .

Foster and Metaxas 1996 [3] demonstrate one-way
fluid-to-solid coupling where solids are treated as mass-
less particles that move freely on the fluids surface.

Yngve et al. 2000 [11] demonstrated two-way coupling
of breaking objects and compressible fluids in explosions,
however their technique does not apply to incompressible
fluids like water.

Two-way coupling on regural grid was first presented
by Takahashi et al. 2002 [10] . To approximate solid-to-
fluid coupling they set zero Neumann boundary conditions
for the pressure at these boundaries. Later they presented
another variation at Takahashi et al. 2003 [9] where they
used rigid body solver and fluid solver to achive solid-fluid
coupling. Drawback of this techniques is neglecting the
dynamic forces and torques of solid objects.

3 Simulation algorithm

Our article follows the simulation steps in our implemen-
tations. It consists of

1. Setting the time step size ∆t

2. Computing rigid dynamics of solids, Eqs.1 6

3. Setting boundary conditions between solid objects
and fluid, see Section 5

4. Solving Navier - Stokes equations, Eqs.7, 8

5. Computation of new VOF values, Eqs.17, 18

4 Rigid solids dynamics

In our simulation we simplify the movement of solid ob-
jects to translation an rotation of center of mass CM, which
position and rotation matrix is saved in global variables.
The solid is represented in the enviroment as another fluid,
but with restrictions in later steps of simulation, when
solving Navier-Stokes equations. These restrictions will
be explained later in this section. First, we have to cal-
culate forces acting on our solid. We compute them from
velocities of the fluid, from previus time step, in the fluid
cells neighbouring to cells with ’solid fluid’. It is easy to
find the vector from point of force activity to CM, because
we save the CM position. We sum the forces to find the
total force and torque:

Fn = ∑
i

Fi,τ
n = ∑

i
ri×Fi, (1)

where Fi is force acting on solid and ri is a vector from
point of force activity to CM. This values can be used to
integrate the position, velocity, orientation and angular ve-
locity. We do this by solving the following equations:

rn+1
CM = rn

CM +∆tvn
CM, (2)

where ∆t is the timestep, vn
CM is the velocity of CM and

rn+1
CM is a new position.

vn+1
CM = vn

CM +∆t
Fn

M
(3)

M is the mass of solid calculated from volume of ’solid
fluid’ and density.

An+1 = An +∆tωnAN (4)

An+1 is the orientation of the solid needed later for visual-
isation of solid. The visualisation process is explained in
Results section. Last integration equation is the computa-
tion of angular momentum Ln+1

CM .

Ln+1
CM = Ln

CM +∆tτn (5)

We compute the angular velocity equation.

ω
n+1 = ILn+1

CM (6)

where I is inertia of solid. After sovling the dynamics
of solid object we set the computed velocities as ’solid
fluid’ velocities. Now the simulation of fluid can con-
tinue, but the ’solid fluid’ velocities aren’t changed until
the next simulation step and recomputation of solid dy-
namics again.

Figure 1: Boundary conditions

5 Boundary conditions

To prevent fluid to flow into the obstacle, specific bound-
ary conditions must be set. This process contains manualy
seting up the velocity on faces between fluid and obstacle.
The situation is outlined on figure 1.

First the normal velocity on boundary face is set to zero
u0 = 0. The pressure of obstacle cell is set as the adjacent
fluid cell. This is called Neumann boundary conditions.

Later in the process we also set the tangential velocity
in obstacle w0. Depending on the type of slip conditions
we have two opportunities. Free-slip boundary w0 = w1
and no-slip boundary w0 =−w1.

In many simulations we have to set also surface bound-
arys to preserve mass. In our simulation we use another
fluid to simulate air. Due to this fact empty cells are elim-
inated and surface cells are cells containig both fluids so
there is no need for surface boundarys.

6 Navier-Stokes equations

The Navier-Stokes equations for incompressible fluids are

∂u
∂ t

=−(u.∇)u+∇(υ∇u)− 1
ρ

∇p+
f
ρ

(7)

∇.u = 0 (8)

where u is velocity vector consisting of (u,v,w) ,ρ is
density constant, υ is viscosity constant, f is the exter-
nal force (f ,g,h), mostly it is only the gravitation force(

f = h = 0;g = 9.8ms2
)
, p is the pressure and ∇ is vector

of partial derivation
(

∂

∂x ; ∂

∂y ; ∂

∂ z

)
. Equation 7 is the law of

momentum and equation 8 represent the conservation of
mass. On left side of equation 7 is the change of veloc-
ity of the fluid and on the right side are the acting forces
on fluids like advection, diffusion, pressure and external
forces.

Some motion elements, turbulence and surface tension,
are not included in these two equations, but we assume
their effects are dominated by the above velocity and
forces.

In our simulation we solve this equations discreeted on
MAC grid, so we are able to use finite difference method.
In the gird cell the velocities are defined on faces of the
cell and pressure, viscosity and density in the middle.

To solve N-S equations we use Helmholtz - Hodgeo de-
composition of vector field so we get the potencial and
gradient component.

ũ = u+∇q (9)

We get the gradient component by solving Poisson
equation

∇.u = ∇
2q (10)

To do so we define operator P that project vector field into
his potencial component u = P(ũ) = ũ−∇q. After appli-
cation of P operator on first N-S equation we get

unova = P
[

u+∆t{−(u.∇)u+υ∇
2u+

f
ρ
}
]

(11)

where the ∇ operator on MAC grid cell with index i,j,k is
sum of

ui+1, j,k−ui, j,k

∆x
+

vi, j+1,k− vi, j,k

∆y
+

wi, j,k+1−wi, j,k

∆z
(12)

Solving this equation consists of two steps. First we com-
pute guess velocities by the equation

ũ = u+∆t{−(u.∇)u+υ∇
2u+

f
ρ
} (13)

Now we have velocities of fluid by the advection, diffu-
sion and external forces. The second step is pressure pro-
jection. This means that after second step would ∇.u = 0.

∇.unova = ∇.

(
ũ− ∆t

ρ
∇p
)

= ∇.ũ− ∆t
ρ

∇
2 p = 0 (14)

and after solving the poisson equation

∇
2.p =

ρ

∆t
∇.ũ (15)

we get new velocity

unova = ũ− ∆t
ρ

∇p (16)

7 VOF method

As a method of surface tracking we choosed VOF. It is a
method based on jumping function F. This function desig-
nates volume of fluid of cell where 1 means cell is full of
fluid and 0 means empty.

It was presented in Numata,Durikovic [5]. The differ-
ence of our method is the use of this method for the blend
of fluids.

F is changed by the velocity of fluid, to compute it we
use donor-acceptor schema. The aproximation by finite
diferences would “blur” the surface of fluid so the sharp
profile of surface is lost.

We outline the computing of VOF. Volume of stream
that flows from donor to aceptor is |Vi| = ui∆t∆Sss where
u is normal velocity and number sign defines which cell is

Figure 2: Donor-Acceptor situations

donor and which is acceptor. The ∆Sss is the cubic capacity
of the smaller of the two faces. Volume of F that flows
trough face of the cell in time step ∆t is

|Vn|= min
(
FAD

in |Vi|+CFin ,F
D
in |VD|

)
(17)

where

CFin = max

((
1.0−FAD

in

)
|Vi|−

(
∑

i
FD

i −FD
in

)
|VD| ,0.0

)
(18)

Indexis D,A denote donor and acceptor while double in-
dex AD denotes donor or acceptor by the orientation of
interface in respect of direction of the flow.

The minimum in equation 17 restrain the cell to give
away more fluid it has and the maximum in equation 18
assures additive flow CF if volume of air that should be
transferd is larger then accessible.

Few examples of donor acceptor situations are shown in
figure 2.

IF an error occurs and some cell has the F value > 0 we
proportionaly distribute excess fluid back to donor cells.

8 Rewriting the methods on octree
structure

In our simulation we use octree data structure. Advan-
tages of this method are less computational demands at
preservation of level of details. We use the ability of AMR
(AMR - adaptive mesh refinement) in visualy pleasent sec-
tions. Disadvantage is the necessity of recomputing the ve-
locity, density and pressure and VOF values when chang-
ing the level of octree.

8.1 Velocity recomputation

We show the method of velocity recomputation on a 2D
example in figure 3. Let us explain how to find velocity
C5 from figure 3.

First, we compute nodal velocities on C5 which are
v1. . . v4. Nodal velocity is average of face velocities the
node is a part of. Than we compute edge velocities v12,
v13, v24, v34 as average of adjacent nodal velocities. Av-
erage of this edge velocities gives us central velocity vc1

Figure 3: Velocity recomputation

The final velocities of new subfaces of face C5 are average
of their nodal velocitys.

c15 =
v1+ v12+ vc1+ v13

4
(19)

The other three subface velocities are computed similarly.
Other way around when combining 4 faces to a new face

we just average their velocities.

8.2 Density and pressure recomputation

We deal with pressure and density similar way as with ve-
locities. When dividing cells we just set the values of child
pressure and density the same as parent cell. When com-
bining we set the value as average of child cells values.

8.3 VOF recomputation

When combining child cells to a parent cell we do the
weighted average of child VOF values

Fn = ∑
8
i=1 Fin |Vi|
|V |

(20)

Dividing of parent cell is a little more complex problem
because we need to be sure there won’t be any holes in the
fluid after dividing. The value of VOF of the child cell is

Fin = min

1.0,8Fn
∑neigh(i) Fsn

∑
8
j=1

(
∑neigh(j) Fsn

)
 , (21)

where n is the index of fluid, i is the index of child cell
and s is the index of neigbour of child cell. Neighbour
of cell is every cell that has common face with child cell
i and one neighbour cell with commnon node. None of
these neighbours is another child cell.

9 Results

The results of our simulation are stored in series of xml
files. One xml file for each simulation step and one
PovRay [5] file, where the positions of obstacles are
defined. All files are combined to form the scene file that
is rendered by PovRay raytracing program. The bubble
picture shows interaction of two fluids air and water with
static obstacle. Second pictures show water floating down
the stairs. Following tables shows properties of scenes.

Bubble
of cells Start of scene End of scene
total 512 512
air fluid (bubble) 91(27) 91(3)
water fluid 389 389
obstacles 32 32
of timesteps 50
time of computation 8 [sec]

Steps
of cells Start of scene End of scene
total 512 512
air fluid 48 48
water fluid 374 374
obstacles 90 90
of timesteps 70
time of computation 10 [sec]

Number of cells occupied by air and water fluid stays the
same at the start and the end, that shows conservation of
volume in this case. For both scenes fluids with properties
shown in following table were used.

Fluids
Fluid Density Viscosity Surface tension
air fluid 0.1 [kg/m3] 1 [Pa · s] 0 [N/m]
water fluid 10 [kg/m3] 0.1 [Pa · s] 35 [N/m]

References

[1] J. X. CHEN and N. DA VITORIA LOBO. Toward
interactive-rate simulation of fluids with moving ob-
stacles using navier-stokes equations. Graph. Models
Image Process., 1995.

[2] N. FOSTER and R. FEDKIW. Practical animation of
liquids. In Proceedings of ACM SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Confer-
ence Series, 2001.

[3] N. FOSTER and D. METAXAS. Realistic animation
of liquids. Graph. Models Image Process., 1996.

[4] N. FOSTER and D. METAXAS. Modeling the mo-
tion of a hot, turbulent gas. In Proc. of SIGGRAPH
97, 1997.

Figure 4: Bubble

Figure 5: Steps

[5] Numata K. Animation of fluids using multiphase
flow approach. Master’s thesis, University of Aizu,
2006.

[6] M. Kass and G. Miller. Rapid, stable fluid dynamics
for computer graphics. ACM SIGGRAPH, 1990.

[7] N. and D. METAXAS. Controlling fluid animation.
in cgi. Proc. of the 1997 Conference on Computer
Graphics International, 1997.

[8] J. STAM. Stable fluids. In Proceedings of SIG-
GRAPH 99, Computer Graphics Proceedings, An-
nual Conference Series, 1999.

[9] FUJII H. KUNIMATSU A. HIWADA K. SAITO T.
TANAKA K. TAKAHASHI, T. and H. UEKI. Real-
istic animation of fluid with splash and foam. Com-
puter Graphics Forum 22, 2003.

[10] HEIHACHI U. TAKAHASHI, T. and A. KUNI-
MATSU. The simulation of fluid-rigid body inter-
action. In SIGGRAPH 2002: Sketches Applications,
2000.

[11] OBRIEN J. F. YNGVE, G. D. and J. K. HOD-
GINS. Animating explosions. In Proceedings of
SIGGRAPH 2000, Computer Graphics Proceedings,
Annual Conference, 2000.

