Multiresolution Isosurface Rendering

Markus Steinberger*

Institute for Computer Graphics and Vision
Graz University of Technology
Graz / Austria

Figure 1: Perspective real time renderings of three different data sets. Left: MRI of a human head (1.5 fps; Center: composition of two
different isosurface levels of a human foot (1.6 fps); Right: CT scan of two cylinders of an engine block (2.0 fps). All datasets are of
size 1283, The system is capable of changing the isosurface level in real time, keeping all the data on the GPU.

Abstract

In this paper we propose a new technique for isosurface
rendering of volume data. Medical data visualization, e.g.
relies on exact and interactive isosurface renderings. We
show how to construct a multi resolution view of the data
using bi-orthogonal spline wavelets and how to perform
fast rendering using raycasting implemented on the GPU.
This approach benefits from the properties of both: the
wavelet transform and the reconstruction using three di-
mensional splines. The smoothness of surfaces is zoom
level independent and data can be compressed to speed up
rendering while still being able to show full detail quickly.
Ray evaluation is implemented in model space to enable
perspective rendering. Due to the fact that the isosurface
is not extracted from the data beforehand, the isosurface
level as well as the current resolution level can be changed
without any further computation.

Keywords: Isosurface Rendering, Volume Data, Wavelet,
3D DWT, Biorthogonal Spline Wavelets

1 Introduction

The rendering of isosurfaces is a well known problem in
the field of computer graphics. It deals with the task of
finding a closed surface corresponding to a particular den-
sity value within a three dimensional density field, similar
to the two dimensional problem of drawing contour lines
on a topographical map. As there are many measurement
devices producing three dimensional density fields, the
use of isosurface rendering is widely spread, especially

*markus.steinberger @student.tugraz.at

visualization of medical scan data, such as Computed
Tomography (CT) and Magnetic Resonance Imaging
(MRI) are of big interest.

The main problem engineers are facing is the huge
amount of data'. One of the first approaches which had
been made, was extracting the isosurface from the data
using the well known Marching Cubes Algorithm [7] and
rendering a simple triangle mesh. Even though the output
of the Marching Cubes Algorithm gives a rough and quite
noisy mesh, the algorithm itself is so fast and efficient that
it is still used.

1.1 Related Work

Of course a lot of authors tried to improve and alter the
algorithm, e.g. in [13, 2] the reader finds approaches
using different primitive shapes, improvement can also
be made by, e.g. usage of a different triangulation [4].
When examining all these different algorithms from a
signal processing point of view, it can be shown that all
of them can be generalised to a simple reconstruction of
discrete sampled data using different reconstruction filters
(for evaluation of these filters see [9]).

Only the simplest meshes produced by these filters can
be built using simple polygons, so a reasonable step for
each pixel we want to evaluate, is to use the idea of ray
tracing for calculating the intersection of the isosurface
and a viewing ray. A combination of ray tracing and filter

! Just consider a small dataset of 512 x 512 x 512 voxels, where each
voxel is represented by a floating point number of 32 bits: 4 byte 5123 =
512 MB

evaluation has been implemented on various hardware
architectures (e.g. [14, 8]). A recent work [5] focusing on
interactive isosurface rendering does not extract a certain
surface from the data beforehand. The advantage of this
approach is clearly the ability to change the user defined
isosurface level online — facing the problem of higher
memory consumption.

Another method we want to mention here is an ap-
proach trying to truncate unneeded data using discrete
wavelet transformation of the given data and thus reducing
the dataset by means of discarding both high frequency
information as well as irrelevantly sized basis functions
[15]. Unfortunately, this approach also uses Marching
Cubes to get displayable meshes.

Changing the point of view from sampled data repre-
sentation to an algebraic form, one should consider the ap-
proaches given in [10]. This paper deals with the problem
of rendering three variate polynomials using the so called
Frustum Form. Using this approach, higher frame rates
are possible as the special shape of the viewing frustum
can be exploited to precompute data for all casted rays.
We are looking forward to testing some of these methods
for fast and stable root finding.

1.2 Contribution

We will combine a lot of the aforementioned ideas and
taking them a step further to show - as far as we know -
a completely different approach of rendering isosurfaces.
Our main goal is to provide a method of interactive
isosurface rendering, that is capable of both: displaying
the given data quickly when further away from the actual
point of interest as well as displaying all details, when
taking a close-up.

Our approach will combine ideas from the discrete and
the continuous wavelet transformation, three dimen-
sional splines and numeric root solving. After some
pre-processing, we will show how to construct a render
tree structure and placing it on the graphics card for doing
highly parallel raytracing. Therefore, we use state of the
art technology as CUDA for computing the intersection of
each viewing ray with the isosurface.

1.3 Outline

In the first part of this paper, we will briefly review the
basic ideas of wavelets, focusing on bi-orthogonal spline
wavelets and how these ideas can be exploited for iso-
surface rendering. We will demonstrate how to reduce
the amount of memory needed, whilst still being able to
switch quickly to full detail rendering. Chapter 3 will fo-
cus on traversing the render tree and evaluating the isosur-
face polynomial along a viewing ray, while chapter 4 will
show our final results as well as focusing on stability prob-
lems and on how to prevent image artefacts. Finally, the
paper will conclude with discussing open questions and

provide ideas for future work that involve multiresolution
wavelets.

2 Multiresolution Volume Data Representa-
tion

A common approach for building a multiresolution view
on data is the representation of the data using differently
sized basis functions. We will show in Chapter 3, that
compactly supported bi-orthogonal spline wavelets [1] are
well suited for our system. An introduction to wavelets can
be found in [3, 12]. In simple words, one could describe
the wavelet transformation as the approach of construct-
ing an arbitrary signal using scaled and dilated instances
of just two functions: the wavelet function y(x) and the
scaling function @(x). When the wavelet transformation
is carried out in a discrete sampled domain, we talk about
the discrete wavelet transformation (DWT). When we con-
sider a continuous domain on the other hand, we talk about
the continuous wavelet transform (CWT). When applying
an appropriate DWT, we get an alternative representation
of the data, which needs as much storage as the original
data. Furthermore, it supports a perfect reconstruction of
the data, where every value of the DWT data corresponds
to either an instance of scaling function, or the wavelet
function (see figure 2).

Figure 2: f(x) constructed from scaled and dilated versions of
scaling function ¢ (x) and wavelet function y/(x): f(x) = @3+
Vi2+ Ve

Using all this information, it is clear that we are able
to construct a DWT of the given input data, followed
by discarding all data samples which do not contribute
enough information for our final render and finally getting
the data back to a displayable format.

2.1 3D Discrete Wavelet Transform

Implementing the DWT can be done in a recursive man-
ner. Starting with the given signal, the signal is filtered
using high pass filter (with impulse response /) as well as
low pass filter (with impulse response g) followed by down
sampling of the factor two, which provides the detail co-
efficients and the approximation coefficients respectively.
After this step, we can simply store the detail coefficients

and run the approximation coefficients through this whole
mechanism again. Assuming the original data has been of
size N = 2¥ k, € N, this procedure can be repeated until
we are left with only one approximation coefficient (see
figure 3). The data could be perfectly reconstructed using
reconstruction high and low pass filters (h and £) and up
sampling.

Figure 3: Block diagram of a 1D DWT

The three dimensional DWT (3D DWT) is constrcuted
using the same structure we used for the one dimensional
case. The three dimensional signal needs to be filtered
along all three coordinate axis. After filtering along the
first coordinate axis (e.g. x-axis), two outputs are obtained
which are then filtered along the second coordinate axis
(e.g. y-axis). This gives us a total of four outputs, which
are now filtered along the last coordinate axis (e.g. z-axis),
finally computing eight different signals. Now all seven
signals which were high pass filtered along at least one
coordinate axis are stored, while the one remaining signal
which has been filtered using only low pass filters is being
analyzed again. (See figure 4).

+

B0~
y@g: -
£(x,9,2) “@ ‘@—[-G)_Jir._.

B'o) Oss

3

Figure 4: Block diagram of a 3D DWT

An efficient implementation of the 3D DWT takes into
account that only a few filter coefficients are non zero for
every filter and only every second value of the convolution
has to be computed due to the down sampling. It should be
considered that the structure of the 3D DWT leaves room
for a quite high degree of parallelism.

2.2 Bi-Orthogonal Spline Wavelets

As already mentioned before, we used bi-orthogonal
spline wavelets as described in [1]. If our sole aim had

been to reconstruct the data perfectly after the DWT,
there would have been better choices for wavelets with
better time frequency characteristics. We have chosen this
kind of wavelets, as we are reconstructing the data using
splines. Thus, we can simply go to continuous space
directly, instead of performing an inverse discrete wavelet
transformation.

First of all, we want to take a closer look at this kind of
wavelets. In our approach, we used the same filters for all
three dimension of the 3D DWT. One example of the used
filters and the corresponding wavelet and scaling function
y(x) and @(x) are visualized in figure 5.

g —0.25 0.75 0.75 —0.25
h 0.125 —0.375 0.375 —0.125
g 0.25 0.75 0.75 0.25
h 0.5 1.5 —1.5 —0.5
Wavelet Function Scaling Function
15
1
06
0.5
0 04

02

Figure 5: Analysis and Reconstruction Filters, Wavelet and Scal-
ing Function for Spline Wavelet with Ny = 3 and N, = 1 Vanish-
ing Moments.

Examining the wavelet function y(x) and the way it is
constructed during an inverse wavelet transformation, one
can easily conclude that this function can be constructed
using instances of the scaling function ¢(x) which are half
the size of the wavelet function:

Yx) =) b @2 x—di)

where g; corresponds to the filter coefficients of the re-
construction filter 4. dj depends on the time delay of the
chosen filters as well as the vanishing moments of the fil-
ter, but we can state that d; | — dy = const V k (see figure
6).

This relationship is very important for the later recon-
struction and rendering process, as we just have to deal
with scaled and dilated versions of the scaling function. In
fact, the knots of these half sized scaling functions coin-
cide with the knots of the scaling functions used to con-
struct the next higher resolution’s low pass data. From
now on we will only consider coefficients that correspond
to scaling functions and name them wavelet coefficients
for simplicity.

2.3 Inverse Continuous Wavelet Transform of DWT
Data

As mentioned before, we are going to mix continuous and
discrete wavelet transformation. For the reconstruction of
the DWT data we are using the inverse continuous wavelet

.
* 1522 — 3)
* 7[?:5,9(21 —5)

b

Figure 6: Construction of the wavelet function y(x) using di-
lated versions of half sized scaling function ¢(x)

transform. By doing so, it can not be guaranteed that the
reconstructed data will interpolate the original sampled
data anymore. Although this will probably work out. A
different point of view will provide more insight into this
idea:

If we are not taking the sampled input data as our start-
ing point, but use the scaling function as our spline func-
tion to pre-compute the spline coefficients of a three di-
mensional interpolating spline, it can be guaranteed that
the fully reconstructed signal will interpolate the data per-
fectly?.

2.3.1 Localization and Support of Scaling Functions

As stated before, we are going to reconstruct the data only
using information of the scaling function. We already
mentioned how the wavelet function can be created us-
ing the scaling function, which is in fact just the B-spline
curve of degree k = N; — 1. Ignoring the boundary con-
ditions, we can immediately derive its support. For sim-
plicity, we derive it by means of overlap between adjacent
wavelet coefficients: Given a scaled and dilated scaling
function which equals a B-spline curve of degree k, this
scaling function will interfere with k adjacent wavelet co-
efficients in all dimensions.

If we think of three dimensional data and a three dimen-
sional grid G(xj,x,x3) of size n xnxn for 0 <x; <n
and n° wavelet coefficients, we can assign one wavelet
coefficient to each voxel. Now placing in three dimen-
sional space one scaling function for one wavelet coef-
ficient ¢, r, r,, it will influence the voxel G(ry,r2,r3) as
well as all voxels G(u;,uy,u3) with

I
T) SUP S | T B

E.g. the Haar wavelet which corresponds to k = 0, will
not influence its adjacent voxels; a B-spline wavelet of de-
gree 2 will influence a box of 3 x 3 x 3 voxels centered at

20One might choose to model the inverse system of the scanner used
for creating the dataset instead of interpolating the original data. E.g. to
to choose spline coefficients such that the integral of the spline over each
voxel equals the corresponding sample value.

05 =

Figure 7: Scaling Function ¢(x) for Ny = 3 and N, = 1 Vanish-
ing Moments placed in 1D Space given the coefficients ¢;. The
Scaling Function is given by the B-spline curve of degree two,
which is constructed using the polynomials Ny, N1 2, N2 5.

its location (see figure 7).

If the wavelet coefficient is placed at the border of the grid,
the reconstruction of the data depends on the chosen bor-
der conditions. There are several options:

e use a cyclic repetition: every part of the scaling func-
tion which exceeds the border shows up at the oppo-
site side of bounded space. This might lead to arte-
facts, if the density close to the border is not close to
Zero.

o zero extension: filling up the surrounding space with
zeros and extending the border of the volume, re-
moves not only the artefacts of the cyclic repetition,
but also falsifies the representation if only low fre-
quencies are considered, as the data is ’smeared out’.
Another problem of this approach is that as many ze-
ros as there are data samples have to be inserted for
each dimension, if we want to get rid of the border
problem for all resolutions. This results in eight times
the original data.

e mirror at the border: every part of the scaling func-
tion which exceeds the border is reflected back in.
This is a very accurate way of constructing the data,
however it is also very complicated.

e end point interpolating splines: this approach uses
different basis functions to interpolate the coefficients
placed at the border of the grid [12].

For efficient rendering, we have to consider how differ-
ent resolution — especially how single scaling functions of
different size coming from different resolutions — of the
same data, are placed in space, and how the corresponding
voxels within which they can be represented as a simple
polynomial form up.

The answer to this question can be obtained by consider-
ing the refinement equation:

o(x) =Y gip(2x—i) (1)

i€Z

Each scaling function of a lower resolution is refined
by half sized scaling functions in the higher resolution.
Therefore a n-dimensional grid element of a low reso-
lution is refined by 2" grid elements. If we consider the
three dimensional case, each voxel is refined by eight half
sized voxels. If we do not only consider two resolutions,
but o, we end up with an octree structure of depth o.

Using all the aforementioned information, it is possible
to reconstruct any given three dimensional discrete
sampled data at any resolution, using three dimensional
B-spline functions, which each correspond to piecewise
tensor products of polynomials of degree k.

3 Multiresolution Rendering

In chapter 2 we showed a way of how to represent any
discrete sampled data, using piecewise tensor products of
polynomial functions. Our next step is showing a way of
rendering an arbitrary isosurface of such kind of data.

3.1 Rendertree Setup

It is possible to arrange different resolution levels of the
data using an octree structure. For rendering it would be
sufficient to store the spline information in the leaves of the
octree only. By additionaly adding the information about
every resolution level to each node, it is possible to stop
the traversal earlier to render a low resolution view of the
data. Using this structure, one can place just as many lev-
els of the octree on the graphics card, which hold enough
information to render the current view on this object. So
if the object is far away from the camera, it should be suf-
ficient to use less information about the volume data for
rendering.

The results for this method might not always be optimal,
as high amplitude and high frequency information is not
considered for rendering. Another approach which will
lead to better results, might just truncate the data by leav-
ing out small amplitude coefficients. If parts of the data
are truncated which sum up to a bigger space, a speedup
can be achieved. In this case an adaptive pruning of the
octree will also result in less memory consumption, less
render effort and better frame rates.

3.1.1 Structure and Memory Consumption

To evaluate their performances, different implementations
of the render tree structure have been tested. To achieve
best frame rates, one should not underestimate the impor-
tance of pre-calculation of all the coefficients of the poly-
nomial for each voxel. The isosurface of this polynomial
shall be given by:

Mmax Wmax Nmax

fey)=Y Y Y

i=0 j=0 k=0

Xy =1 (@

where n,,,, corresponds to the function’s maximal expo-
nent along one axis. Multivariate polynomials of this

type are called tri-linear, tri-square and tri-cubic functions
for nygy = 1, ypgxy = 2 and nyee = 3 respectively. Ev-
ery voxel’s polynomial equation is given by (syq +1)°
constants ¢;jx. Due to the structure of the 3D DWT, the
wavelets as well as the scaling function correspond to ten-
sor products of the one dimensional wavelet and scaling
function. So the polynomials representing single wavelet
or scaling functions are separable. It seems to be sufficient
to build a system adapted to rendering separable polyno-
mials. In doing so, one tends to ignore the fact, that the
sum of separable functions — that occurs after combining
low resolution and high resolution data — is in general not
separable anymore.

To get an idea of the memory consumption when placing
the whole structure on the graphics card, a simple example
for N1 = 2 vanishing moments shall be given: This kind
of wavelets are constructed using tri-square functions, so
each voxel’s polynomial is described using (2+ 1) = 27
coefficients. A dataset of 128 x 128 x 128 results in an
octree of depth seven containing Y/, (2/)% = 2396744
voxels. Using floating point data types (32 bit), the
overall memory consumption sums up to 2396744 x 27 x
4B ~ 247TMB. A dataset of 256> samples already needs
~ 2.2GB, which exceeds the capablities of a consumer
graphics card. Solutions for this problems might be found
by

e storing the coefficients which correspond to the scal-
ing functions only and calculate the polynomials on-
line, when needed

e keeping parts of the data on the graphics card at a
time

e using an adaptive render tree structure for pruned
trees, which does not allocate memory for inactivated
voxels

3.2 Isosurface Rendering Pipeline

For rendering an isosurface setup using the given struc-
ture, an algorithm has to locate the first intersection of a
viewing ray originating at a given pixel position. An im-
plementation could consist of the following steps:

. 2

A 4 . .
/ Y ~, hohit !
" Transform Ray to ‘ N Evaluate Octree
' Model-Space | Boundary Hit |

" no intersection
A 4

no intersection —) Octree Traversal)
next voxel intersection
v

" Find the first Root along N " Compute Polynomial of ‘
the Ray AR Hit Voxel along the Ray
intersection found
store result
" Calculate Final Pixel ‘
\ Position and Normal y,

For a good visual impression of the isosurface, a perspec-
tive projection should be used. As the main complexity is

contained within the render tree data, it is obvious to trans-
form the ray to model space and not vice versa. Thus, an
octree traversal of any kind can be carried out. We have
chosen to use a parametric algorithm [11] for the imple-
mentation, as this suits the application well.

Using this information, the first three stages of the pipeline
are covered.

3.2.1 Computing the Polynomial of the Hit Voxel
Along the Ray

As soon as a voxel that contains a possible hit of the iso-
surface and happens to be at the chosen depth of the render
tree has been identified, information about the polynomial
along the ray needs to be gathered.

Let the ray be given by

R:7(t)=5+1t-d 3)

with 5 being the ray’s origin, d its direction and [fmins tmax)
the ray’s parameter interval which corresponds to the seg-
ment lying inside the voxel.

Substituting x, y and z in the voxel’s polynomial function
f(x,y,z) = by the parameterised form 3, the multivariate
function is converted into a univarite polynomial in param-
etert: f(¢) =1. By doing so, the polynomial function stays
polynomial while the highest exponent is tripled. E.g. a
tri-squared polynomial leads to a polynomial of sixth or-
der. 3

3.2.2 Finding the Roots of the Computed Polynomial

There are a lot of ways for calculating the roots of a poly-
nomial. We have chosen an algorithm based on the Sturm
Series [6]. The Sturm Series is a sequence of polynomials
from which it is possible to compute the number of roots
within an interval by counting sign changes in the series.
For a closer look of this adapted binary search for root
finding using Sturm Series, see algorithm 1.

We have chosen this approach, as it can identify the case
when there is no root within the given interval quickly. If
there is at least one root, it always needs the same number
of steps to find a small interval which covers the front most
root independently of the number of roots.

3.2.3 Final Output

If an intersection with the isosurface has been identified,
the final pixel position and the normal needs to be calcu-
lated from the obtained parameter #e5ec;. Evaluating the
ray equation 3 using the final parameter #;ysersecr leads to
the final pixel position: P = P(finrersecr). For lighting, the
normal at this point of the isosurface is also of interest. It
can be obtained by calculating the gradient of the polyno-
mial function: 7i = V f(x,y,z)|.

4 Results

We implemented our system on top of the OpenGL
graphics API running on Linux and Windows. The test
framework was implemented using C++ for the CPU code

3This procedure suffers from high computational complexity.

Calculate the Sturm Series for the polynomial
Evaluate number of sign changes (SC) of Sturm Series
if SC(tmin) = SC(tqx) then
| return (no intersection)
end
while true do
compute the midpoint #,,;y = (fmin + tmax) /2
if interval t,,, — tmin < € then
| return t,,4
else if SC(#,i4) = SC(tnin) then
‘ there is no intersection in the front half
make tmin = tmid
else
there is an intersection in the front half
‘ make fygx = tid
end

end

Algorithm 1: Adapted binary search for polynomial
root finding using Sturm Series.

and CUDA for the GPU code. The test system’s Graphics
Card was an NVIDIA 8800 GT 512.

During the implementation we mainly focused on feasibil-
ity and just partially optimized for performance, leaving
still a lot of performance potential to be obtained using
this approach.

From our first experiments we conclude the following:
The basic implementation using only floating point 32
arithmetic suffers from a lot of artefacts, especially for big
data sets (see figure 8). Although, current graphics cards
(NVIDIA GT200) support floating point 64 arithmetic a
coordinate transformation seems to be the better solution.
If the polynomials are not scaled with the voxels but
are transformed to a coordinate system reaching from
[-1,+1] for each coordinate axis, most of the image
artefacts are suppressed. This idea not only influences
the image quality positively, but also saves computations,
as the scaling function does not have to be scaled and
dilated for every single voxel. All different parts of
the scaling function which contribute to one voxel can
simply be precomputed and just need to be multiplied by
the influence coefficient while building the render tree.
The enhanced image can also be found in figure 8. For
best image quality, especially when using tri-cubic and
higher order basis functions, floating point 64 arithmetic
is recommendable.

To get an even better image quality, especially for rays,
which just pass through the corners of a voxel, additional
refinements should be made. If the parameter interval of
the ray adapts to the segment length lying inside the voxel,
the same parameter interval corresponds to a different
segment length. Especially for a very small segment
length, this again introduces artefacts. One possible
solution is setting the full parameter interval ([—1,+1])
to coincide with two planes limited by a circum-sphere

tri-linear | tri-square | tri-cubic
no optimization 64° 1.9fps 0.91fps 0.3fps
min-max-check 64° | 10.1fps 1.9fps 0.7fps
no optimization 128> 0.91fps 0.4fps 0.1fps
min-max-check 128> 6.5fps 1.6fps 0.3fps

Table 1: Frame rate analysis for the Foot dataset for different
resolution levels, wavelets and optimization criteria: screen res-
olution 800 x 600

around the voxel. Then the search interval has to be
confined to meet the octree borders.

Even after all of these measures, some pixel holes appear
at the voxel borders. This again is a problem due to
the limited floating point precision. We can also take
countermeasures for this problem: By increasing the
search interval by a small epsilon these gaps are filled (see
8).

For best performances of this approach it is important, not
to carry out highly computationally complex calculations
if we can discard a voxel or a whole subtree beforehand.
This is especially possible, if the dataset contains bigger
spaces that do not contain samples matching the current
isosurface level. One way of implementing this behaviour
can be achieved by storing the minimum and maximum
value contained within the subtree/voxel for each ren-
dertree node. This min-max-check can then be carried out
during the octree traversal, especially before calculating
the polynomial along the ray. The performance increase
of this technique is stated in table 1.

Figure 8: Artefacts for single precision floating point render-
ing. Left: no countermeasures; Center: uniform voxel size and
’circum-sphere’ approach; Right: additional increase of intersec-
tion search interval

4.1 Quality of different Basis Function Orders

There is of course a difference between the use of simple
wavelets and more complex ones. Figure 9 shows the re-
sults of tri-linear, tri-square and tri-cubic basis functions.
The benefit for increasing the order of the basis
function is a continuity increase which is especially
noticeable when changing form tri-linear to tri-squared

(a) tri-linear @ 1283

(b) tri-square @ 1283

(¢) tri-cubic @ 1283

Figure 9: Comparison between tri-linear, tri-square and tri-cubic
basis functions. Note the continuity increase from lower to
higher order basis functions. Remark: 9(c) has been median
filtered to remove pixel artefacts occurring for limited floating
point accuracy.

basis functions. Considering the tri-cubic case the
downsides of higher order basis functions arise quickly:
Due to the higher complexity introduced by larger ba-
sis functions the rendering gets significantly slower and
high frequency details seem to get smoothed out a little bit.

Figure 10 shows the independence of the zoom level for
tri-square basis functions, which allows close up studies
of the data on the fly. A comparison of different resolution
levels for tri-linear and tri-square basis functions can be
found in the color plate section.

Even with only 1/8 of the data samples the boundary
of the isosurface does not change notably. Only when the
resolution is decreased further, the difference might also
be visible for distant views.

4.2 Performance

Table 1 gives an overview of the performance of differ-
ent resolution levels as well as different basis functions.
Although framerates which allow interactivity to a full ex-
tend are not yet realisable, we are certain that this approach
has enough potential to meet the required frame rates for
real time user interactivity®.

While the computation time of the preprocessing step is
not as important as the rendering time, it should be still

4We think that an integration of the ’Frustum Form’[10] into our ap-
proach will help to achieve better framerates.

&
-

Figure 10: Different zoom levels for an isosurface of the Bucky
Ball dataset. Note the smoothness of the surface independent of
the zoom level.

mentioned here, that our implementation does not even re-
quire a second for this filtering task. Due to high degree
of parallelism in the DWT and the render tree setup, these
tasks can be completed rather quickly, even for big data
sets.

5 Conclusions

So far we have shown a different approach for render-
ing isosurfaces, which relies on multi resolution analy-
sis. While analysing the three dimensional data using a
discrete wavelet transformation, we apply a reconstruc-
tion using continuous three dimensional B-splines. The
key benefits of this idea are the zoom level independent
smoothness of surfaces, data compression and perspective
rendering. As the whole data is used for rendering, the iso-
surface level as well as the current resolution level can be
changed without any further computation.

The drawbacks of this approach are of course the occur-
rence of pixel artefacts for higher order wavelets, which
can be suppressed to a big extend by a coordinate transfor-
mation and using floating point 64 arithmetic. Although
we were able to use less information to render a good view
of the given data using lower resolutions, it is normally not
allowed to discard this information completely, as medical
visualization very strictly demands display of every detail
of the data set.

To enable this approach to work to a full extend, opti-
mizations for computationally complex parts of the algo-
rithm should be made. Another important memory saving
point is constructing the spline data online from the sam-
ples of each resolution level, while traversing the render
tree. Combining these ideas with next generation graphics
cards, we might be able to combine the visual benefits of
this approach and realtime interactivity.

6 Acknowledgement

We would like to thank Markus Grabner for his
ideas and support. All volume data has been taken
from The Volume Library (http://www9.informatik.uni-
erlangen.de/External/vollib/).

References

[1] Cohen A., Daubechies 1., and Feauveau J.-C. Biorthogonal bases
of compactly supported wavelets. Comm. Pure Appl. Math.,
XLV:485-560, 1992.

[2] John C. Anderson, Janine Bennett, and Kenneth I. Joy. Marching
Diamonds for Unstructured Meshes. In IEEE Visualization 2005,
pages 423-429, October 2005.

[3] Charles K. Chui. An Introduction to Wavelets. Academic Press,
Inc., 1992.

[4] Tamal K. Dey and Joshua A. Levine. Delaunay Meshing of Isosur-
faces. In SMI "07: Proceedings of the IEEE International Confer-
ence on Shape Modeling and Applications 2007, pages 241-250,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] John Kloetzli, Marc Olano, and Penny Rheingans. Interactive vol-
ume isosurface rendering using BT volumes. In SI3D '08: Pro-
ceedings of the 2008 symposium on Interactive 3D graphics and
games, pages 45-52, New York, NY, USA, 2008. ACM.

[6] M. Lal and R. Singh, H. ard Panwar. Sturm test algorithm for digital
computer. Circuits and Systems, IEEE Transactions on, 22(1):62—
63, Jan 1975.

[7] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. In ACM SIGGRAPH
Computer Graphics, volume 21, 1987.

[8] Kwan-Liu Ma and Steven Parker. Massively Parallel Software
Rendering for Visualizing Large-Scale Data Sets. IEEE Comput.
Graph. Appl., 21(4):72-83, 2001.

[9] Stephen R. Marschner and Richard J. Lobb. An evaluation of Re-
construction Filters for Volume Rendering. pages 100-107. IEEE
Computer Society Press, 1994.

[10] Martin Reimers and Johan Seland. Ray Casting Algebraic Surfaces
using the Frustum Form. Computer Graphics Forum, 27(2):361—
370, April 2008.

[11] J. Revelles, C. Urea, and M. Lastra. An efficient parametric algo-
rithm for octree traversal. In Journal of WSCG, pages 212-219,
2000.

[12] Eirc J. Stollnitz, Tony D. Derose, and David H. Salesin. Wavelets
Sfor Computer Graphics. Morgan Kaufmann Publishers, Inc., 1996.

[13] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised march-
ing tetrahedra: improved iso-surface extraction. Computers and
Graphics, 23:583-598, 1999.

[14] Ingo Wald, Heiko Friedrich, Gerd Marmitt, and Hans-Peter Sei-
del. Faster Isosurface Ray Tracing Using Implicit KD-Trees. /IEEE
Transactions on Visualization and Computer Graphics, 11(5):562—
572, 2005. Member-Philipp Slusallek.

[15] Pak Chung Wong and R. Daniel Bergeron. Performance evaluation
of multiresolution isosurface rendering. In DAGSTUHL "97: Pro-
ceedings of the Conference on Scientific Visualization, page 322,
Washington, DC, USA, 1997. IEEE Computer Society.

