
Real-Time Visualization of the Human Evacuation Algorithm

Piotr Byszewski ∗

Department of Computer Graphics
West Pomeranian University of Technology, Szczecin

Poland

Abstract

This paper presents a real-time visualization of human be-
havior in the indoor environments. A simple simulation of
the evacuation algorithm was implemented together with
the tools that support building of the indoor environments.
However, the main effort was put on real time and realistic
visualization of the simulation results. In order to obtain a
high frame rate, an agent based model was integrated with
techniques used in computer games. The proposed model
allows to reduce a number of calculations performed per
every individual agent by simplified decision making sys-
tem and using precalculation techniques.

Keywords: evacuation visualization, agents, real-time
rendering, computer graphics

1 Introduction

In real-time applications crowd simulation is a challenging
topic. Large groups of individuals must present intelligent
path planning which includes environment limitations and
reflects their autonomous nature. Agents should also be
able to communicate in order to react to a changing en-
vironment. Crowd visualization also presents a number
of challenges, including animation, visibility culling and a
level of detail. Moreover, performance and memory limi-
tations must be taken into account.
Thalmann [16] distinguished the two main areas of crowd
simulations. The first one concentrates on the realism of
behavioral aspects where visualization is only used to help
understand simulation results. The second area is focused
on high-quality visualization. In this case convincing vi-
sual results are more important than the time needed to cal-
culate them. Nevertheless, the combination of these two
trends in real time is possible.
In this paper we present a real-time visualization of hu-
man behavior during evacuation process. Our goal was
to achieve visually realistic human evacuation with mini-
mal computation requirements. Many simplifications for
the simulation process were used to accomplish this task.
Moreover, additional information was embedded in the en-
vironment in order to reduce the complexity of control-
ling each agent. That information was used to precompute

∗pbyszewski@gmail.com

paths that are used by the agents. To visualize this algo-
rithm Hive Simulator was implemented. This application
is able to visualize evacuation process in any scene created
ahead. Furthermore, Hive Editor was developed in order
to quickly create 3D indoor environments used by Hive
Simulator.
The remainder of the paper is organized as follows. In the
second section we present in general the best known crowd
simulation techniques. Our Hive Editor is described in the
third section. The fourth section presents Hive Simulator.
It also explains our simulation algorithm. The fifth section
consists of results. Finally, the last section concludes the
paper and proposes future work.

2 Previous Work

Crowd behavior has been studied for few decades now.
These researches are mainly focused on psychological as-
pects and were based on direct observation. However,
models, which can successfully simulate crowd behavior
on a computer, have appeared just in recent years.
Helbing [3] proposed a model in which agents are moving
in the direction calculated on the basis of generalized Nev-
tons force equation. This technique allows to realistically
simulate fundamental collective effects like the formation
of lanes, jamming near bottlenecks and ignorance of avail-
able exits.
Reynolds [11, 12] demonstrated that realistic crowd be-
havior can be achieved by using simple rules to control
each agent. There are three types of these rules. Separa-
tion rules maintain a certain separation distance between
nearby agents. Cohesion rules are causing a group forma-
tion effect. Alignment rules give the agent an ability to
head in the same direction as other nearby characters.
In models based on cellular automata [1, 15] the environ-
ment is discretized into a grid of cells. These cells are
used to store information about obstacles, other agents and
region attributes. During simulation every individual is
scanning its local environment and it can move when an
adjacent cell has met occupancy rules.
Hughes [4] proposed a global approach that compares
pedestrian crowds behavior to gases and fluids. That work
inspired Treuille [17], who noticed that pedestrian mo-
tion can be considered as a per-particle energy minimiza-
tion. Simulation in that model is driven by dynamic po-



tential field that unifies global navigation and local colli-
sion avoidance. Travel space is represented by regular grid
cells, which are combined into a set of potential fields.
These potential fields are then used to update people’s po-
sitions. Computational cost of this algorithm mainly de-
pends on the number of grid cells. The number of simu-
lated people has minimal impact on performance. Con-
tinuum model can simulate thousands of pedestrians in
real-time, but only if they are on a relatively small area.
Additionally, this approach is designed to simulate large
groups with common goals. It is not suited to simulate a
large number of small groups.
The models presented above mainly focus on the simu-
lation of crowd behavior ignoring the differences between
the agents. These systems define the same behavior for ev-
ery individual. Pelechano [5] introduced system in which
Helbings social force model was extended by a set of geo-
metrical and psychological rules. In that approach agents
have different behaviors that can be triggered at certain
situations. Tu and Terzopoulos [18] used artificial fish to
present a behavioral model controlled by visual percep-
tion. Funge [2], on the other hand, introduced a cognitive
model in which agents knowledge is used to plan actions.
Nevertheless, Massive (Multiple Agent Simulation Sys-
tem In Virtual Environment) [13] is the most commonly
used system that allows to model and visualize different
behavior for every agent in the crowd. Agents can have
unique responses, emotions and different physical appear-
ance. During simulation Massive uses artificial life ap-
proach. This technology allows agents to make a deci-
sion based on their simulated senses of sight, hearing and
touch. However, the possibilities offered by Massive are
computationally very expensive. Because of that, Massive
is mainly used in non real time crowd simulations for the
film industry.
Currently, a large number of units is also often seen in
computer games [7, 8, 9, 10]. These games use a num-
ber of techniques that reduce the computing requirements.
One of the most common optimization is the AI level of
detail (LOD AI) where computations are performed only
for the units that can be seen by a player. Another tech-
nique is a trigger system, which allows to trigger defined
actions of agents only when a certain situation happens.
This results in an illusion of intelligent agent reactions to
the changes in environment. Scripted action sequences is
a method that allows to predefine agent behavior. Agents
controlled by these scripts will replay hard coded actions,
which will look the same every time when they are played.
One of the most important technique is discretization of
walkable space. Space in which agents can move is de-
scribed by graph structure. That prevents agents from
walking through walls and other obstacles without provid-
ing them with visual sense simulation.

Figure 1: Hive Editor - main window.

3 Hive Editor

Hive Editor (Figure 1) is an application that can be consid-
ered as real-time level design tool, optimized for building
3D indoor environments. We automated scene creation
process by providing functions that quickly perform cer-
tain standard operations. The main steps of scene creation
process can be seen in Figure 2.
Once a 3D environment has been created it is saved into
.hve file. That file contains all data needed to reconstruct a
created scene. In this section we describe in detail how our
Hive Editor can be used to create indoor environments.

3.1 Indoor environment

Almost all indoor environments can be considered as a set
of simple cuboids connected with each other. This fact
was used in room creation process in Hive Editor. To sim-
plify room creation, only room position and size can be
controlled. Room geometry is created automatically by
room builder, which takes as an input selected grid tiles
(selection process is realized through Selection Tool which
can be seen in Figure 3). Before geometry is created var-
ious tests are preformed to determine if room can be con-
structed from given tiles in specified place. Proper vertex
and quads are created only if all conditions have been met.
Complex room shapes can be achieved by connecting sim-
ple cuboid-shaped rooms. Connecting rooms is also an
automated process and it is realized by passage builder.
Selected wall quads are taken as an input and are then ana-
lyzed along with the neighbouring geometry. This is done
to determine which quads should be removed and where
new corner quads should be created.
In order to differentiate rooms from each other and to
make them more interesting from a perceptual point of
view texturing module was implemented. Communica-
tion with this module is realized through Texture palette
window (Figure 3). This tool allows to add and remove



textures from the scene. It also provides a possibility to
manipulate UV coordinates and it enables basic operations
such as rotation, vertical flip and horizontal flip. To accel-
erate texturing process we implemented the algorithm that
automatically matches UV coordinates to room geometry.
This algorithm assigns proper UV coordinates to selected
quads depending on their size and neighborhood.

?

?

?

Figure 2: Scene creation process. From top to bottom: the
rooms creation, connecting rooms, texture mapping, waypoint
graph definition.

3.2 Waypoint graph

In big and complex environments pathfinding grows in
importance. There are a number of algorithms realizing
pathfinding, but the algorithm is not as important as the
search space representation. Waypoint graph [8, 6] is one
of the most popular representations of navigable areas. It
consists of nodes that define walkable space, and of edges
that determine connections between pairs of nodes.
Hive Editor allows to place waypoints anywhere inside
rooms (Figure 4). It is also possible to manually con-
nect selected waypoints. That will later inform navigating
through waypoint graph agent so that there is no obstacle
between these waypoints. Furthermore, there are two way-
point types: circle-based and rectangle-based. All their at-
tributes can be modified in order to adjust them better to
room geometry. Additionally, each waypoint can have one
of three flags which allows to determine specific waypoint
properties. These flags are: exit portal, spawn node and

Figure 3: Texture tool (left) and selection tool (right).

passage. The first flag informs that a given waypoint is
an exit from the scene. That waypoint will be a goal for
agents during simulation process. Spawn node symbolizes
an entrance to the scene. In that place new agents will
appear. Scene can have more than one exit and entrance.
Passage flag indicates that the given waypoint is placed be-
tween two rooms. It is the most important flag because it
will inform agent that he is entering a new room.

Figure 4: Waypoint graph.

4 Evacuation Simulation

Data created in Hive Editor are used by our simple
simulation algorithm. Visualization of this process is



realized using a program called Hive Simulator. However,
there are several initializations and precomputations done
before visualization starts (Figure 5).

Figure 5: Schema of the initialization process.

After running Hive Simulator it is possible to specify the
path to a particular .hve file. Data, stored in that file, are
used to reconstruct scene geometry and a waypoint graph.
In the next stage the waypoint graph is analyzed in order
to create passage groups. These groups consist of pas-
sages that are directly connected with each other. This
means that between every two passages within a given
group there is a route that connects them without crossing
the other passage. As a result passage group represents a
room regardless of geometry data. Another important ef-
fect of grouping is that each passage connects exactly two
groups.
The next step of the algorithm is to precompute paths be-
tween all passages in a group. Such a solution will allow
to share one path between multiple agents that are moving
towards the same goal. It will also significantly reduce the
number of needed calculations. Additionally to provide
quick access to a path, we organized them into two dimen-
sional look-up table (LUT). The size of this LUT is equal
to the number of passages in a group and their indexing
corresponds to passage indexes in that group.
In the next stage we initialize agents. In current Hive Sim-
ulator version agents are positioned randomly inside all
passage groups. That solution ensures that entire floor plan
is roughly equally populated. We also assign to them ran-
dom variables describing their movement and character.
Finally, after positioning agents, simulation and visualiza-
tion starts. Our simulation algorithm is described in sec-
tion 4.1.

4.1 Simulation

One of the assumptions for our simulation is that agents
are moving in the unknown to them environment, which
means that they do not know where an exit is. This sim-
plification can correspond to evacuation from smoke-filled
environments.

During simulation process every agent is assigned to a
passage group (that represents room) and to goal passage
within this group. When an individual reaches his goal he
is assigned to a new passage group. Also at that moment
a decision is being made which passage in a new group
will be a new goal passage. The majority of agents are as-
signed to the most popular passage, but some agents pick
the second popular passage or they make their choice ran-
domly. That depends on their character which is currently
described by two variables: courage and curiosity. Both of
these parameters are constant during simulation process.
After the goal passage was chosen the agent does not
change his target until he reaches that passage. If the agent
enters a passage group that consists only of one passage
then he automatically goes back and chooses other pas-
sage from a previous group.
Our agents have a very simplified memory model. The
only passage which is remembered is the passage through
which the agent came to the group and thus the group in
which the agent was for the last time. That information is
used during passage selection to prevent agents from cir-
culating between two groups connected by more than one
passage. Furthermore, when the agent is assigned to the
group he is also checking whether the group includes an
exit waypoint (which represents an exit from the scene).
If there is such a waypoint it will automatically become
an agent goal. To ensure a constant level of agents in the
scene whenever one agent reaches an exit, a new agent
is created in one of the waypoints designated as a spawn
node. In a real scenario that situation can correspond to
humans coming to a given floor from higher floors of the
building.

4.2 Implementation techniques

Visualization process is realized by using advanced
OpenGL API features. At the moment rooms which were
created in Hive Editor and agents that are currently rep-
resented by diamond shapes, are rendered. Additionally,
a small line near the agent is displayed to symbolize his
movement direction.
To speed up a rendering process, a few optimizations were
implemented. In order to avoid having to bind different
textures repeatedly while rendering rooms, an atlas packer
was implemented. During scene initialization all textures,
used to texture rooms, are packed and vertex UV coor-
dinates are properly recalculated. Furthermore, room ge-
ometry data is stored in high performance memory by
using vertex buffer objects (VBO). Vertex positions and
texture coordinates are stored in separate VBO for every
room. Additionally, every room is bound with axis aligned
bounding box (AABB). These bounding volumes are used
to construct a quadtree, which is later used during frustum
culling process.



Figure 6: An example scene with 60 agents.

Figure 7: An example scene with 300 agents.

5 Tests and results

In order to estimate the accuracy of our simulation we con-
ducted a series of experiments. These tests were mainly
focused on speed and correctness of the simulation results.
We used Hive Editor to create a number of scenes that had
different number of rooms and level of complexity. Com-
plex scenes are characterized by high levels of cyclic con-
nections between rooms. Furthermore, each of prepared
scenes was simulated with different number of agents, exit
portals and spawn nodes. Two of these scenes can be seen
in Figure 6 and Figure 7.
Neither the number of exit portals nor spawn nodes has
an impact on the quality of the simulation. Similarly the
number of rooms. However, the level of complexity of the
scene has a significant impact on the validity of the simu-
lation. If there are cycles between the groups of passages
it may happen that certain agents will circulate between
the same rooms.
All of the experiments were made on Intel Pentium 4

2.8 GHz with 512 MB of RAM and a GeForce FX 5700.
With that hardware configuration and with 800 × 600
screen resolution our simulator can simulate 5000 agents
with more then 30 frames per second. However, these
tests were performed without collision detection. The lack
of collisions also results in the fact that our visualization
looks better when rooms are not overcrowded.
We have also compared our simulator with Simulex.
Simulex from IES is advanced software that allows to de-
fine a building and its occupants, and simulate how they
will evacuate during an emergency. For more information
on Simulex refer to [14].
Unfortunately, we were not able to obtain license for this
software but we did our comparisons basing on available
recordings that presented Simulex simulation. We used
our Hive Editor to define similar environments as were
shown on these recordings. Next, we compared simulation
realized by Hive Simulator with recorded Simulex simula-
tion. One of the compared scenes is shown in Figure 8.
The scene contains four exits, they are marked with the
letters: A, B, C and D. As can be seen our agents prefer
exits B, C and D while Simulex agents are concentrating
only near exits B and D. In both simulations there is an
exit (A) that is ignored, which is a common situation dur-
ing a real evacuation. Letter E marks an entrance to the
scene. Simulex agents who came through this entrance are
heading to B exit. Unlike the Hive agents which are di-
recting towards C exit. Our agent who comes through E
entrance, does not calculate a path to a selected exit. It is
moving towards selected passage within a current room.
The first agents who came through that entrance selected
passages sequentially and that led them to a given exit.
Other agents were picking the same way which resulted in
a lane formation towards that exit. These lanes are often
not optimal and are forming only in certain conditions.

6 Conclusions and Future Work

This paper has described a simple model to visualize the
evacuation process in real time. The presented simulation
algorithm is based on agent architecture and it simulates
human evacuation from unknown to them environment in
restricted visibility conditions. In order to visualize that
process we have created Hive Simulator. This program
provides the possibility to perform simulation in any in-
door environment for a specified number of agents. The
scene in which the simulation takes place is created by our
Hive Editor tool, which in addition to the geometric data,
allows to create data necessary for visualization.
Our evacuation algorithm is not yet finished. In order to
increase the accuracy of the simulation we will implement
collision detection between agents located within the same
passage group. This issue is related to the effect of jam-
ming near bottlenecks, which will also be added. The
agents decision making system will be expanded. We are
planning to add stress level to agents, which will be impor-



(a)

(b)

Figure 8: Simulation process: (a) Simulex [14], (b) HiveSimu-
lator.

tant during a goal passage selection. A variable represent-
ing stares level will change during simulation depending
on the agent surroundings and his previous decision.
In the future we also expect to improve the simulation ap-
pearance. The current representation of the agent will be
replaced with a human-like model, which is animated by
using skeletal based animation system. Furthermore to in-
crease overall scene appearance, a possibility to load and
position static meshes inside rooms will be added to Hive
Editor. We are also planning to add lightmaps which sig-
nificantly improve the quality of a rendered scene.

References

[1] C. Burstedde, K. Klauck, A. Schadschneider, and
J. Zittartz. Simulation of pedestrian dynamics using
a 2-dimensional cellular automaton, 2001.

[2] John Funge, Xiaoyuan Tu, and Demetri Terzopou-
los. Cognitive modeling: Knowledge, reasoning and
planning for intelligent characters. pages 29–38,
1999.

[3] D. Helbing, I. Farkas, P. Molnar, and T. Vicsek. Sim-
ulation of pedestrian crowds in normal and evac-
uation situations. In M. Schreckenberg and S.D.

Sharma, editors, Pedestrian and Evacuation Dynam-
ics, pages 21–58, Berlin, 2002. Springer.

[4] R.L. Hughes. The flow of large crowds of pedes-
trians. Mathematics and Computers in Simulation,
53:367–370, Oct 2000.

[5] N. Pelechano, J. M. Allbeck, and N. I. Badler. Con-
trolling individual agents in high-density crowd sim-
ulation. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, pages 99–108, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association.

[6] J. Pettre, J. Laumond, and D. Thalmann. A navi-
gation graph for real-time crowd animation on multi-
layered and uneven terrain. First International Work-
shop on Crowd Simulation, pages 81–90, 2005.

[7] Steve Rabin, editor. AI Game programming wisdom.
Charles River Media, 2002.

[8] Steve Rabin, editor. AI Game programming wisdom
2. Charles River Media, 2004.

[9] Steve Rabin, editor. AI Game programming wisdom
3. Charles River Media, 2006.

[10] Steve Rabin, editor. AI Game programming wisdom
4. Charles River Media, 2008.

[11] Craig W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. In Computer Graphics,
pages 25–34, 1987.

[12] Craig W. Reynolds. Steering behaviors for au-
tonomous characters. In Game Developers Confer-
ence 1999, 1999.

[13] Massive Software. Massive.
http://www.massivesoftware.com/, visited:
30.01.2009.

[14] Integrated Environmental Solutions. Simulex.
http://www.iesve.com, visited: 30.01.2009.

[15] Franco Tecchia, Cline Loscos, Ruth Conroy, and
Yiorgos Chrysanthou. Agent behaviour simulator
(abs): a platform for urban behaviour development.
In In GTEC2001, pages 17–21, 2001.

[16] Daniel Thalmann and Soraia Raupp Musse. Crowd
Simulation. Springer, 2007.

[17] Adrien Treuille, Seth Cooper, and Zoran Popović.
Continuum crowds. ACM Trans. Graph.,
25(3):1160–1168, 2006.

[18] Xiaoyuan Tu and Demetri Terzopoulos. Artificial
fishes: Physics, locomotion, perception, behavior.
pages 43–50, 1994.


