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Abstract

This paper presents a fast, robust and completely auto-
matic technique for creating high dynamic range images
of non-static scenes. The technique is based on proba-
bility maps. These maps are calculated with comparison
function from sequences of hand-held photographs. In
practice, several basic problems occur when taking an im-
age sequence. First, the camera is moving which causes
images to misalign. This results in a blurry HDR image.
Secondly, objects are in movement causing ghost artifacts.
Finally, the dynamic range of a single image is decreased
by sensor noise. Our solution is a GPU based application
for compositing HDR images that can handle all afore-
mentioned problems.

Keywords: ghost removal, dynamic scene HDRI acqui-
sition, automatic image position alignment, GPU

1 Introduction

The radiance of real scenes around us varies dozen or-
ders of magnitude. A typical LDR (Low Dynamic Range)
camera is not able to capture full range of a scene lumi-
nance. HDR (high Dynamic Range) camera sensors with
extended dynamic range exist but they are very not pop-
ular at consumers market [8, 9]. Moreover, the dynamic
range of such sensors is also limited to 7-8 orders of mag-
nitude [5]. The most popular method of the HDR image
acquisition captures an HDR image based on a sequence of
photographs taken with different exposure times [6]. The
main drawback of this technique is the limitation to static
scenes. Any movement in input photographs can cause the
ghost artifacts (Figure 1). Moreover, in the case of hand-
held photographs, another artifacts like object misalign-
ments can appear due to camera shifts and rotations [13].

In the paper we proposed a new technique for acqui-
sition of non-static scenes. Our application of this tech-
nique allows to create correct HDR image based on a sim-
ple sequence of three LDR photographs with overlapped
ghost regions. Additionally, the application aligns pho-
tographs and provides image de-noising. All functionali-
ties are fully automatic. The technique is robust and fast
due to GPU-based implementation.

The paper is organized as follows. In section 2 previous
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works are discussed. In section 3, the application of our
HDR acquisition technique is presented in details. Section
4 shows and discusses achieved results. In the last sec-
tion, the paper is concluded and possible future work is
suggested.

Figure 1: Problem: LDR sequence (top row), HDRI: con-
ventional approach (bottom left), our approach (bottom
right).

2 Previous work

There is a growing demand for HDR image of both static
and dynamic scenes. That’s why as far as hardware so-
lutions of HDRI acquisition are not easily available, soft-
ware solutions will be needed. A few approaches have
been developed in order to remove ghosts artifacts during
HDRI acquisition. The first technique is based on track-
ing non-static objects by matching their key points in a
sequence of images [12]. The method fails for occluded
objects or for patterns for which it is not possible to find
correct matchings. Another approach replaces the whole
regions, where ghost artifacts are likely to occur, with ref-
erence ones. The regions can be selected manually [7][10]
or detected automatically [2][3]. Unfortunately, the tech-
nique works correctly only when the whole dynamic range
of a region can be registered in a single image exposure.
A different solution was presented in [4] where iterative
propagation of ghost probability was used. The method
requires a large number of images in LDR sequence and
still background for moving objects. Moreover, it is time
consuming and must be computed in many iterations.



Image registration is another problem during acquisi-
tion of HDR image. Misalignments between photographs
in a sequence can appear due to camera movement (in the
case of hand-held photographs)) or not careful usage of tri-
pod. There are two basic techniques of image registration:
matching key points and checking pixels difference. In the
first case the same drawbacks as during ghost removal oc-
curs (matching key-points problem). The solutions based
on pixels difference generally give better results. In some
software solution for alignment only horizontal and ver-
tical shifts without rotation compensation are considered
due to complexity of computations [13].

In the paper we propose modified pixel-based approach
for removing ghosts and misalignments. Deghosting is
based on the ghost maps. The ghost maps are calculated
using probability of belonging pixels to background. They
depict regions where ghost artifacts are likely to occur or
under- and overexposed pixels. The technique is fast due
to GPU based implementation of de-ghosting and align-
ment modules.

3 Algorithm

We developed the GPU based application for HDRI ac-
quisition based on taking a sequence of hand-held pho-
tographs. The algorithm used in the application has four
successive stages: image de-noising, position alignment,
ghost removal and HDRI composition. Three of them
can be used optionally (Figure 2), however, it is easier to
align denoised images or remove ghost from aligned pho-
tographs so each successive stage works better if previous
stages were included into the acquisition pipeline.
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Figure 2: Image acquisition pipeline.

3.1 Image denoising module

The image denoising module is based on the wavelet co-
efficient thresholding method presented in [11]. We opti-
mized the existing implementation of the algorithm. The
new implementation based on GPU was developed.

3.2 Image alignment module

The images alignment module compensates camera shifts
or rotations. In the first step, an image with middle ex-
posure is chosen as a reference one (Figure 3). Other im-
ages in a sequence are aligned to this image. Three align-
ment parameters are iteratively optimized: dx, dy and «.

The transformations are calculated with sub-pixel preci-
sion (floating values are used) (Figure 4).
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Figure 3: Reference image — middle exposure.
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Figure 4: Image alignment parameters.

Sampling points of images are determined according to
equation:

x' = xcos(a) —ysin(at) + dx,

y = xsin(a) +ycos(a) +dy, M

where: ¥,y - non-reference image pixel coordinates,
x,y - reference image pixel coordinates,
a - angle of non-reference image rotation,
dx,dy - horizontal and vertical shifts.

Bilinear interpolation is used to calculate sampled
value. If sampling point is outside image boundary, black
value is returned. Each sampled value in non-reference
and reference images is normalized by exposure:

S md?
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where: d - aperture,
S -1ISO speed,
f - focal length,
t; - exposure time of image i.
Si(x,
Py = S 3
l

where: P,(x,y). - exposure normalized component ¢ of
image i at xy position, ¢ € {R,G,B},
Si(x,y). - component ¢ of input LDR image i at xy,
E; - exposure value of image i.

Then normalized values are used in objective function
K to minimize misalignments. Output tells us if compared
values match each other in all RGB channels or not. Com-
parison function should have a margin for small registra-
tion errors. Output value should also be generally con-
stant when values difference is equal or greater than some



threshold. That’s why standard cross-correlation shouldn’t
be used. We propose bidirectional s-shape comparison
function. Function parameters were tuned by trial and er-
TOr.
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where: K - alignment comparison function,
Pref(x,y)c- component ¢ of reference image at xy,
P(x',y'). - component ¢ of non-ref. image at xy,
c€{R,G,B}.

If any of pixel values is under- or over-exposed the value
1 is returned (instead of calculation of K). In GPU im-
plementation, the images are represented by textures. Di-
mensions of the textures are reduced to power of two (see
Figure 5). For fast summation, they are downsampled by
factor of two until one pixel dimension is reached. The
smaller values in that texture the better alignment. In each
iteration, texture values are compared with values com-
puted in the previous iteration until the best alignment for
each images is reached. Up to four images can be aligned
in parallel in GPU based implementation due to four chan-
nels RGBA architecture.
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Figure 5: Alignment module hardware implementation.

3.3 Ghost removal module

In de-ghosting stage the ghost map is generated for each
LDR image. It estimates a probability that a pixel be-
longs to a still background or to moving object (ghost).
The ghost maps are computed in three stages: initial map
generation, normalization and final smoothing.

The initial ghost map is computed based on equation:

k
Gi(xy)= Y F(R(xy),Pixy)), ©)
J=1j#
where: G; - ghost map of i-th image,
F - deghosting comparison function,
P;, P;-i-th and j-th normalized LDR images,
k - number of images.

The de-ghosting comparison function F is based on sig-
moid function (equation 6). At development stage func-
tion was designed and tuned with registration error dis-
tribution graphs. Even for static scenes caputerd values
aren’t linearly dependent due to registration errors. That’s
why we have used distribution graphs to determine accept-
able and unacceptable limits in color difference.
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where: F - deghosting comparison function,
P;(x,y). - componet ¢ of normalized image i at xy,
P;j(x,y) - componet ¢ of normalized image j at xy.

The initial ghost maps must be normalized. The nor-
malization is based on equation:
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where: gin, 8max - Minimum and maximum value in all
ghost maps (G;(x,)),

Gi(x,y) - pixel of a ghost map i at xy,
G’(x,y) - pixel of normalized ghost map i at xy,
k - number of images.

Additionally, the zero value is assigned to over-exposed
pixels.

A special mode of normalization, that gives better re-
sults, was designed for 3-images sequence (such sequence
is often captured using automatic exposure bracketing
mode (AEB) in DSLR cameras). It takes into considera-
tion various special conditions: under- and over-exposed
pixels, color difference greater than a threshold. For
such special pixels, the modified normalization equation
is used:

4
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Normalized ghost maps are prone to errors. They look
noisy due to independent computation of each pixel in
ghost maps (see Figure 6). In the next stage the ghost
map smoothing is proceeded. It integrates map values with
neighbor pixels.

The smoothing is based on dilatation, erosion and con-
volution. Firstly the (3 x 3) dilatation is applied (equation



Figure 6: Example LDR images sequence (left column:

641705’ %Os, %s) and their normalized ghost maps (right

column).

9). It removes one or two pixels regions recognized as
ghost from the ghost maps. After dilation, the (15 x 15)
erosion is applied (equation 10). It fills holes in ghost re-
gions recognized as valid pixels. These regions are addi-
tionally extended during dilatation. Finally ghost maps are
smoothed based on convolution with (5 x 5) window ker-
nel (equation 11). The example results after each step are
presented in (Figure 7)

G4 (x,y) = max ( max (GHx+dx,y+dy))), )
dx=—1 dy=-1
7 7 4
G{(x,y) = min ( min (G} (x+dx,y+dy))), 10)
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where: G;(x,y) - pixel of ghost map i at xy position,
G} - ghostmap after normalization,
G;f - ghostmap after dilatation,
G¢ - ghostmap after erosion,
G - ghostmap after convolution,

dx,dy - horizontal and vertical offsets in
windowed kernel.

The ghost maps generation module was implemented
in GPU (see Figure 8 for details). It creates maps in a
single rendering pass. For more than four images in an
image sequence, multi-texture hardware extension (MRT)
is used. To improve performance, horizontal and vertical
kernels are applied separately in each operation.

3.4 HDRI composition module

The final HDRI composition is based on the method pre-
sented in [1]. The main improvement is integration of the
ghost map with the final equation:
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where: H(x,y) - pixel of output HDR image at xy position,
Si(x,y) - pixel of input LDR image i at xy,
E; - exposure value of image i.
G¢(x,y)- grayscale pixel of ghost map i at xy,
Wi(x,y)- pixel weight of image i at xy.

Moreover, the weight function is modified:

1 1
Wilx,y) = i ) ’
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where: W;(x,y) - pixel weight of image i at xy position,
Si(x,y)c - pixel ¢ component of LDR image i at xy.

It has been tuned in trial and error process in witch ghost
maps task was taken into consideration. A chart of the
weight function for a single color component is shown in
(Figure 9).
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Figure 9: Weight function graph for single color compo-
nent.

The HDR image color is computed based on equa-
tion 12 in a single rendering pass. The chart of shader
used in this task is presented in Figure 10. The shader has
scalable number of input textures.

4 Results

A few example image sequences were used to test qual-
ity and performance of the HDRI acquisition application.
Both hand-held and tripod sequences with varying number
of images and exposure range were assessed. The best re-
sults were achieved for exposure difference less or equal
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Figure 7: Ghostmap i=1 results after: dilatation — G;j (left), erosion — G¢ (middle), convolution — Gf (right).
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Figure 10: HDRI composition shader.

to two F-stop. It is compatible with exposure bracket-
ing functionality in typical DSLR cameras which allows
for such exposure change. In Figure 11 we demonstrate
results of image alignment. Even for exaggerated cam-
era movement, the application correctly aligns all pho-
tographs. Another example (see Figure 12) presents ghosts
removal results. In this sequence, moving objects (a
woman playing with dog) causes ghosts artifacts. Our
ghost removal module detects moving objects and removes
ghost from a final HDR image. We compared our tech-
nique with existing application for acquisition of a dy-
namic HDRI scenes: Dynamic Photo HDR, Qtpfsgui and
Photomatix. The results of comparison is shown in Fig-
ure 13. Our application seems to produce the best images
with correctly removed ghosts. Our application requires
11 seconds to align, de-ghost and create a final HDR im-
age based on a sequence of three LDR images of reso-
lution 3039x2014 pixels (GPU textures upload/download
4.55 s, alignment 6.11 s, ghost detection and HDRI com-
position 0.47 s). The high performance of algorithms com-
putation was achieved due to careful GPU implementa-
tion. More examples is presented on project’s website
(http://mmarkowski.strony.wi.ps.pl/grhdri.html).

5 Conclusions and Future work

In this paper a fully automated tool for HDRI acquisition
was presented. It allows to create HDRI images of static
and dynamic scenes from hand-held photographs. In fu-
ture work we plan to improve the ghost map generation
module. We noticed that some ghost removal errors can
occur for images with many high dynamic range ghost re-
gions like reflections on a waving water. Performance of
alignment module could be also improved, because cur-
rently it is 12-times slower module than de-ghosting and
final composition modules.
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Figure 11: Tonemapped HDRI without aligning(left) with aligning(right).

Figure 12: Deghosting example: LDR sequence (top row), conventional acquisition (bottom left), our approach (bottom
right).




Figure 13: Deghosting example: LDR sequence (top row), conventional acquisition (bottom left), our approach acquistion
(bottom right).




