
Real-time multi-bounce many-object ray tracing with
distance-normal impostors

Peter Dancsik∗

Peter Minarik†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

This paper presents a fast approximate ray-tracing tech-
nique for the GPU. We extend previous distance impostor
techniques to handle scenes with multiple reflective and
refractive objects in real time. There are two key ideas
that allow this. First, we turn around the distance impos-
tor approach not to intersect internal rays with enclosing
environmental geometry, but external rays with an object.
Texture maps representing refractive objects are labelled
refractor maps. To remedy problems with cube maps we
propose a height-and-normal map representation, which
we call a refractor height map, and describe an algorithm
to find multiple refracted ray bounces within it. The sec-
ond idea is the separation of static and dynamic objects.
Classic distance impostors can be used for the static en-
vironment, and only those of moving objects need to be
updated in every frame. Light paths passing through mov-
ing objects can be found by searching their refractor maps.
We demonstrate the proposed techniques in a chess appli-
cation featuring two full sets of glass pieces, with only one
piece moving at a time. Shadows, reflections, refractions
and caustics are simultaneously rendered in real time.

Keywords: ray tracing, distance impostors, caustics

1 Introduction

There is an ongoing effort to achieve ray tracing effects
in interactive applications. Full GPU ray tracers could not
produce high frame rates in a complex environment with
lots of polygons. According to Whitted[8] 95 percent of
the time of the ray tracing was the calculation of the in-
tersection points. Although this number is getting lower
due to the high level parallelization in the graphics card,
the rule about the intersection calculation being a bottle-
neck still applies. If accuracy is an important requirement,
calculating the intersection of the ray with the triangles is
unavoidable. However, in case of interactive, frame rate
sensitive, real time applications such as computer games,

∗petrovdancsikov@gmail.com
†peter.minarik.84@gmail.com

trading the correctness for a good approximation and bet-
ter performance is always a good deal.

Let us examine the architecture. The fragment shader
renders the pixels independently, allowing for massive par-
allellization and high performance. On the other hand,
this means that the individual pixels have only local infor-
mation, sufficient for the local illumination model. Con-
versely, in the global illumination model the color of a
pixel highly depends on its environment. This kind of in-
formation could be delivered to the shader as textures. The
GPU traces rays of the same origin efficiently by rasteriz-
ing the scene as seen from the origin. During rasterization
the nearest intersection points can be calculated by the z-
buffer mechanism. From a specific reference point we take
pictures of the environment in all the six directions with a
ninety-degree field of view angle. This technique is called
environment mapping. The map is a discrete sampled rep-
resentation of radiance incoming from the real environ-
ment.

The information stored in an environment map is only
accurate at the reference point. The farther we go from the
reference point the less the map approximates the environ-
ment from that specific point. If the map contains only en-
vironment elements from an infinite distance (such as the
sky), this error vanishes. In our case the immediate envi-
ronment is also in the map, thus the environment mapping
gives acceptable approximations only for dot-like objects.
Therefore, we need to estimate where the environment sur-
face point actually seen at a given direction from a shaded
point is, and the direction to that point from the reference
point. Having this direction vector, we can read the color
from the environment map to get the incoming radiance at
the shaded point.

2 Previous work

It is possible for ray tracers to achieve real-time perfor-
mance without approximating the intersection computa-
tion. Both CPU and GPU implementations exist. [7] re-
views the state of the art of ray tracing. [9] proposes an
effective implementation of the kd-tree on the GPU. Here-
after we will deal with ray tracing effects achieved by en-

vironment mapping.

In [1] the environment is approximated with a proxy ge-
ometry (for instance a sphere). We determine the inter-
section of the sphere and the ray starting from the given
point in the given direction, after that we read the environ-
ment map at the direction of the intersection point. If the
proxy does not approximate the geometry of the scene well
enough or the size of the scene is much greater than the in-
dividual objects in it, the approximation does not give an
accurate result.

In [5] distance impostors are used which store not only
the environment information but the distance from the ref-
erence point as well. Knowing the distances between the
visible points of the environment and the reference point,
we can determine the position of an environment point
seen from a given point in a given direction. As our ap-
proach is based on this work, we will elaborate on the
method in Section 3.

In [6] the environment information is stored in layered
distance maps. Taking pictures of the environment the first
layer will contain the nearest intersection point of the en-
vironment and a ray started from the eye through the pix-
els of the screen, the second layer will contain the sec-
ond nearest intersection points and so on. The distance
from the reference point and other surface information are
stored as well. This kind of solution is an extension of the
environment map. The solution above which is using dis-
tance impostors is like a one-layered distance map. The
main disadvantage of the technique is that during the cal-
culation of the intersection points search has to be done in
all the layers and when the scene changes everything has
to be recalculated. Thus, the method is only real-time for
a single reflective or refractive object.

Both above approximate ray tracing methods assume a
single reflective or refractive object in a locally shaded en-
vironment. Multiple objects are handled by treating each
one as part of the environment of the others. While this
offers proper multiple reflections and refractions, in a dy-
namic scene, all environment maps have to be entirely up-
dated in every frame. Even with just a few refractive ob-
jects, this will fail to be real-time.

Our approach is to store only the static environment in
the environment maps thus they do not need any recal-
culation during runtime (see Section 5.2). To determine
whether the static environment is occluded by the objects
of the dynamic environment, ray-object intersections must
be calculated for all dynamic objects. The intersection cal-
culation method depends on the representation of the ob-
ject. In this paper we propose two method (see Section 4
and 6).

3 Intersection computation with dis-
tance impostors

Figure 1 shows the environment around reference point ~o.
The vectors are transformed to the reference point’s coor-
dinate system. We want to compute the incoming radiance
at point ~x from direction ~R. Ray tracing would select the
intersection point point ~q, classical environment mapping
would read the texel at direction~r. Reading the environ-
ment map from direction ~q we would get exactly the cor-
rect result. We know that point~q is on the ray, therefore we
must choose points that satisfy the ray equation (~x +d ·~R,
d ≥ 0).

Like in [5] we did not only store the color values in
the environment map but the distances from the reference
point coded into the alpha channel as well. Now we have
information about the environment geometry. Maps hav-
ing this kind of distance information are called distance
impostors. We use the name distance-normal impostor for
maps that store normal vectors as well.

Having the distance information one can tell about an
approximation how well it estimates the intersection point.
Such an approximation is ~y in Figure 1. We read the en-
vironment map’s alpha channel at the direction of point ~y
to get~y′. Note that ratio |~y | / |~y′ | expresses the accuracy
of approximation point ~y. If the ratio equals 1, point ~y is
exactly the hit point. If the ratio is less than 1, ~y is an un-
dershooting, i.e. the point is in front of the surface. On
the other hand if the ratio is greater than 1,~y is behind the
surface (we call this case overshooting). We must choose
a fast strategy to find a hit approximation using the fewest
steps possible.

Figure 1: By querying the environment map in the direc-
tion of approximate intersection point ~y, the result is sur-
face point~y′. Storing distance values one can estimate the
correctness of the approximation by calculating the ratio
|~y | / |~y′ | .

In [6] linear search is used to find the first undershoot-
ing and overshooting pair. Then secant search computes a
more accurate result.

We used the method described in [5], which uses only
secant search. Figure 2 shows the search process. To find

the first guess for the ray hit, we assume that the environ-
ment surface at point ~r is perpendicular to ~R. We iden-
tify the intersection of the surface and the ray, that will be
point ~p. By reading the environment map’s alpha channel
at direction ~p, we can get ~p′. To get the second approxima-
tion point~l, we assume that the surface is planar between
points~r and ~p. ~l is on the ray (~l =~x + dl ·~R), and on the
line defined by~r and ~p′ (~l = t ·~r +(1− t) ·~p′). Solving the
equation system we get~l, and compute~l′ from the distance
value read from the environment map at direction~l.

Figure 2: Finding the first two approximations in a dis-
tance impostor. Classical environment mapping would se-
lect~r. Assuming that the surface at~r is perpendicular to ~R,
we can retrieve ~p. Reading the environment map in direc-
tion of ~p we get the surface point at ~p′. To determine~l we
assume that the surface is planar between ~r and ~p′. This
results the approximated surface point~l′.

The two obtained approximations can be refined by it-
erations. We must find the intersection of the the ray with
the line defined by the last overshooting and undershoot-
ing point. Since point~r corresponds to an infinite ray pa-
rameter, which is surely an overshooting point, we can use
this ideal point at infinity if there are no other overshoot-
ing points. On the other hand, if there is no undershooting
point, we can use~x or substitute with~r.

At this point we can trace light paths of depth two.
The primary rays are identified by rasterization, and with
the presented method we can compute the secondary rays.
The vertex shader calculates the world space position, the
normal and the view vector. The fragment shader deter-
mines the refracted and the reflected rays and runs the
search method with the rays separately. The final color
is the combination of the reflected and refracted color de-
termined by an approximation of the Fresnel function.

To compute multiple refractions we need to know the
geometry of the refractor object (i.e. the position of the
surface points, and the normal vectors at these points).
While ray tracing efficiently determines the intersection
with implicit surfaces (e.g. sphere), we can get a better
approximation by using the proposed method. For each
refractor we create a refractor distance map, which stores
the distance of the surface from its center and the normal

vector of the surface. If the refractor has static geometry, it
is sufficient to compute the refractor map only once during
preprocessing. Figure 3 shows the search process.

Figure 3: Search in a refractor distance map. In this case
the enclosing environment is the geometry of the refrac-
tive object. The calculation of the refraction direction at
the surface points is made possible by storing the normal
vectors.

There are difficult cases when the search method does
not find an appropriate result. This phenomenon occurs
when the intersection point to be located is not visible from
the reference point. That means the environment or the re-
fractor in case of refractor distance maps is strongly con-
cave. We deal with this problem in Section 6.

4 Ray-object intersection using re-
fractor distance map

A refractor distance map is a distance-normal impostor
cube map that contains the geometry information of a sin-
gle refracting/reflecting object.

In the following subsection we introduce a method to
search for an intersection in refractor distance maps along
a ray started from the outside. Thus we will be able to
compute intersection between an external ray and an ob-
ject represented by a refractor distance map. That gives us
the possibility to construct a multi-bounce ray tracer us-
ing exclusively refractor distance maps (see Section 4.2).
In Section 5 we will present a faster way to trace rays of
multiple depths wherein the environment maps do not con-
tain the dynamic environment and intersection computa-
tion with dynamic objects is handled separately by using
the following search method.

4.1 Search in refractor maps from the out-
side

One can determine the intersection point of a refractor and
a ray from the outside knowing only the refractor distance
map. In order to do this, first we have to calculate the in-
tersection points with the bounding box of the refractor.

If there are none, then neither will there be any intersec-
tions with the refractor. If there are such points, we have
to search in the refractor distance map (see Section 3). We
will use a ray starting from the farthest intersection point
but opposite to the direction of the ray used to calculate the
intersections (see Figure 4). The search method selects a
point on the surface even if the ray actually does not inter-
sect the object itself. Because of this we say that a point
(returned by the search method) is invalid when it is farther
from the ray than a given small epsilon value.

Figure 4: Computing the intersection point of a refractor
and a ray (~y + d · ~R, d ≥ 0) from the outside. The point
is found as the intersection between the ray described by
the (~x− d ·~R, d ≥ 0) equation and the enclosing environ-
ment (the geometry of the refractor), where~x is the farther
intersection point with the bounding box.

4.2 Multiple ray bounces with refractor dis-
tance maps

The scene we are going to use as an example consists of a
chessboard and 32 glass chess pieces on it. Since there are
multiple refracting/reflecting objects in the scene there is
a definite need for handling rays in multiple depth levels.

It is possible to calculate multiple ray bounces using the
method discussed above. The main advantage of this is
that all we need are the refractor distance maps. Since
there are six kinds of pieces on the chessboard (pawn,
rook, knight, bishop, king, queen), six refractor distance
maps are enough to have. As this is not a lot, the reso-
lution of the maps can be higher than in the case of indi-
vidual environment maps for all pieces. This results in a
more detailed approximation of the surfaces. As the ob-
jects have a static geometry, we can calculate these maps
during the initialization and use them afterwards without
the need to recalculate any of them.

The first intersection point is determined by rasteri-
zation. To get the next intersection point in the reflec-
tion direction, the search has to be done for 31 pieces

in their refractor distance maps, selecting the nearest in-
tersection. One can determine the normal vector and in-
tersection point reading the refractor distance map. With
the normal vector the reflection direction can be calculated
as well, so we could continue the algorithm as described
above. If there is no intersection with the refractor, we
have to check whether the ray reaches the diffuse environ-
ment, meaning the chessboard in our case.

If we have N refractors N − 1 searches are needed to
calculate the intersection. The problem is that even with
low Ns we will not get any real-time results. But we can
speed up the algorithm by partitioning the search domain.
A uniform grid aligned on the squares of the chessboard
is a natural choice. To simplify the grid data structure we
can also assume that there can only be one piece in one
square. Even so, a full search in the grid was not feasi-
ble in a single shader. The algorithm we could implement
searches for the first non-empty square along the ray and
examines if there is any intersection with the refractor lo-
cated there. If none was found, an intersection point with
the plane of the chessboard will be determined, ignoring
further squares.

5 Multiple ray bounces with multiple
distance impostors

In Section 3 we re-iterated the approach described in [5] to
trace rays of depth two, where the final color is the com-
bination of the colors read from the environment map at
the reflected and refracted ray directions. Note that if the
environment map contains the incoming radiance of mul-
tiple bounces, we can read the contribution of complete
light paths. Thus, we are able to trace rays of multiple
depths reflections and refractions by computing three in-
tersections (one in the refractor distance map to find the
refracted ray, and two in the environment map along the
reflected and refracted rays).

Every piece needs its own environment map since the
environments they can see are significantly different. The
environment map’s pictures are taken from the center of
the 32 pieces so we will have 32 environment maps and 6
refractor distance maps for each kind of chess piece. Be-
cause of this high number we cannot use detailed environ-
ment maps with high resolutions.

5.1 Computing the environment distance
impostors

To get a distance impostor which contains the incoming
radiance of multiple bounces we use the method described
in [2]. First we have to render the diffuse environment
such as the sky and the chessboard to each environment
map. Next we render the surrounding pieces into each and
every environment map. For this we search in their envi-
ronment and refractor distance maps as described above.

After these the environment maps will represent at least
two ray bounces. Repeating the rendering of the pieces for
each environment map we will have one more ray bounce
in the maps since the depth of the environment maps has
increased. Repeating this step one can have an environ-
ment map of any desired depth level. The realized algo-
rithm is represented by this pseudo code.

for each environment map:
render chessboard
render sky

for DEPTH times:
for each environment map:

for each surrounding chess pieces:
load its environment map
load its refractor map
render the piece

In case of a static environment it is enough to calcu-
late the environment maps only once during the initial-
ization phase. If we are not lucky enough to have static
environment we have to recalculate the maps. In order to
save some calculation we do not need to do this every time
we render a frame, only when the rate of changes makes
it necessary for the authentic representation of the envi-
ronment. In our scenario it is the movement of the chess
pieces that causes the changes. Calculating every map for
every frame the application would be unacceptably slow.
For increased efficiency we used the following technique.

5.2 Moving objects

It is clear that we have to recalculate the environment maps
of the moving objects (if the rate of changes makes it nec-
essary). But for static pieces this rule does not apply. Only
the static environment (non-moving pieces, chessboard,
sky, etc.) will be rendered into their environment maps,
so that they do not need to be updated. When rendering a
non-moving piece it is not enough to search in its environ-
ment map, since a moving object could be in the way. The
intersections with moving pieces have to be determined.
As shown in Section 4.1, we start a search from outside
of the refractor distance map of the moving objects. The
intersection point at the shortest distance is required. As in
chess only one piece is allowed to move at a time, calcu-
lating only one environment map dynamically is enough.

Figure 5 shows how to determine the intersecting points
in the direction of refraction and reflection. If neither in
direction of refraction(3) nor in direction of reflection(1)
there is an intersection with the bounding box of the mov-
ing object, the intersections with the static environment are
kept. In Figure 5 a search has to be executed from the re-
flection direction in the refractor distance map of the chess
piece. There is an intersection point(4), thus three further
searches(5-7) have to be done in the maps of the moving
object in order to find the intersection points in the direc-
tion of refraction and reflection.

Figure 5: Separating the moving piece from the static en-
vironment. During the shading of a static chess piece the
intersection points with the static environment (1, 3) could
be occluded by the moving chess piece. This could be
checked as proposed in Section 4.1. In our case the mov-
ing object is seen in the reflection direction (see 4), so 3
more searches are required to find intersection points 5 and
7.

6 Refractor height maps

When generating distance impostors, we store the sampled
information about the surface as observed from the refer-
ence point. If the environment appears concave from the
reference point there will be some part of the surface that
could not be represented in the map. During ray tracing
only the environment represented by the map is known.
We cannot determine any intersection point if the ray in-
tersects the surface at a point that is not represented by the
map. There could be errors by searching in the environ-
ment map if we have a concave scene. If the object itself
is concave the error occurs when searching the refractor
distance map. Layered distance maps (see Section 2) can
handle a concave environment, but that solution is too slow
for a dynamic scene.

Let us take pictures from the center of a chess piece in
all the six directions of it. What would we see? We realize
that all of them have concave shapes. This means that there
would be missing surface parts in their refractor distance
map. These errors could be well seen on the screen so we
have to choose another method to represent the surfaces of
the chess pieces.

Let us pause a bit and take a good look at the pieces
again. We could discover that all of them have at least
one plane of symmetry. Taking a picture of the piece with
an orthogonal camera perpendicular to the plane of sym-
metry and storing the distances of the surface points from
the plane in a map, we would actually get a height map.
Chess pieces have shapes that in pictures taken of them in
the way explained above, there would be only a few or no
points at all that are covered by another point of the sur-

face of the shape. As the piece is symmetric, the height
map describes the whole surface of the piece. Besides the
distances, we need the normal vectors as well. The refrac-
tor distance map is replaced by this height map called re-
fractor height map. All we need is a method to determine
the intersection point of the ray and the surface described
by the height map.

Imagine that we have a height map textured onto a bill-
board. This billboard is put into the position of the chess
piece, has the same size as the piece itself and always ro-
tates towards the camera around the axis perpendicular
to the chessboard (see Figure 6). The billboard and its
height map determine a three-dimensional surface. This
is a proxy surface, we do not expect perfect substitution
unless we have objects with axial symmetry.

Figure 6: The refractor height map. It stores the normals
of the surface points and the distances between the surface
points and the plane of symmetry. It is bent on a billboard
that always rotates towards the camera around the vertical
axis.

The first step is to find the segment of the ray that is
inside the texture domain of the height map. It is important
that only that part of the geometry is used in this method
that is between the plane of symmetry and the camera.

Now we want to calculate the intersection points with
the plane of the billboard and with the bounding box of
the proxy (see Figure 7). If the ray does not intersect the
bounding box, then there will be no intersection. Let us
introduce some distances from the origin of the ray. Let
dplane be the distance to the intersection point on the plane.
dnear and dfar will be the distances to the bounding box’s
two intersection points (dnear < dfar). If dplane is less than
dnear we examine the ray segment within the bounding box
(see case 3). Otherwise the segment between the two near-
est points from the ray origin has to be examined (see case
1 or 2). If the segment examined is behind the billboard
(case 3a) it has to be reflected to the plane in order to be
able to search in the valid domain.

To find the intersection point with the height map we use
binary search (see [3], [4]). It is simple and fast though it
will not necessarily return the nearest intersection point.
Nevertheless we observed no visible artifacts. This is ex-
plained by the fact that the billboard is always rotated to

Figure 7: Locating the ray’s useful segment (which is in
the height map’s texture space). If the segment is behind
the billboard (case 3a), it will be reflected to the plane
(case 3b).

face the origin of the ray, thus rays never arrive at a steep
angle.

Figure 8 shows an example how to calculate an intersec-
tion point. We run the search over the segment of the ray
determined above. If the search proves to be successful we
have an intersection point. If it does not and the search was
executed between the intersection points with the bound-
ing box, then there is no intersection point since the ray
leaves the box. Otherwise the search has to continue in the
space behind the plane of the billboard. That is why the
ray has to be reflected to the plane of the billboard and the
valid domain needs to be recalculated. The search has to
be executed once again. Finally the intersection point has
to be reflected to the plane of symmetry again. If there is
not any intersection point this time either, the ray does not
intersect the chess piece at all. If we do have the intersec-
tion point, we have to follow the refracted ray direction.
The normal vector is known at the intersection point since
the refractor height map contains it, so the refraction direc-
tion can be calculated. The intersection with the refracted
ray can be found by repeating the same search algorithm
that we used for the incoming ray.

In the algorithm described in 5.2, the refractor distance
map can be replaced by the refractor height map. Search
can be executed from an outer point and the calculation of
multiple refractions is possible as well.

7 Caustics

Refracting and reflecting materials can focus the light
passing through them or reflected on them, causing the
surface to be illuminated more intensively. In our case the
chessboard has to be illuminated this way. This indirect
illumination effect is called caustics.

We use the method described in [5] to generate the caus-
tics. The caustic effect has to be calculated for each chess
piece individually. In the first pass we determine the set of

Figure 8: An example for the search process. For every
binary search the first 3 steps are marked.

points on the surface that has to be brightened. For this,
shooting light paths starting from the light source have to
be traced. Pictures are taken of a refractor from the po-
sition of the light source. The rendered image is called a
photon map. The intersection point with the refractor is
found by rasterization. After that, multiple refraction is
calculated by searching in the refractor map. For the sake
of simplicity and performance we neglect the fact that the
ray might interact with other pieces as well, only the inter-
section with the chessboard (so-called photon hit) is calcu-
lated. The photon hit is stored in texture space. It is easy
to calculate the texture coordinates of the surface points of
the chessboard, but in case of a more complex scene the
environment map has to contain the texture information as
well.

In the second pass caustics is rendered into the so-called
light map using the information stored in the photon map.
This light map will modulate the color texture of the chess
board. Creation of the caustics is done by using pho-
ton splatting: around every photon hit a semi-transparent
quadrilateral is drawn, which corresponds to Gaussian fil-
tering the surroundings of the hit point in texture space. In
order to accumulate the effect of the quadrilaterals drawn
in the light map, additive blending mode has to be set.

For each chess piece shadow will be calculated by
shadow mapping. The result goes into the light map as
well. Two different light maps are used, one for the static
pieces the another for the moving piece. Only the light
map of the moving piece has to be updated, it is enough to
calculate the light map of the static pieces only once.

8 Results

One would eventually ask if all the methods described
above are worth using or not. To answer to this ques-

tion we made some measurements. To determine the effi-
ciency of these methods a chessboard scene with 33 glass
pieces (a full chess set plus a sphere of glass) was ren-
dered in a 600×600 resolution. The scene contains 30838
vertices and 47404 faces altogether. The refractor height
maps were made in a 512× 512 resolution, while the en-
vironment maps have 256× 256 texels. For the tests an
AMD Athlon 64 X2 Dual Core 4600+ CPU with 2046
MB RAM and an NVIDIA GeForce 8800GTX graphics
card was used.

When there were only static pieces in the test scene, the
maps did not require any recalculation during runtime thus
75 FPS was achieved. In case of a moving piece, we run
several tests to compare the performance of the described
methods. In the first test, every environment map con-
tained the whole environment. As the environment maps
were updated in every frame the FPS rate dropped to a 1.8
level. In the second test, with our proposed method, where
the static environment and the moving piece were sepa-
rated we got 11.3 FPS, which is approximately 6 times
faster than the original solution. By increasing the resolu-
tion of the refractor and environment maps a better sam-
pling quality of the environment can be achieved. Us-
ing 512× 512 environment maps we got 7.5 FPS. This
technique is pixel shader sensitive, so the more pixels are
shaded with the glassy effect, the lower the frame rate falls.

Figure 9 shows our presented approximation compared
to a classical ray tracer. In the pictures the moving piece is
a reflective pawn which can be seen through a translucent
sphere. A differential image shows the error of the approx-
imation. Because of the concave environment the environ-
ment maps cannot represent the entire scene. This causes
errors (labeled 1 in the figure) when searching in these
maps. After computing the intersection with the moving
piece we read the environment map at the reflection direc-
tion and neglect that the reflected ray might interact with
the moving object itself (label 2). Error 3 occurred because
the texture of the chessboard was differently sampled by
the two renderers (in our implementation the texture of the
chessboard is more blurry).

9 Conclusion

The results of the measurements show the effectiveness
of the proposed method. By separating the moving ob-
jects from the static environment we receive interactive
performance. During the measurements, the environment
map of the moving piece was updated in every frame.
A higher FPS rate can be achieved if this happens only
when the change of the environment has reached a certain
amount. Furthermore, the test scene was extremely de-
manding, with a high number of refractive objects. That is
why we conclude that the method can be effectively used
in realistic game environments on upcoming hardware.

The efficiency of the proposed method relies on the
found representations for the optimal approximation of the

surfaces. In this article we introduced two possible solu-
tions. First, we are able to describe star-shaped surfaces
(convex as seen from the reference point). The second
representation is applicable to surfaces that can be orthog-
onally projected without any overlapping to the plane of
symmetry. To represent surfaces which are different from
those two described above new methods need to be in-
vented. However, one has to consider that the transfor-
mation of the surface into texture space has to be a homo-
geneous linear transformation, to ensure that the image of
a line in world space will still be a line in texture space.

References

[1] Kevin Bjorke. Image-based lighting. GPU Gems,
2004.

[2] Kasper Hoy Nielsen and Niels Jorgen Christensen.
Real-time recursive specular reflections on planar and
curved surfaces using graphics hardware. Journal of
WSCG, 10 (3), 2002.

[3] Manuel M. Oliveira, Gary Bishop, and David McAl-
lister. Relief texture mapping. Proceedings of SIG-
GRAPH 2000, 2000.

[4] Fabio Policarpo, Manuel M. Oliveira, and J. L. D.
Comba. Real-time relief mapping on arbitrary polyg-
onal surfaces. ACM SIGGRAPH 2005 Symposium on
Interactice 3D Graphics and Games, 2005.

[5] Laszlo Szirmay-Kalos, Barnabas Aszodi, Istvan
Lazanyi, and Matyas Premecz. Approximate ray-
tracing on the gpu with distance impostors. Computer
Graphics Forum 24, 2005.

[6] Tamas Umenhoffer, Gustavo Patow, and Laszlo
Szirmay-Kalos. Robust multiple specular reflections
and refractions. GPU Gems 3, 2007.

[7] Ingo Wald, William R Mark, Johannes Gnther,
Solomon Boulos, Thiago Ize, Warren Hunt, and
Steven G Parker. State of the art in ray tracing an-
imated scenes. Eurographics 2007 State of the Art
Reports, 2007.

[8] Turner Whitted. An improved illumination model for
shaded display. Communications of the ACM. vol. 23.,
1980.

[9] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo.
Real-time kd-tree construction on graphics hardware.
Technical report, Microsoft Research Asia, 2008.

Figure 9: Comparing the proposed approximation to clas-
sical ray tracing. The top picture is rendered with the clas-
sical method, the picture in the middle shows our approxi-
mation. The third picture is a differential image, the inten-
sity of its colors shows the degree of the difference.

Figure 10: Left: the whole test scene. Right: double re-
fraction using refractor height maps.

