
Eye Tracking in Virtual Environments:
The Study of Possibilities and the Implementation

of Gaze-point Dependent Depth of Field

Bartosz Bazyluk∗

Supervised by: Anna Tomaszewska

Computer Graphics Group
West Pomeranian University of Technology, Szczecin

Abstract

In this paper we present the application of an eye tracker as
an innovative real-time virtual environment interaction de-
vice, that enables a new level of control, and forms a base
for many realistic sight-dependent visual effects. Current
use and main stream of research regarding eye tracking
technology aims at marketing and usability testing, as well
as help for people who suffer from manual disabilities.
The goal of our work is to spread interest in other uses
of this advanced and impressive technology. Apart from
the discussion about possible uses of eye tracking in the
computer-generated worlds, we provide a complete case
study of a depth of field post processing effect for real-
time graphics, that relates on the user’s gaze point.

Keywords: eye tracking, gaze point, depth of field, focus,
virtual environment control, real-time visual effects.

1 Introduction

In the past few years a constant search for still more at-
tractive and more innovative controllers used in human
to virtual environment interaction can be observed. Ex-
amples of this trend that gained commercial success are
the famous Nintendo Wii Remote, the multiple-input sensi-
tive touch screens offered by Apple in its portable devices
and by Microsoft in its Surface and PlayStation Eye from
Sony. Each of these tries to take advantage of previously
unused aspects of user’s natural activity, improving his ex-
perience, and absorbing in an absolutely new and often
much more engaging way [6].

Our goal is to encourage the discussion about interac-
tion with artificial, computer-generated world that involves
the use of an eye-tracker: a device that unleashes great
possibilities that reside in the human visual system by con-
stantly observing the user’s eyes, and interpreting their
movement to provide accurate information on the person’s
behaviour at a real time basis. The idea of such applica-
tion of an eye tracker has emerged together with the recent

∗bartosz@bazyluk.net

Figure 1: A virtual environment with depth of field depen-
dent on user’s gaze point.

advancement in eye tracking technology, which made it
much easier to use and much more comfortable to utilise
(see Section 2).

The first and most basic ideas regarding the use of eye
tracking in video games, relied mainly on shifting the con-
trol of well-known features from other input devices to
the eye tracker. These concepts include gaze-based virtual
camera rotation and weapon aiming [10, 13]. Such appli-
cations however force the player to unnatural behaviour,
requiring him to be constantly aware of where he looks and
disallowing him to perform actions as simple as scanning
the game status display, without invoking unwanted cam-
era movement. The poor reception of these innovations
is clearly shown in [13]. The other approach is driven by
the idea of eye tracking as a technology broad in its ca-
pabilities to such an extent, that it should not just replace
any of the well-known functionality. It rather should ex-
pand it, or open the door to a brand new, wide range of
possibilities for enhancing the user’s experience and creat-
ing previously impossible effects that simulate the natural
world. Identifying ourselves with the latter belief, we took
up the challenge of improving the well known depth of
field effect, using an eye tracker.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Intending to present one of the common post-processing
visual effects, we have built a demo application including
the artificial depth of field phenomenon dependent on the
user’s gaze point (see Figure 1). It allowed us to test our
assumptions. The development process led us to the prob-
lem of universal method for accessing data across differ-
ent commercially available eye tracking platforms, which
we have addressed by creating an interface library. It is
meant to solve incompatibility issues and faciliate devel-
oping visual effects concerning user’s eyes behaviour, by
providing ready to use values rather than those uprocessed,
supplied by the device itself.

Our paper starts with a brief explanation of eye tracking
technology and the way that eye trackers work. It is fol-
lowed by the description of data that such devices provide
and the visual effect, that we will try to enhance later on.
We then provide a short survey of possible applications of
eye tracking in virtual environments, and head towards the
depth of field effect dependent on user’s gaze point, the
algorithm that we have chosen and finally the implemen-
tation.

2 Background

The eye tracking in its original meaning is a technique of
gathering and providing the researcher with accurate real-
time data concerning movement of subject’s eyes and the
point-of-regard, a point that can be simply described as
the one that the person is looking at [14]. This valuable in-
formation was acquired in numerous ways within the past
decades. Inaccuracy, constant researcher’s assistance and
often distracting invasiveness [3] limited the involvement
of eye tracking only to scientific research, mainly in the
fields of psychology and human reactions. The modern
approach, however, lacks the former method’s drawbacks
and therefore may be successfully used in disciplines that
require user’s attention unaffected by any disrupting activ-
ities or those, where the user’s immersion plays the main
role – such as video gaming and exploring virtual environ-
ments.

Present day devices in vast majority apply the video-
based combined pupil/corneal reflection method. The eye,
or more commonly both subject’s eyes, are exposed to di-
rect, invisible infra-red light, what results in the appear-
ance of so called Purkinje image, a reflection in the cornea,
which is accompanied by illumination of the one’s pupil
(see Figure 2). Captured by a video camera sensitive to
the infra-red spectrum, the relative movement of both the
pupil and corneal reflection is measured, which allows to
estimate accurately the gaze angle (commercial eye track-
ers achieve the accuracy of less than 0.5 degree [15, 17]).
After having the device calibrated, which most often re-
quires the subject to follow with his eyes several displayed
points, it is possible to calculate the estimated screen-
space gaze point coordinates on the fly [3].

Bright pupil Corneal reflection

(a) (b) (c)

Figure 2: The pupil and corneal reflections as seen by an
infra-red camera. Gaze point below the camera (a), in the
centre (b) and down and to the right from the camera (c)
[14].

2.1 Data provided by an eye tracker

Apart from what seems to be the most interesting, that is
position in screen-space coordinates of subject’s point-of-
regard, eye trackers provide much more useful informa-
tion that is worth bringing to attention. While calculat-
ing the gaze point, an eye tracker utilises many variables
acquired from observation of person’s eyes actions, that
may be employed into calculating visual and behavioural
effects. Tracking the movement of both eyes and their
Purkinje-image-to-pupil relation, may lead to creation of
a head tracking algorithm, and in consequence, the abil-
ity to implement extensive number of ways to control the
player’s avatar in a virtual environment. Also the diame-
ter of subject’s pupil, eye’s distance from the device, and
the camera image may be retrieved [15] depending on the
actual device’s capabilities.

What is offered by the device’s API is not yet everything
what may be acquired from an eye tracker. These basic
data in connection with the time factor pose a great back-
ground to the calculation of more complex, derived val-
ues. Beside the most obvious and often necessary fixation
times, we propose the introduction of a user’s concentra-
tion factor concerning an amplitude of his eye movements
in certain periods of time. The use of such a variable could
involve for example the player’s weapon’s accuracy.

2.2 Depth of field in real-time graphics

Rendering a scene using artificial methods differs from
capturing the real-world scene with a lens equipped cam-
era in the lack of apparatus’ physical dimensions. When
using an actual device, the rays cast on the sensor are sub-
ject to refractions produced by physical properties of the
lens. They appear in a photography as the phenomena
named circles of confusion (CoCs), with diameter varying
according to the sensor-lens and lens-object distance. As
they blend together, the image appears blurred where the

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



objects are closer to the camera than it is focused, or when
they are too far away. In the case of computer rendering,
the image is created with an idealised, pinhole camera con-
taining a virtual lens of zero size. Because of that the rays
always cross at a single point, regardless of the distance.
To achieve the effect of depth of field, special computation
is needed [2].

Depth of field may be called a visual artefact as it
limits the acuity of the scene. However, while talking
about simulating such visual phenomena by the means
of computer graphics, it is important to bring into focus
the purpose of that effort. Indisputably the most com-
monly pursuited branch in artificial generation of images
is their realism and effective real-world resemblance. This
goal can be divided into three concepts: physical real-
ism, functional realism and photorealism [7]. The latter
touches the aspect of viewer being unable to distinguish
the computer-rendered image from a photography, what
must be achieved not only by accurately recreating the
physically-correct light behaviour in the scene, but also
by taking into account the limitations of the optics in de-
vices used for image acquisition. Those renderings, which
present results impossible to reproduce using conventional
photographic techniques, will not fulfil that requirement.

The depth of field rendering is possible using many
methods. The one that most closely follows the real-
world phenomenon, apart from modelling the light rays
behaviour, is an accumulation buffer technique. It involves
rendering the whole scene many times to produce one
frame, while moving the camera slightly to simulate the
acquisition with a device possessing physical dimensions.
Despite accurate results, this technique is highly ineffec-
tive for real-time graphics due to unacceptable computa-
tional overload. There are alternatives that contain sim-
plifications, such as per object multi-layer rendering, or
the most common, depth-buffer based methods. The lat-
ter owe their popularity to the easiness of obtaining the
point’s distance to camera, using values existent in the z-
buffer. They can be divided into several groups regarding
the way of using that information: from forward-mapped
scattering methods that are hard to compute parallelly us-
ing modern programmable graphics hardware [2], through
reverse-mapped gathering methods [5], up to innovative
approaches using heat distribution simulation [1].

3 Depth of field with an eye tracker

Having the access to filtered screen-space coordinates of
user’s point-of-regard, we are able to use the same conven-
tional methods for obtaining the knowledge of place, ob-
ject, location that the user is actually focused on, as when
analysing the mouse pointer coordinates. We present sev-
eral ideas of utilising these valuable data.

• The ability of calculating the luminosity of an im-
age fragment corresponding to the gaze point and its

vicinity, together with high dynamic range rendering
allows to alter the scene’s exposition level dynami-
cally, which may result in much more realistic tone
mapping and accurate blooming, as well as true sim-
ulation of human eye’s sensory adaptation to varying
lighting conditions [11].

• Recording the recent user’s scan path can be used to
create dynamic, artificial after-images, emphasising
the brightness of scene’s elements.

• Altering the viewing frustum depending on the user’s
head position relative to the display screen, e.g. by
slightly expanding the field of view when the inter-
mediate distance decreases, creating the impression
of looking through the window rather than watching
a projected image.

• Also the simulation of vestibo-ocular reflex con-
nected with camera swinging during player’s move-
ment may also be a subtle yet heavily immersive ad-
dition [9].

These examples of visual effects altering upon gaze
shift bring the resulting scene closer to the state of what
can be called interactive photorealism.

Worth mentioning is also a completely different appli-
cation of eye tracking in complex scene rendering, tak-
ing into account the inacuity of human peripheral vision
in favour of that involving the foveal disk region of retina.
Human is in fact able to cover only 1-5 degrees of visual
angle with clear, foveal vision, what may be visualised as
only 3% of a 21” monitor screen viewed from the distance
of 60 cm [3]. What is a human visual system’s disadvan-
tage, may be converted into an advantage in the terms of
real-time computer graphics, by progressive reduction of
rendering quality with the distance from user’s gaze point
to gain improvement in performance. The quality reduc-
tion is possible either in the domain of resolution, dis-
played scene’s geometrical complexity [4], or precision of
post-processing effects. This implementation of eye track-
ing is called the gaze-contingent display method.

In this paper, however, we wanted to present a relatively
simple, yet spectacular effect of an artificial depth of field,
which varies with the distance from camera of a virtual
point that the user is looking at. Our choice emerged ac-
cording to the fact, that besides improving the impression
of scene’s depth, an independent of user’s eyes behaviour
depth of field is often found distracting [8] as it blurs the
screen areas that may catch the user’s interest. The useful-
ness of knowledge about the user’s gaze point in this field
seems to be obvious.

The experiments with interactive, controlled by an eye
tracker depth of field effect described in [9] involved the
simple reverse-mapped z-buffer method, together with mi-
nor artefact correction and a technique of autofocusing,
that helped translating the gaze point coordinates provided

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



by an eye tracker into actual focus distance. It though suf-
fered from a drawback typical to classic depth-buffer ap-
proaches that calculate the blurriness with circle of con-
fusion modelling. They are subject to heavily disturbing
depth discontinuity problem, when an out-of-focus object
occludes the in-focus background. It results in the blurred
object’s silhouette being clearly visible as a hard edge,
which is highly unacceptable [2] (see Figure 4a).

This brought up our deliberations according to the per-
ception of gaze-point dependent depth of field. It is worth
noticing, that such way of control results in fully-blurred
areas rarely being visible to the user, as they will instantly
become clear when gaze is shifted upon them. It is then
more important than when creating a non-gaze contingent
depth of field effect, to take care of visual artefacts oc-
curring near the objects’ edges, as it is where the results
of the depth of field will be observed most often. Such
artefacts include both depth discontinuity problem and in-
tensity leaking. These observations led us to the search for
our own algorithm modification.

3.1 Enhancement of the basic approach

Our approach is an extension to the basic reverse-mapped
z-buffer technique with the gathering blurring method
based on Poisson disk samples, and involves implementing
the extrapolation of CoC values for objects closer to the
camera than the focus plane. Similarly as in many other
methods, we base on a thin-lens camera model and derive
from it the circle of confusion diameter equation [5]:

CoC = a ·
∣∣ f
d0− f

∣∣ · ∣∣1− d0

dp

∣∣ (1)

Where a is the aperture, f is the focal length of the lens,
d0 is the focus distance and dp is the source point’s dis-
tance to camera. The aperture and focal length need to be
selected empirically, as their values should suit the scene’s
dimensions, the camera’s angle of view and the desired in-
tensity of resulting effect. The focal length can be set to
increase in very short focus distances, to extend the depth
of field for extremely small distance values while main-
taining the effect’s visibility in longer distances.

To address the depth discontinuity problem described
in the previous section, we have surveyed existing solu-
tions. The most basic and popular at the same time [2],
involves blurring the CoC values represented as a texture,
which makes the object edges semi-transparent, as they are
mixed with background in the proportion of 50% to 50%
(because of blurred CoC’s gradual distribution; see Figure
3b). We however decided to follow [5] to calculate extrap-
olated CoC value, using both original CoCo and blurred
CoCb textures, with the formula:

CoC = 2 ·max(CoCo,CoCb)−CoCo (2)

In effect, we blur the occluding object outside its sil-
houette, which results in nice, soft edges. The downside is

(a) (b) (c)

Figure 3: Extrapolation of CoC values using original (a)
and blurred (b) CoC texture comparison to produce the re-
sult (c) CoC texture. Centre line is the object’s silhouette,
and darker pixels represent the area with higher CoC ra-
dius.

the fact of background as well being blurred in the occlud-
ing object’s vicinity (see Figure 4c). This problem may be
addressed with multi-layer rendering or per-pixel layers
[12], but it would involve multiple scene rendering what
we tried to avoid, as this common problem seems to be far
less intrusive than the former hard edges.

Intending to test our implementation with a modern, ac-
curate eye tracker, we have decided to rely on the gaze
point data processed in the same way, as for other uses.
We have intentionally abandoned creating an algorithm for
autofocusing that was proposed in [9], in favour of averag-
ing performed in the interface library.

4 Implementation

The development of an application that uses the data pro-
vided by an eye tracker can be divided into two separate
layers: one, that governs the computer-device communi-
cation, and the other which is responsible for the data util-
isation itself.

4.1 Communication interface

Bearing in mind the diversity of programming interfaces
across the available commercial eye-tracking platforms,
it is necessary to introduce a solution which will pro-
vide standardised output usable in end applications. Our
proposition is a universal library, utilising the concept of
adaptor-based architecture (see Figure 5). Offering the
ease of extending compatibility to new devices, exposing
both primitive and derived data in a uniform, platform-
independent manner, as well as offering device capability
tests, the library may become a major step in popularising
the idea of adopting eye-tracking into the field of virtual
reality and gaming. At the time this article is being pub-
lished, the adaptor for SensoMotoric Instruments (SMI)
API is under development, and two adaptors useful for ap-
plication development and debugging are completed: first
simulating the eye tracker with a mouse, and second that
provides an artificial gaze path at random or constant ba-
sis. The latter two were used in the development process
of our demo. Further tests and research will involve the
SMI RED250 eye tracker. The library is due to be released
publicly when completed.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a)

(b)

(c)

Figure 4: The depth discontinuity problem (a) and the so-
lution (b) with its downside (c).

Debug
adaptors

. . .

Ap
pl

ic
at

io
n

Library

C
or

e 
/ G

at
ew

ay Data storage

Capability
information

Data processor
and provider

Adaptors

CalibrationEy
e 

tr
ac

ki
ng

 p
la

tfo
rm

s

Figure 5: The proposed library architecture.

4.2 Demo application

To test the method, we have prepared a first person
perspective demonstration program written in C# lan-
guage, using the most recent OpenGL 3.2 together with
GLSL 1.50 in its core profile, and utilising the .Net based
OpenTK 1.0 beta-2 library. The existing scene is intended
to be a testbed for future studies regarding eye tracking
applications in both visual effects and interactivity areas.
It depicts a fantasy-world interior of a magician’s house,
which may be easily suited to demonstrate new techniques.

The eye tracker communication layer, utilising its own
thread, is the library mentioned in Section 4.1. During
each frame generation period, it is queried for both raw
and filtered screen-space coordinates of the user’s current
gaze point. Despite the fact that only the filtered values
are necessary for the depth-of-field calculation algorithm,
both of them are used for drawing optional on-screen feed-
back.

The original scene is rendered to a buffer, using the
Frame Buffer Object with two textures attached: one for
colour output, and the other for depth values storage. Then
the camera distance from the point equal to filtered gaze-
point coordinates is acquired, and assumed to be the focus
distance. In the next pass, CoC values are calculated with
Equation 1 from the depth values in regard to the focus dis-
tance, and they are stored in a texture: the nearer-than and
farther-than the focus plane values separately. The ,,near”
CoC texture is downsampled to 1/8th of its size in each
dimension, in order to obtain the blurred CoC values used
for final computation. In the last pass, blur is applied to
the colour texture from the first pass, according to the CoC
value. To obtain the final CoC value which determines the
actual blurring radius, the ,,near” CoC value is calculated
using Equation 2 and then compared with the correspond-
ing value from the ,,far” texture. The higher value is used.
Finally, the image is rendered on the screen (for the com-
plete diagram see Figure 6).

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Render the scene
to a buffer

Colour
texture

Depth
texture

Calculate CoC

„Far”
CoC values

Downsample CoC

Combine CoC values,
blur according to CoC
and render to screen

Gaze point
coordinates

Focus
distance

Blurred „near”
CoC values

„Near”
CoC values

G
ra

ph
ic

s 
ca

rd

Get the depth value
and transform
to world-space

Aperture

Focal length

Figure 6: The depth of field rendering algorithm.

5 Results

Developing the demo application enabled us to test our
assumptions in practice. The introduction of a consistent
interface library led to the possibility of concentrating on
the utilisation of provided data itself, rather than process-
ing them. Separating the eye tracker communication from
our presentation layer thread resulted in achieving the inte-
gration without any noticeable decrease in computing and
rendering performance.

The depth of field algorithm that we have chosen to
implement delivered convincing simulation of this pho-
tographic phenomenon, and offered an improved look of
out-of-focus objects occluding the in-focus surface than in
the method used in [9]. The implementation did not re-
quire us to introduce any changes into the scene rendering
process.

The overall outcome brought a new level of interactiv-
ity to the artificially generated scene, which proved the
very positive results of other studies on using eye track-
ing in virtual environments [9]. The screens taken from
our demonstrative application may be seen in Figure 7.

6 Conclusions and future work

With our work on the demonstration we have proved that
modern commercial eye trackers may be successfully used
to provide data necessary for rendering advanced, gaze-

Figure 7: Example screens from our demo, containing on-
screen feedback. Green crosshair represents the filtered,
while red cross is the raw gaze point.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



aware visual effects in real time. The depth of field algo-
rithm we have used may be improved by addressing the
visual artefacts it still produces, like intensity leaking or
background blurring in the out-of-focus object’s vicinity.
However, our approach already emerged to deliver satis-
factionary and realistic results.

Our future efforts will be aimed at experimenting with
other types of visual effects as well, together with eye-
based environment controlling and gaze-contingent ren-
dering performance optimisation. Our demo is planned
to include a multi-display feature, that will allow observa-
tion of actions performed by the user in real time, display-
ing visible overlays providing statistical data regarding his
eyes’ current and recent behaviour, without distracting the
subject. The ability to save such data for future interpreta-
tion is also projected.

Being aware that eye tracking is consequently gaining
interest in the entertainment and portable computers sec-
tor, it seems correct to assume that during the few upcom-
ing years we should encounter the introduction of such
devices to the consumer market. The rumours of Apple
trying to implement an eye tracker in the recently un-
veiled iPad resulted in discussions about the idea of an
eye-controlled operating system, and brought into light
the patent for gaze vector navigation that the company has
been pending [16]. This makes the search for possible eye
tracking use in popular, consumer applications very up-to-
date and encourages studies in this yet largely unexplored
field.

Acknowledgments

We would like to thank Karolina Lubiszewska for her work
on 3D models which we have used in our demo.

References

[1] Marcelo Bertalmio, Pere Fort, and Daniel Sánchez-
Crespo. Real-time, accurate depth of field us-
ing anisotropic diffusion and programmable graph-
ics cards. In 3D Data Processing, Visualization, and
Transmission, 2nd International Symposium, pages
767–773, Washington, 2004. IEEE.

[2] Joe Demers. Depth of field: A survey of techniques.
In Randima Fernando, editor, GPU Gems. NVIDIA
Corporation, 2004.

[3] Andrew T. Duchowski. Eye Tracking Methodology:
Theory and Practice 2nd Edition. Springer, London,
2007.

[4] Andrew T. Duchowski, Nathan Cournia, and Hunter
Murphy. Gaze-contingent displays: Review and cur-
rent trends. In Adaptive Displays Conference, 2004,
Los Angeles, 2004.

[5] Jr. Earl Hammon. Practical post-process depth of
field. In Hubert Nguyen, editor, GPU Gems 3.
NVIDIA Corporation, 2008.

[6] Ross Eldridge and Heiko Rudolph. Stereo vision for
unrestricted human-computer interaction. In Asim
Bhatti, editor, Stereo Vision. InTech, Vienna, 2008.

[7] James A. Ferwerda. Three varieties of realism in
computer graphics. In SPIE Human Vision and Elec-
tronic Imaging 2003, Bellingham, 2003. SPIE.

[8] Sebastien Hillaire, Anatole Lecuyer, Remi Cozot,
and Gery Casiez. Depth-of-field blur effects for first-
person navigation in virtual environments. In IEEE
Computer Graphics and Applications, pages 47–55.
IEEE, Los Alamitos, 2008.

[9] Sebastien Hillaire, Anatole Lecuyer, Remi Cozot,
and Gery Casiez. Using an eye-tracking system to
improve camera motions and depth-of-field blur ef-
fects in virtual environments. In IEEE Virtual Reality
Conference 2008, pages 47–51. IEEE, 2008.

[10] Erika Jönsson. If looks could kill – an evaluation
of eye tracking in computer games. Master’s thesis,
Royal Institute of Technology, Stockholm, 2005.

[11] Grzegorz Krawczyk, Karol Myszkowski, and Hans-
Peter Seidel. Perceptual effects in real-time tone
mapping. In Spring Conference on Computer Graph-
ics, 2005, 2005.

[12] Sungkil Lee, Gerard Jounghyun Kim, and Seung-
moon Choi. Real-time depth-of-field rendering us-
ing point splatting on per-pixel layers. In Computer
Graphics Forum, Vol. 27 Issue 7:1955–1962, 2008.

[13] J. Leyba and J. Malcolm. Eye tracking as an aiming
device in a computer game. Technical report, Clem-
son University, Clemson.

[14] Alex Poole and Linden J. Ball. Eye tracking in
human-computer interaction and usability research:
Current status and future prospects. In C. Ghaoui, ed-
itor, Encyclopedia of Human-Computer Interaction.
Idea Group, Inc., Pennsylvania, 2005.

[15] SensoMotoric Instruments GmbH. RED250 Techni-
cal Specification, 2009.

[16] Chris Stevens. Is Apple about to open
a can of eye-tracking?, January 2010.
http://recombu.com/news/a M11321.html.

[17] Tobii Technology AB. Tobii T/X series Eye Trackers.
Product Description, 2.0 edition, 2009.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)


