
Real-time Fur Using GPU-based Raycasting

Martin Berger
Supervised by: Petr Kmoch

Faculty of Mathematics and Physics
Charles University

Prague / Czech Republic

Abstract

Rendering fur is an important area of computer graph-
ics, because visually convincing fur is essential for real-
ism of games and computer generated imagery. Our pa-
per presents a novel technique for fur rendering based on
a previously published method for grass rendering. The
technique works by tracing a ray at each pixel through the
fur volume with implicitly defined slices mapped with fur
texture. A detailed analysis with performace tests, evalua-
tion of applicability and comparison with another state-of-
the-art technique is presented.

Keywords: Photorealistic Rendering, Programmable
GPU, Fur, Volume Rendering

1 Introduction

One of the main goals of 3D graphics for many decades
has been a convincing simulation and rendering of charac-
ters - humans, animals or even alien creatures. This task
covers many areas of computer graphics, including model
animation, facial animation, lighting models of skin and
clothing and also rendering of fur or hair.

Realtime rendering of fur is an interesting area of com-
puter graphics research because the physical properties of
real fur, especially its interaction with light, are quite com-
plex and challenging to reproduce accurately at interac-
tive frame rates. To illustrate the incredible computational
complexity of this problem, 25% of the total render time
of the film Final Fantasy: The Spirits Within was spent on
the main character’s hair, according to [10].

The target applications that need to render fur in real-
time are primarily games. Animals with visually pleasing
fur add realism to the environment of the game. Other
fields such as CGI (Computer generated imagery), where
visual realism is of utmost importance, would rather prefer
some of the more accurate but non-realtime methods.

Our main results presented in this paper are:

• Analysis of the grass rendering method of Habel et
al. [2] along with suggestions and implementation
modifications that need to be employed to adapt it to
fur rendering. We report all problems encountered

and present a discussion of possible solutions, along
with implementation details for some of them.

• Discussion of existing real-time fur rendering meth-
ods and their comparison to the custom method. We
evaluate the new method with respect to performance,
realism, ease of implementation and applicable sce-
narios.

2 Related work

There are basically two approaches to rendering fur: ge-
ometric modelling of individual hair strands and volume
based rendering.

The main drawback of rendering individual hair strands
is the number of geometric primitives needed—for exam-
ple, a typical bear has millions of hair strands, making this
technique impractical for realtime rendering. This is, how-
ever, the technique that is often used in non-realtime appli-
cations, like CGI films.

Volume based techniques, on the other hand, can be ef-
fectively implemented on graphics card hardware and are
often used in realtime applications, mainly because they
offer a good compromise between rendering speed and vi-
sual quality.

One of the first volume based approaches is by Kajiya
and Kay [4]. The authors introduced volumetric textures,
called texels, for approximating surfaces and their proper-
ties, and rendered them using ray-tracing. Their technique
produces a very high quality fur but is too slow for realtime
rendering.

The authors also proposed a rather simple, ad hoc light-
ing model for hair, which later became the basis of several
more sophisticated models by Goldman [1] or Scheuer-
mann [11]. On the other hand, Marschner et al. [7] used
accurate physical measurements to create a lighting model
that matches the appearance of real hair and captures many
effects not reproduced by the previous methods.

Arguably the most often used realtime technique for fur,
textured shells, was introduced by Lengyel in [6], and sub-
sequently improved by Lengyel et al. in [5].

In this approach, virtual hair is simulated and sampled
into a volume texture in a preprocess step. The hair can be

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



generated by various methods that differ in their complex-
ity and ability to control the properties of the generated
hair. One of the simplest methods that comes to mind, is
to randomly place hair strands, set them straight up and
vary their opacity from the root to the tip. A more flexi-
ble method is given in [6], where a particle simulation is
proposed that allows generating of different hair styles.

At run-time, the volume texture containing the gener-
ated fur is rendered as a series of concentric shells, each
one shifted a bit from the center along the vertex nor-
mals. These shells are rendered semi-transparent using al-
pha blending on the GPU. An example of a model rendered
with our implementation of the textured shells technique is
shown in Figure 1.

Figure 1: A model rendered with the textured shells tech-
nique (32 layers).

This method will work everywhere except at the silhou-
ette, where the viewing angle gets very small, and the gaps
between individual shells become visible. Unfortunately,
the appearance near the silhouette is critical for perceiv-
ing the characteristics and structure of the fur. To address
this issue, Lengyel et al. [5] proposed adding extra geome-
try called fins, textured with preprocessed hair texture, and
rendered perpendicular to the surface at the model’s edges.
The opacity of the rendered fins is set to a value dependent
on the viewing angle so that the fins are visible only near
the silhouette.

3 Raycasting based approach to fur
rendering

Grass and fur share many physical properties opening the
possibility to use similar approaches to render them in
real-time. Both of these natural phenomena can be char-
acterised as a vast number of strands, which locally point
approximately in the same direction. Typical difficulties
with rendering any of them include aliasing errors, signif-
icant overdraw, the effects of self-shadowing and the need
of primitive sorting for correct alpha blending. Due to the
described similarity, it may be interesting to adapt the al-
gorithms designed specifically for grass rendering to sim-
ulate fur and vice versa.

One such technique for rendering grass was introduced
in the paper Instant animated grass by Habel et al. [2].
The primary goal of our paper is to render fur using a sim-
ilar approach, discuss the problems that arise, and make
necessary modifications to alleviate these problems.

3.1 The technique of Habel et al.

The authors propose a new approach to grass render-
ing. Unlike other common techniques, which often use
some kind of billboarding and require new geometry to be
placed into the scene, the technique of Habel et al. does
not need any extra geometry and thus can be incorporated
into existing material systems with little effort.

Figure 2: Visualization of ray tracing through the virtual
volume containing slices with fur texture.

An outline of the technique in the context of fur render-
ing is as follows (see Figure 2):

• Virtual planes are defined implicitly on the model’s
surface. They are positioned along the u and v axes of
the tangent space basis of each triangle of the model.
In this way, these planes form a grid of planes per-
pendicular to the surface.

• In the pixel shader, a ray is traced from the viewer
through the grid of planes textured with fur textures,
accumulating color and opacity on its way. This
method ensures, among other things, that the planes
are traversed in the correct order for alpha blending.

• The ray tracing loop is terminated when the ray hits
the skin plane (a virtual plane coplanar with the car-
rier triangle shifted by the height of virtual planes)
or when a fixed maximal number of iterations is
reached.

• To maintain reasonable visibility information, a depth
value is calculated in the pixel shader as soon as a
threshold opacity is reached.

The main assumption of this technique is that the viewer
is looking at the surface mostly at grazing angles. When

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



viewed at perpendicular angles, the grid of planes becomes
apparent. To diminish this problem, a horizontal slice,
called half-z plane, is added at half of the height of the
planes.

3.2 Texture map considerations

The texture with slices of fur was created manually (Fig-
ure 3), and shares the same layout with the grass slices
texture described in Habel’s paper. The same applies to
the ground and half-z plane textures, which in our case
correspond to skin and horizontal fur volume cross sec-
tion, respectively. Care must be taken to make the individ-
ual fur slices unique, otherwise unwanted patterns become
obvious in the rendered fur.

Figure 3: (a) Texture with fur slices. (b) Skin texture.

3.3 Eye direction vector

One of the first things we noticed was that the rendered
fur became distorted when the camera moved close to
the model’s surface. When the camera was close enough
for individual triangles to cover a significant area on the
screen, the distortions were very noticeable and com-
pletely ruined the illusion of fur. The problem was found
in the interpolation of tangent space view direction vector.

This problem can be solved by shifting the computation
of the aforementioned vector from the vertex shader to the
pixel shader, so that it is no longer interpolated. This mod-
ification increases the computational cost, but eliminates
this problem completely.

3.4 Silhouettes

A distinctive feature of furry objects is their fuzzy appear-
ance at the silhouette. Unfortunately, due to the nature
of our method, this feature cannot be reproduced directly.
The reason behind this is that the shader is executed on
pixels enclosed in the projection of the model’s geometry
(the virtual plane space is extruded in the opposite direc-
tion of surface normals). The silhouette of this projection
is composed of straight edges. Since the pixel shader can
not affect pixels other than the one currently processed,
the rendered fur retains straight edges at the model’s sil-
houette. This is illustrated in Figure 4 (a).

To fix this problem, we chose to combine the basic tech-
nique with textured fins (described in Section 2). They
were originally proposed to deal with a different problem
(visibility of shells’ structure), but as it turned out, they
are able to hide the silhouette edges quite satisfactorily
(see Figure 4 (b)). However, to ensure that the fins blend
seamlessly with the rendered fur, the fin’s texture must be
similar to the texture slices used in the fur shader and also
the height of the fin blades must be adjusted appropriately.

Figure 4: (a) Sharp silhouette of the original technique. (b)
Original technique combined with textured fins.

The problem of silhouette appearance is not limited
only to fur rendering and arises in other areas of com-
puter graphics as well. One notable example is GPU based
displacement mapping. For a detailed survey of available
methods, refer to [9]. The techniques used to tackle the
problem in the context of displacement mapping could
provide alternative solutions to our problem. We have
not investigated these possibilities further in our paper and
they are left for future work.

3.5 Grid structure

The visual quality of the fur rendered with virtual planes is
heavily dependent on the viewing direction. When look-
ing at the fur at low angles, the ray tracing loop traverses
many virtual planes and the visual quality is very good.
However, the number of traversed planes decreases rapidly
with increasing viewing angle, potentially even to zero at
approximately perpendicular angles. This causes the grid
structure used in the shader to become apparent, as shown
in Figure 5.

The original technique was designed for rendering
grass, which is rarely viewed at perpendicular angles, so
this problem is not as significant there as in the case of fur
rendering, where such viewing angles are very common.

We tried several approaches to address this problem.
The simplest way to reduce the grid visibility is to increase
the virtual plane count. Although this does not solve the

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: The grid structure is visible when looking at the
surface at perpendicular angles. The model is rendered
with 32 planes along each texture space axis.

problem, it makes the area with visible grid smaller. To
solve this problem more thoroughly, additional modifica-
tions need to be employed.

We started with the horizontal plane mentioned in the
original paper by Habel et al., positioned in the middle
of the virtual plane space. It helped hide the grid on the
critical places, but it also degraded the overall quality of
the fur (it started having a washed-out look). Therefore
we decided to modulate the color contribution of the half-
z plane by a factor of (−→N ·−→V )2, with −→N being the normal
vector and −→V the view direction vector. This factor causes
the half-z plane to be visible only near the places viewed at
perpendicular angles and also serves as a gradual fade-in
of the visible parts.

The half-z plane does not have to be positioned exactly
in half the height of the space with virtual planes. In fact,
by adjusting the half-z plane position, it is possible to con-
trol its appearance to some extent. Half-z plane positioned
near the top of the fur slices hides the grid but degrades
the visual quality of the fur. On the contrary, rendering the
half-z plane near the bottom does not help much with the
grid visibility problem.

We were able to obtain quite satisfying results with dy-
namic half-z plane positioning. The position is given by
an empiric formula we derived:

h = 0.9(1−−→N ·−→V )+0.1

and is calculated in the pixel shader. Note that the posi-
tion is in the range [0,1] with 0 being the top of the fur
slices. The dot product in the formula is assumed to be
properly clamped to the [0,1] range. The dynamic posi-
tioning further enhances the visibility of the half-z plane
in the critical places, but introduces slight visual artifacts
during camera movement.

Figure 6 shows the results of the dynamic half-z posi-
tioning technique presented in this section.

3.6 Tilted virtual planes

Besides the half-z plane discussed in the previous section,
we also tried some different approaches to the grid visi-
bility problem. One of these approaches, which initially
seemed very promising, is the idea of tilting the virtual

Figure 6: The effect of the half-z plane with dynamic po-
sitioning. Top left: 32 planes, half-z plane on, top right:
128 planes, half-z plane on, bottom left: 32 planes, half-z
plane off, bottom right: 128 planes, half-z plane off.

planes. In the original technique, all planes are assumed
to be perpendicular to the model’s surface. This assump-
tion keeps the amount of calculations inside the ray-tracing
loop in the pixel shader reasonable. However, if the planes
are allowed to be tilted, some parts of shader code are no
longer valid, need to be generalised, and the shader com-
plexity increases considerably.

With perpendicular planes, it is computationally inex-
pensive to determine the first plane intersected by the ray.
Unfortunately, with tilted planes, this step is not straight-
forward and an exact solution would require additional
calculations and non-trivial dynamic branching inside the
ray tracing loop to handle the special cases that arise.

After implementing the described tilting technique, it
was obvious that the visibility of the grid structure was not
eliminated. Instead, this modification changed the viewing
angles at which the grid was visible. Although the main
problem was not solved, the tilting of the planes might still
prove useful, because real fur strands rarely grow straight
up.

Figure 7: The effect of tilting the planes. Left: no tilting,
right: planes tilted at approximately 20 degrees in both
axes. Note the slant of the fur in the right image.

3.7 Problems with geometry curvature

After fixing the eye vector interpolation (see Section 3.3),
the problem of severe distortions of rendered planes did
not go away completely. With the camera near the sur-
face, the rendered structure became wavy and we could

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



see some distortions again, though not as apparent as be-
fore.

At first, we suspected another problem with interpola-
tion, so we tried to tessellate the mesh a lot to see whether
it has any effect on the distortions. It had exactly the op-
posite effect from what we expected it to have. The dis-
tortions got much worse. Furthermore, we noticed that the
problem was much more significant in highly curved ar-
eas.

X

Y

Z

W

E

Q Q
′

Figure 8: Schematic view of the problem with non-planar
geometry. Suppose we need to find the intersection of the
ray with the ground of the virtual plane volume extruded
from the carrier triangle XY Z (the situation with intersect-
ing of virtual planes is analogous). The correct intersec-
tion point is Q, since the neighbouring triangle YWZ does
not lie in the same plane as the triangle XY Z. However,
the ray tracing code does not account for this situation and
returns the point Q′ instead.

This led us to identifying the problem in the idea of ex-
truding the volume containing the virtual planes from in-
dividual mesh triangles. During the ray tracing loop, the
pixel shader has only information related to one triangle
and thus cannot account for neighbouring triangles that
can have different slopes. The ray traversal can eventu-
ally end up hitting planes that lie outside the volume of
the original triangle (typically when the triangle is viewed
at very steep angles), where the tangent space basis is no
longer valid. Such a situation is depicted in Figure 8.

Unfortunately, we have to conclude that this is an inher-
ent limitation of the original technique and there are few
ways how to deal with it. This problem is not important
when rendering grass, because grass usually covers some
terrain with nearly coplanar individual triangles. However,
fur is typically rendered on models with significant geo-
metrical curvature.

Possible solutions to this problem include local surface
approximation by quadric surfaces introduced in [8] or
rendering fins on triangle boundaries as in [3].

3.8 Lighting model

To further enhance the realism of the rendered fur, we de-
cided to implement some non-trivial lighting model. The

first choice was the famous model of Kajiya and Kay [4].
The model is basically the Phong model adapted to the
structure of fur (cylindrical strands). The diffuse and spec-
ular components of this model are given by:

Ψdi f f use = kdr sin(T,L)
Ψspecular = ks((T ·L)(−T ·V )+ sin(T,L)sin(T,V ))p,

where kd,s are the diffuse and specular reflection coeffi-
cients, r is the radius of the hair strands, T is the tangent
vector pointing from root to tip, L is the light vector, V is
the eye vector and p is the standard Phong specular expo-
nent. For derivation of these formulas, refer to [4].

This model captures only a small part of the light scat-
tering process of real hair strands. The biggest limitation
is the fact that the model deals only with first-order light
reflection. However, real hair exhibits both reflective and
transmissive behavior. An accurate solution would have to
consider scattering of light onto other hair strands and also
onto the underlying skin. These light interactions result in
physically complex visual phenomena such as secondary
highlights observed on real hair (see [7] for a detailed dis-
cussion of these phenomena).

Figure 9: The lighting model (a) without and (b) with
shifting of the tangent vector T . The light is positioned
a bit to the left and above the bear model.

To extend the Kajiya-Kay lighting model, we added
the calculation of a directional attenuation factor, as de-
scribed in [1]. Adding this factor increases the direction-
ality of the hair. Moreover, the relative reflectivity (back-
ward scattering) and transmissivity (forward scattering) is
parametrized by two factors, ρre f lect and ρtransmit , that can
be used to tune the produced result.

After implementing the described lighting model, the
visual results were not as good as we expected. The main
reason behind this is that the hair strands are positioned

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



straight up on the model. This is in contrast with real fur,
which usually has some slant. As a quick and dirty solu-
tion, we add a tangential component to the normal vector
on the surface (this vector corresponds to T in the equa-
tions). The length of the component is modulated by a
sample from a noise texture to make the lighting a bit
softer. The effect is shown in Figure 9.

4 Results

4.1 Performance analysis

The custom method we developed can be thought of as
an alternative to the textured shells technique. Both tech-
niques are capable of producing high quality fur, but with
rather different computational requirements.

With textured shells, rendering a model with 32 layers
causes the model to be submitted to the renderer 32 times.
This may pose a burden both on the geometric (in case of
a high polygon count model) and pixel shading stages of
the rendering pipeline. However, the simplicity of the ver-
tex and pixel shader programs makes rendering of a large
number of layers feasible.

On the other hand, with the technique presented in our
paper, the geometric complexity is independent of the
number of virtual planes or the maximum passes of the
ray-tracing loop. Also, due to the nature of the technique,
the overdraw is basically zero. The complexity of this
technique lies in the long pixel shader full of dynamic
branching, where a ray-tracer is implemented.

The performance of this method is expected to be in-
fluenced the most by the average number of iterations of
the main ray-tracing loop. There are two parameters that
can affect this number: the virtual plane count and the ray-
tracing loop limit. With small virtual plane counts, most
of the rays intersect only a few planes before hitting the
ground and breaking the loop. The maximum number of
iterations is not the limiting factor in this case, because it
affects only the rays that penetrate the virtual plane space
at the silhouette. However, this factor becomes critical
when the planes are laid out densely. The dependency of
these factors is discussed in detail in the next section.

4.2 Tests

Let us examine the performance of our method in de-
tail. For reference, we have included some tests with the
textured shells technique applied to the same geometric
model. In each test, the model was rotated in front of the
camera for a fixed amount of time and average FPS was
recorded. The individual tests were:

Tests Shader Resolution planes/layers loops
T1 - T3 Our 1600×1200 32, 64, 128 5
T4 - T6 Our 1600×1200 32, 64, 128 10
T7 - T9 Our 1600×1200 32, 64, 128 20

T10 Our 1920×1200 128 20
T11 Shells 1920×1200 32 -
T12 Shells 1600×1200 32 -
T13 Shells 1600×1200 16 -

The results of the tests, obtained on a desktop PC
with Intel Core2Duo 3.0 GHz CPU, 4GB RAM and ATI
Radeon HD4850 graphics adapter with 512MB of VRAM,
are given in the following table:

Test Average FPS Test Average FPS
T1 297.6 T8 151.6
T2 297.3 T9 139.1
T3 305.9 T10 121.7
T4 224 T11 99.9
T5 207.7 T12 108.4
T6 206.9 T13 190.6
T7 164.2

These results clearly confirm the hypothesis that the
maximum number of iterations in the ray-tracing loop is
the most important parameter from the performance point
of view.

Tests T9 and T12 can be chosen for visual comparison
of both techniques with high quality settings. Details from
the rendered images are shown in Figure 10. As can be
seen from the image, the textured shells produce a more
fluffy fur. The novel technique produces a fur that is op-
tically lower but the fur structure is more detailed from
a close-up look. With these settings, our method runs
slightly faster (a few tens of FPS).

Figure 10: (a) The technique with settings from the test
T12. (b) The technique with settings from the test T9.

4.3 Applicable scenarios

The question, which of the two methods to implement, is
more of an artistic one. There are, however, some facts
that might favor one method over the other. The fur ren-
dering method presented in our paper is generally suitable
for shorter fur types because of the behavior at the silhou-
ette. Long fur would probably be more realistic with the
textured shells technique.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



The novel method integrates well into existing render-
ing pipelines. There are, however, some changes beyond
the shader compilation and usage that need to be taken care
of when implementing this technique. The most important
is the generation of fins’ geometry. This step is required
with textured shells as well, though. The amount of work
needed for authoring the textures used in the shaders is
comparable for both techniques.

The target shader model of the HLSL compilation must
be at least the version 3.0, as the previous versions do not
support dynamic branching. This places a restriction on
the hardware capable of running these shaders. This is
in contrast to textured shells, whose shaders utilize only
a very basic feature set enabling the use of this technique
even on older hardware not capable of shader model 3.0.

Another factor, that should be taken into consideration,
is the memory usage. Textured shells, being a volumetric
method, consume a significant amount of memory. The
proposed solution has much lower requirements, as it uses
only four textures of reasonable size.

5 Conclusion

5.1 Summary

We have introduced the topic of fur rendering and dis-
cussed possible approaches along with their respective ad-
vantages and limitations. We have put emphasis on de-
scribing the textured shells technique, because it was used
for comparison with the novel method.

As the main goal of the paper, we have presented a new
fur rendering technique, utilizing an approach introduced
in the context of grass rendering in [2] and then proceeded
to a discussion of problems we encountered. We have pre-
sented solutions to most of these problems and, where
possible, stated the impact of the modifications on the
source code complexity and performance. We have also
presented some ideas for implementation of a non-trivial
lighting model. Finally, we discussed the pros and cons
of the novel technique, and presented some performance
tests with a comparison with the textured shells method.

5.2 Future directions

The method, as it has been described, does not include any
form of LOD (Level of detail). Developing some kind of
LOD could prove interesting as it would widen the range
of applications of this technique. We have not investigated
the possibilities in detail but we think that the parameter
controlling the maximum number of ray-tracing loop iter-
ations could be used to create some LOD scheme.

Furthermore, the last problem described in Section 3.7
needs a solution. At the end of that section, we give ref-
erences to papers containing work related to similar prob-
lems. We believe that a viable solution to our problem
could be derived from them.

Finally, the lighting model could be improved to ac-
count for self-shadowing and to better handle the uniform
fur direction that results from perpendicular virtual planes.

6 Acknowledgements

I would like to thank Petr Kmoch for his guidance during
the creation of this work.

References

[1] Dan B. Goldman. Fake fur rendering. In Proceedings
of SIGGRAPH ’97, pages 127–134, New York, NY,
USA, 1997.

[2] Ralf Habel, Michael Wimmer, and Stefan Jeschke.
Instant animated grass. Journal of WSCG, 15(1-
3):123–128, January 2007.

[3] S. Jeschke, S. Mantler, and M. Wimmer. Interac-
tive smooth and curved shell mapping. In Rendering
Techniques 2007 (Proceedings Eurographics Sympo-
sium on Rendering), pages 351–360, 6 2007.

[4] J. T. Kajiya and T. L. Kay. Rendering fur with three
dimensional textures. In Proceedings of SIGGRAPH
’89, pages 271–280, New York, NY, USA, 1989.

[5] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe.
Real-time fur over arbitrary surfaces. In I3D ’01:
Proceedings of the 2001 symposium on Interactive
3D graphics, pages 227–232, New York, NY, USA,
2001.

[6] J. E. Lengyel. Real-time hair. In Proceedings of the
Eurographics Workshop on Rendering Techniques
2000, pages 243–256, London, UK, 2000.

[7] S. R. Marschner, H. W. Jensen, M. Cammarano,
S. Worley, and P. Hanrahan. Light scattering from
human hair fibers. In SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, pages 780–791, New York,
NY, USA, 2003. ACM.

[8] M. M. Oliveira and F. Policarpo. An efficient repre-
sentation for surface details. Technical Report RP–
351, UFRGS, January 2005.

[9] L. Szirmay-Kalos and T. Umenhoffer. Displacement
mapping on the GPU - State of the Art. Computer
Graphics Forum, 27(1), 2008.

[10] Scheuermann T. Hair Rendering and Shading. GDC
presentation, 2004.

[11] Scheuermann T. Hair rendering and shading. In
Wolfgang Engel, editor, ShaderX3: Advanced Ren-
dering with DirectX and OpenGL, pages 239–250.
Charles River Media, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)


