Traversal methods for GPU ray tracing

Marek Vinkler*
Supervised by: doc. Ing. Jif{ Sochor, CSc."

Faculty of Informatics Masaryk University
Brno / Czech Republic

Abstract

Ways of exploiting the raw performance of GPUs for com-
puting ray tracing have been a hot research topic recently.
Performance similar to the multi-core CPU ray tracing en-
gines has been achieved. In this paper we present a new
traversal method created by combining two of the existing
methods. The proposed method is less sensitive to per-
formance loss due to certain object scene distribution. It
can also be faster than the methods from which it origi-
nated. Several possibilities how to create such a method
exist and even better methods can be constructed with the
addition of a single instruction to the next generation of
GPUs. The resulting ray tracer achieves 50+ fps for pri-
mary rays on moderately complex scenes running on cur-
rent mainstream GPUs.

Keywords: Ray tracing, GPU, CUDA

1 Introduction

The graphics hardware has witnessed enormous growth in
both performance and programming flexibility recently [5,
7]. This development enabled creation of general pur-
pose parallel computing architectures such as NVIDIA
CUDA [8]. Many applications have been ported to this
platform to take advantage of its raw performance. The
GPU ray tracing engines became a serious alternative to
CPU-based ones. Several mappings of the ray tracing al-
gorithm to the graphics hardware were proposed [4, 1].
In this paper we compare some of the existing methods
focusing on their performance characteristics with regard
to the object scene distribution. It shows that where one
method works well the other often performs poorly. This
leads to the idea to create a hybrid method that addresses
the drawbacks of both of the existent methods.

There are several promising mappings of the ray tracing
algorithm to the graphics hardware. The packet traversal
method is described in [4]. In this mapping all rays in a

*xvinkl @mail.muni.cz
fsochor@fi.muni.cz

packet follow the same path during the traversal. To lever-
age the power of the GPU architecture rays are mapped to
threads and packet size is chosen as warp (group of paral-
lel threads) size. This way the threads within the warp can
cooperate in loading the node and triangle data. Also there
is less branching as all the rays, by definition, follow the
same code path. This leads to almost perfect utilization of
the hardware but effective parallelism decreases each time
the threads within the warp want to take different paths.

Another approach named “if-if” traversal can be found
in [1]. In this mapping once again one thread com-
putes one ray but these rays follow their individual paths.
Thus there is no cooperation among the threads. This ap-
proach sacrifices coalesced loads and coherent branching
for higher parallelism. It achieves higher performance than
packet traversal method when rays take different paths fre-
quently e.g. near the leaf nodes. On the other hand its
performance is inferior in places where rays traverse the
acceleration data structure coherently e.g. near the tree
root.

It is not a coincidence that both of the articles mentioned
above use AABB BVH (Axis Aligned Bounding Boxes
Bounding Volume Hierarchy [3, 9]) as an acceleration data
structure. It has been chosen for several reasons. First,
the acceleration data structure should be small as there
is considerably less memory available on the GPU [6].
It should also allow fast reconstruction thus supporting
dynamic scenes. Both of these criteria favour grids and
BVHs. However grids often perform poorly on scenes
with non-uniform object scene distribution making BVH
the acceleration data structure of choice. Detailed descrip-
tion of both of these traversal methods as well as of the
hybrid method constructed from them is given in section 3.

2 Test setup

For the reasons listed above we have chosen AABB BVH
as an acceleration data structure for our ray tracing en-
gine. Hierarchy construction is handled by a third-party
code from Arauna ray tracer [2]. The maximum number
of primitives in a single leaf node is set to 6. The engine
creates the hierarchy just once at the beginning allowing

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



only static geometry to be rendered. However with the
change of the underlined BVH construction algorithm dy-
namic scenes could be rendered as well.

BVH data

min max

[a[]-

Triangle data
vertex1 | vertex2 | vertex3 |

Normal data
normal1 | normal2 | normal3 |

Figure 1: Memory layout

Each node is a 32-byte wide block (12 bytes min coordi-
nates, 12 bytes max coordinates, 4 bytes number of con-
tained primitives and 4 bytes pointer to the children). The
latter two are integer values promoted to single precision
floating point values for the ease of storing. The left and
right BVH children are stored in continuous 64 bytes and
are always loaded together. All data are stored in 1D float
arrays. There are separate arrays for BVH data, triangle
data and vertices normals as shown in 1. The BVH data
are always fetched through texture while triangle data use
texture only for the packet traversal method. Normal data
are always loaded directly from global memory. This way
the engine achieves maximum performance.

Four popular test scenes were chosen for performance
measurement. Table 1 lists important information about
the models. No hand tuning was applied to the assembly
code produced by the complier.

Scene Triangles | Split triangles | Nodes
Conference 283k 424k 190k
Fairy 174k 261k | 117k
Sibenik 80k 121k 56k
Sponza 76k 114k 52k

Table 1: Triangle counts, triangle counts after split and
number of nodes for the four test scenes. Rendered images
of these scenes are in Figure 2.

3 Methods

To gain maximum ray tracing performance from the GPU
one needs to address several key aspects. First, the regis-
ter count per thread must be kept small enough to allow
sufficient parallelism. Some thread data (e.g. stack, next
node pointer, etc.) must be stored in shared or local mem-
ory instead of registers. Second, the code for data load-
ing, stack handling and traversal decisions should be kept
as simple as possible not to waste instructions. The ker-
nels are completely compute bound (the memory access
latency is completely hidden with computation) and there-

fore any extra instructions lead to noticeable performance
loss.

We have implemented and compared three ray tracing
traversal methods: packet traversal, if-if traversal and hy-
brid traversal. All of these methods share a common pat-
tern and differ only in how the traversal is done. They all
use optimization techniques described in [1]. Namely per-
sistent warps and assigning ray indices based on morton
code are employed. Description of each traversal method
as well as its advantages and disadvantages follows.

3.1 Packet traversal

The basic characteristic of packet traversal is that a group
of rays follows exactly the same path in the BVH tree. This
is achieved by sharing the traversal stack among the rays
in the packet. Each time the rays want to decide which
node to traverse next they have to vote. There are two
options how to do that using current hardware. The first
one is to do reduction in shared memory. The second is
to make use of warp vote functions. These functions eval-
uate a predicate for each thread and then return the same
boolean value (computed from those evaluations) to ev-
ery thread in the warp. Currently vote functions __any and
_-all are supported. While the former method gives a pre-
cise answer to where the majority of threads wants to go
it takes a lot of instructions to compute. The latter method
is only approximate but uses just a few instructions lead-
ing to higher performance. Another advantage of coherent
traversal is that it leads to perfect memory loads. Every
node intersected by the packet is loaded from the global
memory only once (not multiple times for every ray in the
packet) and all loads are coalesced. Also only one (two
for triangle data) memory instruction per thread is issued
to load all of the data for all of the threads. However when
the rays within the packet want to take different paths in
the tree these paths must be serialized using the shared
stack. Parallelism is therefore lost with each such branch-
ing and rays visit (potentially many) nodes which they do
not intersect.

The packet traversal method is the fastest possible method
when the rays want to take nearly the same path, for exam-
ple if the first intersection for all rays within the packet lies
in the same leaf. This is however seldom even for highly
coherent primary rays. To exploit the architecture best the
packet size is chosen as the warp size. Our implementation
of packet traversal kernel uses 25 registers per thread and
about 3kB of shared memory per block. This leads to 50%
occupancy on devices of compute capability 1.2 or higher.
This is more than sufficient as the kernels have high arith-
metic intensity (ratio between arithmetic and memory op-
erations).

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



3.2 If-if traversal

In contrast to packet traversal in the if-if traversal method
each ray follows its own path. This is done by keeping
separate stack for each ray. The stack is currently allo-
cated in thread’s local memory as shared memory is too
small. Even though the local memory is as slow as the
global memory, stack loads and stores latencies seem to be
hidden by other threads computation. What actually hurts
the performance is thread serialization during these mem-
ory operations. Different threads often happen to access
different stack indices. In such a case separate memory
instructions must be issued for each stack index follow-
ing the coalescing rules. Another performance loss is due
to branching within a warp - some threads want to inter-
sect nodes while others want to intersect triangles. In this
case both execution paths are serialized as described in [8].
Clearly this increases the number of issued operations and
reduces performance. Another drawback of this method
is the way how loading of both node and triangle data is
handled. Each thread must issue several memory load in-
structions to gain the data it needs.

The final kernel consumes 24 registers per thread and no
shared memory is needed leading to 63% occupancy. In-
terestingly there is little performance loss if one extra reg-
ister is consumed and occupancy drops to 50 %. This
method’s performance is superior to the one of packet
traversal if threads within the warp take different paths
frequently. A perfect example is the tracing of secondary
rays.

3.3 Hybrid traversal

As mentioned above this method is a combination of the
packet and if-if traversal ones. The idea is that packet
traversal performs best near the tree root where rays are
coherent whereas if-if traversal is better suited for travers-
ing nodes near the leaves. It is, however, unclear when and
how to switch between the two of the methods. We can di-
vide the methods into groups based on how the switching
is done.

The straightforward idea is to switch the packet and if-
if traversal each time a certain condition is met. We start
tracing the rays with the packet traversal method and when
the condition is triggered we switch to if-if traversal. Then
after all rays have finished traversing the current path they
load another node from the shared stack and start trac-
ing it again with packet traversal. This continues until the
shared stack is empty. The traversal thus follows the clas-
sical depth-first search scheme but uses different methods
to trace different parts of the tree. This method turns out
to be slow as the next packet traversal phase cannot start
until all of the rays have finished their if-if phase. Thus all
the rays are idle until the longest running one ends and this

happens multiple times. If, however, there were an effec-
tive algorithm for loading work per ray as discussed in [1]
the majority of rays would not be idling and the method
could be interesting.

Another option is to switch between the packet and if-
if traversal only once. This method seems to be more
promising and so we have developed several conditions to
rule the switching. The easiest one and currently achieving
best performance is the one we call “stack-max” traversal
method. In this method packet traversal ends when the
shared stack size is bigger than a predefined threshold. In
this moment if-if traversal starts from the last visited node
and later on visits each of the nodes on the shared stack.
We will discuss the performance characteristics later in
section 4. The register usage for this kernel is 26 regis-
ters per thread and the same amount of shared memory as
for the packet traversal is used. The occupancy is thus at
50 %.

There is also the possibility of counting how many times
rays wanted to take different paths. If this number exceeds
some threshold we make the switch. This method is not
very sophisticated yet it takes quite a lot of extra instruc-
tions leading to poor performance. This is why we will not
mention it in the result section.

The last developed method is the most sophisticated one.
It stops traversing a path with packet traversal if too few
rays want to take that path. If this happens it pushes the
address of the last node on that path to the local stack of
threads which want to take that path. Then it takes an-
other node from the shared stack and the process contin-
ues. This way it traverses all coherent nodes (nodes which
a significant amount of rays want to visit) before switch-
ing to if-if traversal. Such a traversal no longer follows the
classical depth-first search traversal scheme. It resembles
the depth-limited search but the limit is different for each
branch. The if-if traversal then traverses the sub trees de-
fined by nodes saved on the local stack. The main advan-
tage of this method is that it is not dependent on some pre-
defined threshold and should classify coherent/incoherent
parts of the tree well. The drawback of this method is that
computing how many rays want to go to the left and right
children of the current node is expensive. With current
generation of hardware the reduction in shared memory
must be employed to obtain such a number. However, if a
new instruction - returning the number of threads in a warp
satisfying a predicate - is introduced in next generation of
GPUs the method could be the fastest hybrid method. In
the result section this method is denoted as “cut” traversal
method. This method has higher register and shared mem-
ory demands. It consumes 28 registers and about 3.4kB
of shared memory per block. Nonetheless, that is still low
enough to keep the 50% occupancy.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Conference

(b) Fairy

(c) Sibenik (d) Sponza

Figure 2: Test scenes

4 Results

Images in figure 2 were obtained at output resolution of
1024x1024 using NVIDIA GTX 280. Each FPS count
in table 2 is an average over five different viewpoints.
These viewpoints were chosen randomly so that most of
the scene triangles were visible from them. The timings
include the whole kernel execution (ray generation, traver-
sal, shading, etc.).

As it can be seen in the upper part of table 2 the if-if traver-
sal is the second slowest of all methods for the primary
rays. This is interesting since it is reported to be faster
than packet traversal [1]. The reason for this discrepancy
is unknown to us. Possible candidates are a worse BVH
tree construction algorithm or simply a poor implementa-
tion of the mentioned method. It is important to realize
that poor performance of the if-if traversal reflects also in
performance numbers for the hybrid methods.

The stack-max traversal is slightly faster than the packet
traversal but the speedup is not interesting by itself. The
noteworthy thing is that it has much more balanced perfor-
mance with different types of rays. The method depends
on a constant denoting the maximal number of items in
the shared stack. Its performance slightly varies with the
change of the constant. When rendering the conference
scene the constant for the best performance was mostly so
high that the if-if part of the traversal was skipped. The
important thing to notice here is that even when the stack-
max traversal collapses into the packet traversal it is not
much slower than the specialized kernel. Only one extra
if-statement is evaluated in the main traversal loop. For
the other two scenes a lower choice of the constant leads
to higher performance. The constant value 11 was chosen
for separate measurements because it achieved reasonable
performance in all of the test scenes. This number is, how-
ever, scene specific and cannot be considered a general
guideline. From some special viewpoints the stack-max
achieved noteworthy speedups. This encourages the hy-
pothesis that the tree can be divided into parts of coherent
and incoherent traversal. Though the stack-max is not the

right condition to guide this division.

The cut method is the slowest method for the primary rays.
This is mainly because its performance is limited by the
cost of its traversal decision code. It is cheaper to intersect
one or two nodes than to decide which node to take next.
This makes it a poor choice for current generation of hard-
ware. As discussed above there is potential to change this
state making it interesting to benchmark.

The results for the secondary rays (reflected and refracted
primary rays) are given in the bottom part of table 2. The
important thing about these numbers is that the measure-
ment corresponds to tracing twice as many rays than for
the primary rays. The if-if traversal method is the fastest
for the incoherent secondary rays as predicted. Interest-
ingly the other methods are not lacking far behind.

The stack-max traversal method performs quite well on the
secondary rays. However, as discussed above it needs the
right constant for the switch criterion to be fast. Here con-
stant value 7 turned out to give reasonable performance.
As one might expect this number is lower than for the pri-
mary rays because the rays tend to take different paths of-
ten. Thus the number of rays within the warp that want
to take the same path drops rapidly with increasing depth.
Unfortunately no choice of the constant for the stack-max
method forces a collapse into the if-if traversal method.
The packet part of the traversal always takes place. This
explains why the method cannot achieve performance as
good as the one of the if-if traversal method for the Sibenik
and Sponza scenes. As discussed above the stack-max
traversal method is more versatile with regard to object
scene distribution. This can be observed from the speed-
ups against packet traversal for the secondary rays.

The packet traversal method is a poor choice for the inco-
herent secondary rays. The rays traverse a great amount of
nodes they do not intersect and have to finish paths that the
majority of the rays want to take before taking their own
path. This is why it is almost as slow as the cut method.

The results for the cut method show some promise. It is
still the slowest of all the compared methods but the dif-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



ference is not as abysmal as for the primary rays. This is
a sign that the reduction of the amount of needlessly tra-
versed nodes (due to better traversal criteria) outweigh the
criteria cost.

5 Conclusions

The hybrid traversal methods presented in this paper are
comparative to the fastest known traversal methods. They
are able to benefit from coherent traversal of rays while
they sustain good performance in incoherent setting as
well. This is achieved by utilizing most of the GPU re-
sources. Advantageously optimizations presented in other
papers can be used with this traversal method as well.

The performance of the hybrid methods is strongly influ-
enced by the employed switching criterion. The proposed
criteria use heuristics to divide the acceleration data struc-
ture into coherent and incoherent parts. Better heuristics
may be found in the future. They should be fast, consume
as little resources as possible and precise in classification
of coherent/incoherent nodes. With the progress in graph-
ics hardware some known criteria may become more effi-
cient.

6 Acknowledgments

Jacco Bikker (http://igad.nhtv.nl/~bikker/) for the Arauna
engine. Marko Dabrovic (www.rna.hr) for the Sibenik
cathedral model. University of Utah for the Fairy scene.
This work was supported by Ministry of Education of
The Czech Republic, Contract No. LC06008 and by
The Grant Agency of The Czech Republic, Contract No.
P202/10/1435.

References

[1] Timo Aila and Samuli Laine. Understanding the effi-
ciency of ray traversal on gpus. In HPG ’09: Proceed-
ings of the Conference on High Performance Graph-
ics 2009, pages 145-149, New York, NY, USA, 2009.
ACM.

[2] Jacco Bikker. Real-time ray tracing through the eyes
of a game developer. In RT ’07: Proceedings of the
2007 IEEE Symposium on Interactive Ray Tracing,
pages 1-10, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[3] Andrew S. Glassner, editor. An introduction to ray
tracing. Academic Press Ltd., London, UK, UK,
1989.

[4] Johannes Giinther, Stefan Popov, Hans-Peter Seidel,
and Philipp Slusallek. Realtime ray tracing on gpu
with bvh-based packet traversal. In RT ’07: Pro-
ceedings of the 2007 IEEE Symposium on Interactive
Ray Tracing, pages 113-118, Washington, DC, USA,
2007. IEEE Computer Society.

[5] Mark Harris. Many-core gpu computing with nvidia
cuda. In ICS ’08: Proceedings of the 22nd annual in-
ternational conference on Supercomputing, pages 1—
1, New York, NY, USA, 2008. ACM.

[6] Christian Lauterbach, Michael Garland, Shubhabrata
Sengupta, David Luebke, and Manocha Dinesh. Fast
bvh construction on gpus. In Computer Graphics Fo-
rum Volume 28, Issue 2, pages 375-384. The Euro-
graphics Association and Blackwell Publishing Ltd.,
20009.

[7] Erik Lindholm, John Nickolls, Stuart Oberman, and
John Montrym. Nvidia tesla: A unified graphics and
computing architecture. IEEE Micro, 28:39-55, 2008.

[8] NVIDIA. NVIDIA CUDA Programming Guide Ver-
sion 2.3., 2009.

[9] Stefan Popov, Iliyan Georgiev, Rossen Dimov, and
Philipp Slusallek.  Object partitioning considered
harmful: space subdivision for bvhs. In HPG ’09:
Proceedings of the Conference on High Performance
Graphics 2009, pages 15-22, New York, NY, USA,
2009. ACM.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Primary rays
Method Conference | Speed-up | Fairy | Speed-up | Sibenik | Speed-up | Sponza | Speed-up
packet 68.12 0% | 60.44 0% 49.48 0% 47.46 0%
if-if 54.80 | -19.55% | 54.54 -9.76% 49.48 0% 4780 | +0.72%
stack-max(11) 67.44 -1.00% | 60.64 | +0.33% 49.93 +0.91% 47.40 -0.13%
stack-max(best) 67.92 -0.29% | 61.20 | +1.26% 49.94 +0.93% 4756 | +0.21%
cut 61.98 -9.01% | 53.04 | -12.24% 44.96 -9.14% 4228 | -1091%
Secondary rays
packet 21.22 0% | 18.84 0% 14.94 0% 15.26 0%
if-if 21.80 | +2.73% | 19.50 | +3.50% 16.80 | +12.45% 19.18 | +25.69%
stack-max(7) 21.72 | +2.36% | 19.98 +6.05% 15.40 +3.08% 16.26 | +6.55%
stack-max(best) 21.78 +2.64% | 20.04 | +6.37% 15.80 +5.76% 17.32 | +13.50%
cut 21.66 | +2.07% | 18.30 -2.87% 13.82 -7.50% 15.00 -1.70%

Table 2: FPS counts from four static scenes averaged over five viewpoints each. Text in parentheses denotes the constant
used for that method. The speed-up against packet traversal method is given for each test scene.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



