
Proceedings of the
14th Central European Seminar
on Computer Graphics

May 10-12, 2010
Budmerice, Slovakia

Co-organized with SCCG

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Sponsors

 Edited by Michael Wimmer, Jiří Hladůvka, and Martin Ilčík © 2010
ISBN: 978-3-9502533-2-0

Slovak Society of
Computer Science

Eurographics

Impressum

Vienna University of Technology
Institute of Computer Graphics and Algorithms
Favoritenstraße 9-11/186
1040 Vienna

ISBN 978-3-9502533-2-0

Welcome to CESCG 2010!

This book contains the proceedings of the 14th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars. Again this year, CESCG proceedings have an ISBN (978-3-9502533-2-0)
and will therefore remain retrievable as long as there are libraries!

The long history of CESCG has started in 1997 in a medium-sized lecture room
in Bratislava, bringing together students from Bratislava, Brno, Budapest, Graz,
Prague, and Vienna. The idea found wide appraisal and the seminar moved to the
beautiful castle of Budmerice, where it was held for 8 consecutive years, constantly
growing in size and attraction. It was just in the 10th anniversary year 2006 that
CESCG had to take a detour to move to Častá-Papiernička Centre, while it is
back in Budmerice castle since 2007!

Who are the CESCG heroes who made this year’s seminar happen? In no partic-
ular order – because many people were involved equally – we would like to thank
the organizers from Vienna, especially Oliver Mattausch for taking care of the
complete reviewing process. We are very thankful to the CESCG organizers from
Bratislava, mainly Andrej Ferko, always an inspiration to CESCG; and Stanislav
Stanek, Matej Novotný, Ela Šikudová, Zdenka Slobodová, Martin Samuelč́ık, and
Pavla Ňuňuková for the excellent preparations and on-site organization.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. Therefore we are proud to state
that we have achieved again a very high number of 16 participating institutions
and a very tight time schedule of 23 valuable student works, and two invited
talks. We welcome groups from Bratislava, Slovakia; Brno (BUT and MU), Prague
(CTU and KU), and Ostrava, Czech Republic; Budapest, Hungary; Bonn, Ger-
many; Graz, and Vienna (TU and VRVis), Austria; Szczecin, Poland; Warwick,
United Kingdom; Maribor, Slovenia; and Sarajevo (Univ. and SST), Bosnia and
Herzegovina.

We assembled a large International Program Committee of 18 members, al-
lowing us to have each paper reviewed by two IPC members during the informal
reviewing process:

Borut Žalik Jozef Pelikán
Jǐŕı Bittner Selma Rizvić
Alan Chalmers Jǐŕı Sochor
Andrej Ferko Martin Šperka
Jasminka Hasić Marc Streit
Reinhard Klein László Szirmay-Kalos
Ivana Kolingerová Ania Tomaszewska
Radoslaw Mantiuk Michael Wimmer
Stephan Mantler Pavel Zemč́ık

We would like to thank the members of the IPC for their contribution.

Again this year, there will be a special keynote talk held by our sponsor Au-
todesk: Stephen Stott will talk about “Autodesk Education Continuum - Interac-
tive Curricula Model for Technical Excellence and Creativity”. The first invited
talk “Solving Vision Tasks with Variational Methods on GPUs” will be held by
Horst Bischof from Institute for Computer Graphics and Vision of Graz University
of Technology, Austria. The second invited talk by Roman Ďurikovič from Faculty
of Mathematics, Physics, and Informatics of Comenius University, Slovakia, will
be about “Simulating the Dynamics of Fluids”.

The seminar is held under the auspices of the Austrian Ambassador to Slo-
vakia, His Excellency Dr. Helmut Wessely, and is co-organized with the Spring
Conference on Computer Graphics (SCCG), which takes place right after the
seminar.

The organization of a seminar where there are only low expenses for the stu-
dents requires funding. We are very thankful to the sponsors of CESCG 2010:

– Autodesk, a world leader in 2D and 3D design software;
– OCG, the Austrian Computer Association;
– the Ministry of Education of the Slovak Republic;
– Eurographics, the European Association for Computer Graphics;
– VRVis, a research center for virtual reality and visualization in Vienna;
– PC Revue, a slovak computer magazine;
– SIS, Slovak Society for Computer Science;
– Sféra, graphical information systems;
– CSA Systems, Construction Systems Associates;
– EEA communication solutions.

Please note that the electronic version of these proceedings is also available at
http://www.cescg.org/CESCG-2010/.

May 2010, Michael Wimmer
Jǐŕı Hlad̊uvka

Martin Ilč́ık

iv

Table of Contents

Keynote and Invited Talks

Autodesk Education Continuum – Interactive Curricula Model for Technical Excellence and
Creativity . 3

Stephen Stott. Autodesk

Solving Vision Tasks with Variational Methods on GPUs . 5

Horst Bischof. Graz University of Technology

Simulating the Dynamics of Fluids . 7

Roman Ďurikovič. Comenius University

Materials

Real-time Fur Using GPU-based Raycasting . 11

Martin Berger. Charles University

Time-Varying BTFs . 19

T. Langenbucher, S. Merzbach, D. Möller, S. Ochmann, R. Vock, W. Warnecke, and
M. Zschippig. University of Bonn

Layered Materials in Real-Time Rendering . 27

Oskar Elek. Charles University

Computer Vision

Comparison of Face Recognition Algorithms in Terms of the Learning Set Selection 37

Simon Gangl and Domen Mongus. University of Maribor

Usage of the Webcam as 3D Input Device . 45

Pavel Vlašánek. University of Ostrava

Computer-Vision based Pharmaceutical Pill Recognition on Mobile Phones 51

Andreas Hartl. Graz University of Technology

Segmentation and Classification of Fine Art Paintings . 59

Zuzana Haladová. Comenius University

Rendering

Traversal Methods for GPU Ray Tracing . 69

Marek Vinkler. Masaryk University

Eye Tracking in Virtual Environments: Implementation of Gaze-point Dependent Depth of Field 75

Bartosz Bazyluk. West Pomeranian University of Technology

Real-Time Global Illumination in Point Clouds . 83

Reinhold Preiner. Vienna University of Technology

Interactive Ray Tracing of Distance Fields . 91

Onďrej Jamrǐska. Czech Technical University

Applications

Concept of Interactive Coloring book . 101
Tomáš Pastorek. Czech Technical University

Obesity in Children - A Serious Game . 109
Elmedin Selmanovic. University of Warwick

Methods of Simplification for Process of 3D Animation Production . 117
Edin Pašović. Sarajevo School of Science and Technology

Parallel Distances Analyzing Multi-Level Relationships in Networks . 123
Stephan Pajer. VRVis Research Center for Virtual Reality and Visualization

Modeling and Natural Phenomena

Extraction of Skinning Data by Mesh Contraction with Collada 1.5 Support 133
Martin Madaras. Comenius University

Terrain Rendering with the Combination of Mesh Simplification and Displacement Mapping . . 141
Zsolt Fehér. Technical University of Budapest

GPU-Supported Bubble and Foam Rendering . 149
Tamás Huszár. Technical University of Budapest

A Constraint Based System to Populate Procedurally Modeled Cities with Buildings 157
Johannes Scharl. Vienna University of Technology

Data Acquisition

Laser Scanning Versus Photogrammetry Combined with Manual Post-modeling in Stecak Dig-
itization . 167

Goran Radosevic. Faculty of Electrical Engineering, University of Sarajevo

Fine Image Resampling Algorithm . 175
Bronislav Přibyl. Brno University of Technology

The Prototype Light Projection System for Cultural Heritage Reconstruction 183
Bart lomiej Specjalny. West Pomeranian University of Technology

Automatic Image-Based 3D Head Modeling with Parameterized Model Based on Hierarchical
Tree of Facial Features . 191

Peter Kán. Comenius University

Color Plates

Advertisments for Sponsors of CESCG 2010

vi

Keynote and Invited Talks

Autodesk Education Continuum – Interactive Curricula Model for
Technical Excellence and Creativity

Stephen Stott

Autodesk
United Kingdom

Abstract

This presentation describes a proposal for an Autodesk Curriculum Model (ACM) that spans an
Education Continuum from Secondary, Career and Technical to Higher Education. The ACM is
built on an Interactive Learning Platform to engage a contemporary student audience in a learning
environment focused on visual and audio communication and offers pedagogical theory combining
Technical Competencies in Autodesk Software and Creative Designing Strategies.
The ACM content combines rigorous engineering theory with creative designing strategies to offer
faculty and students a new pedagogical approach aligning functionality and imagination as integral
elements of an exciting and engaging strategy for learning.

4

Solving Vision Tasks with Variational Methods on GPUs

Horst Bischof

Graz University of Technology
Austria

Abstract

This talk will present novel solutions to long standing computer vision problems by means of varia-
tional methods. We present robust methods for optical flow calculation, the correspondence problem
for stereo matching, depth map integration and interactive segmentation methods. The variety of
topics that can be handled by these methods demonstrate the wide applicability of variational meth-
ods.
In addition, modern graphics hardware (GPUs) allow to compute solutions to these problems very
efficiently and in some cases (e.g. optical flow) even in real-time. Having real-time solutions opens
several new applications areas (e.g. industrial imaging), interactive medical segmentation, etc. Some
of these will be presented during the talk.

6

Simulating the Dynamics of Fluids

Roman Ďurikovič

Comenius University
Slovakia

Abstract

The thin film fluids can interact in the air while forming clustered structures, everybody likes to see
them in the bubble show. Animation of soap bubble dynamics, formation of clusters can be handled
by the dynamic surfaces colliding each other. How to animate bubbles within the fluid? We can think
even about more challenging task of air bubbles within the fluid mixture. The dynamics surfaces
will not help us much in this case. Fortunately, mathematical community have payed attention to the
fluid dynamics and validated the model of Navier-Stokes differential equations as governing model
of fluid dynamics. Unfortunately, those equations can be solved by nontrivial numerical methods.
Precise numerical methods can be hardly solved in real time. Fluid dynamics governed by Navier-
Stokes equations have been solved for decades but the recent trend in computer graphics is to modify
the simulation to gain better controllability, in computer animation or real time fluid animation.

8

Materials

Real-time Fur Using GPU-based Raycasting

Martin Berger
Supervised by: Petr Kmoch

Faculty of Mathematics and Physics
Charles University

Prague / Czech Republic

Abstract

Rendering fur is an important area of computer graph-
ics, because visually convincing fur is essential for real-
ism of games and computer generated imagery. Our pa-
per presents a novel technique for fur rendering based on
a previously published method for grass rendering. The
technique works by tracing a ray at each pixel through the
fur volume with implicitly defined slices mapped with fur
texture. A detailed analysis with performace tests, evalua-
tion of applicability and comparison with another state-of-
the-art technique is presented.

Keywords: Photorealistic Rendering, Programmable
GPU, Fur, Volume Rendering

1 Introduction

One of the main goals of 3D graphics for many decades
has been a convincing simulation and rendering of charac-
ters - humans, animals or even alien creatures. This task
covers many areas of computer graphics, including model
animation, facial animation, lighting models of skin and
clothing and also rendering of fur or hair.

Realtime rendering of fur is an interesting area of com-
puter graphics research because the physical properties of
real fur, especially its interaction with light, are quite com-
plex and challenging to reproduce accurately at interac-
tive frame rates. To illustrate the incredible computational
complexity of this problem, 25% of the total render time
of the film Final Fantasy: The Spirits Within was spent on
the main character’s hair, according to [10].

The target applications that need to render fur in real-
time are primarily games. Animals with visually pleasing
fur add realism to the environment of the game. Other
fields such as CGI (Computer generated imagery), where
visual realism is of utmost importance, would rather prefer
some of the more accurate but non-realtime methods.

Our main results presented in this paper are:

• Analysis of the grass rendering method of Habel et
al. [2] along with suggestions and implementation
modifications that need to be employed to adapt it to
fur rendering. We report all problems encountered

and present a discussion of possible solutions, along
with implementation details for some of them.

• Discussion of existing real-time fur rendering meth-
ods and their comparison to the custom method. We
evaluate the new method with respect to performance,
realism, ease of implementation and applicable sce-
narios.

2 Related work

There are basically two approaches to rendering fur: ge-
ometric modelling of individual hair strands and volume
based rendering.

The main drawback of rendering individual hair strands
is the number of geometric primitives needed—for exam-
ple, a typical bear has millions of hair strands, making this
technique impractical for realtime rendering. This is, how-
ever, the technique that is often used in non-realtime appli-
cations, like CGI films.

Volume based techniques, on the other hand, can be ef-
fectively implemented on graphics card hardware and are
often used in realtime applications, mainly because they
offer a good compromise between rendering speed and vi-
sual quality.

One of the first volume based approaches is by Kajiya
and Kay [4]. The authors introduced volumetric textures,
called texels, for approximating surfaces and their proper-
ties, and rendered them using ray-tracing. Their technique
produces a very high quality fur but is too slow for realtime
rendering.

The authors also proposed a rather simple, ad hoc light-
ing model for hair, which later became the basis of several
more sophisticated models by Goldman [1] or Scheuer-
mann [11]. On the other hand, Marschner et al. [7] used
accurate physical measurements to create a lighting model
that matches the appearance of real hair and captures many
effects not reproduced by the previous methods.

Arguably the most often used realtime technique for fur,
textured shells, was introduced by Lengyel in [6], and sub-
sequently improved by Lengyel et al. in [5].

In this approach, virtual hair is simulated and sampled
into a volume texture in a preprocess step. The hair can be

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

generated by various methods that differ in their complex-
ity and ability to control the properties of the generated
hair. One of the simplest methods that comes to mind, is
to randomly place hair strands, set them straight up and
vary their opacity from the root to the tip. A more flexi-
ble method is given in [6], where a particle simulation is
proposed that allows generating of different hair styles.

At run-time, the volume texture containing the gener-
ated fur is rendered as a series of concentric shells, each
one shifted a bit from the center along the vertex nor-
mals. These shells are rendered semi-transparent using al-
pha blending on the GPU. An example of a model rendered
with our implementation of the textured shells technique is
shown in Figure 1.

Figure 1: A model rendered with the textured shells tech-
nique (32 layers).

This method will work everywhere except at the silhou-
ette, where the viewing angle gets very small, and the gaps
between individual shells become visible. Unfortunately,
the appearance near the silhouette is critical for perceiv-
ing the characteristics and structure of the fur. To address
this issue, Lengyel et al. [5] proposed adding extra geome-
try called fins, textured with preprocessed hair texture, and
rendered perpendicular to the surface at the model’s edges.
The opacity of the rendered fins is set to a value dependent
on the viewing angle so that the fins are visible only near
the silhouette.

3 Raycasting based approach to fur
rendering

Grass and fur share many physical properties opening the
possibility to use similar approaches to render them in
real-time. Both of these natural phenomena can be char-
acterised as a vast number of strands, which locally point
approximately in the same direction. Typical difficulties
with rendering any of them include aliasing errors, signif-
icant overdraw, the effects of self-shadowing and the need
of primitive sorting for correct alpha blending. Due to the
described similarity, it may be interesting to adapt the al-
gorithms designed specifically for grass rendering to sim-
ulate fur and vice versa.

One such technique for rendering grass was introduced
in the paper Instant animated grass by Habel et al. [2].
The primary goal of our paper is to render fur using a sim-
ilar approach, discuss the problems that arise, and make
necessary modifications to alleviate these problems.

3.1 The technique of Habel et al.

The authors propose a new approach to grass render-
ing. Unlike other common techniques, which often use
some kind of billboarding and require new geometry to be
placed into the scene, the technique of Habel et al. does
not need any extra geometry and thus can be incorporated
into existing material systems with little effort.

Figure 2: Visualization of ray tracing through the virtual
volume containing slices with fur texture.

An outline of the technique in the context of fur render-
ing is as follows (see Figure 2):

• Virtual planes are defined implicitly on the model’s
surface. They are positioned along the u and v axes of
the tangent space basis of each triangle of the model.
In this way, these planes form a grid of planes per-
pendicular to the surface.

• In the pixel shader, a ray is traced from the viewer
through the grid of planes textured with fur textures,
accumulating color and opacity on its way. This
method ensures, among other things, that the planes
are traversed in the correct order for alpha blending.

• The ray tracing loop is terminated when the ray hits
the skin plane (a virtual plane coplanar with the car-
rier triangle shifted by the height of virtual planes)
or when a fixed maximal number of iterations is
reached.

• To maintain reasonable visibility information, a depth
value is calculated in the pixel shader as soon as a
threshold opacity is reached.

The main assumption of this technique is that the viewer
is looking at the surface mostly at grazing angles. When

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
12

viewed at perpendicular angles, the grid of planes becomes
apparent. To diminish this problem, a horizontal slice,
called half-z plane, is added at half of the height of the
planes.

3.2 Texture map considerations

The texture with slices of fur was created manually (Fig-
ure 3), and shares the same layout with the grass slices
texture described in Habel’s paper. The same applies to
the ground and half-z plane textures, which in our case
correspond to skin and horizontal fur volume cross sec-
tion, respectively. Care must be taken to make the individ-
ual fur slices unique, otherwise unwanted patterns become
obvious in the rendered fur.

Figure 3: (a) Texture with fur slices. (b) Skin texture.

3.3 Eye direction vector

One of the first things we noticed was that the rendered
fur became distorted when the camera moved close to
the model’s surface. When the camera was close enough
for individual triangles to cover a significant area on the
screen, the distortions were very noticeable and com-
pletely ruined the illusion of fur. The problem was found
in the interpolation of tangent space view direction vector.

This problem can be solved by shifting the computation
of the aforementioned vector from the vertex shader to the
pixel shader, so that it is no longer interpolated. This mod-
ification increases the computational cost, but eliminates
this problem completely.

3.4 Silhouettes

A distinctive feature of furry objects is their fuzzy appear-
ance at the silhouette. Unfortunately, due to the nature
of our method, this feature cannot be reproduced directly.
The reason behind this is that the shader is executed on
pixels enclosed in the projection of the model’s geometry
(the virtual plane space is extruded in the opposite direc-
tion of surface normals). The silhouette of this projection
is composed of straight edges. Since the pixel shader can
not affect pixels other than the one currently processed,
the rendered fur retains straight edges at the model’s sil-
houette. This is illustrated in Figure 4 (a).

To fix this problem, we chose to combine the basic tech-
nique with textured fins (described in Section 2). They
were originally proposed to deal with a different problem
(visibility of shells’ structure), but as it turned out, they
are able to hide the silhouette edges quite satisfactorily
(see Figure 4 (b)). However, to ensure that the fins blend
seamlessly with the rendered fur, the fin’s texture must be
similar to the texture slices used in the fur shader and also
the height of the fin blades must be adjusted appropriately.

Figure 4: (a) Sharp silhouette of the original technique. (b)
Original technique combined with textured fins.

The problem of silhouette appearance is not limited
only to fur rendering and arises in other areas of com-
puter graphics as well. One notable example is GPU based
displacement mapping. For a detailed survey of available
methods, refer to [9]. The techniques used to tackle the
problem in the context of displacement mapping could
provide alternative solutions to our problem. We have
not investigated these possibilities further in our paper and
they are left for future work.

3.5 Grid structure

The visual quality of the fur rendered with virtual planes is
heavily dependent on the viewing direction. When look-
ing at the fur at low angles, the ray tracing loop traverses
many virtual planes and the visual quality is very good.
However, the number of traversed planes decreases rapidly
with increasing viewing angle, potentially even to zero at
approximately perpendicular angles. This causes the grid
structure used in the shader to become apparent, as shown
in Figure 5.

The original technique was designed for rendering
grass, which is rarely viewed at perpendicular angles, so
this problem is not as significant there as in the case of fur
rendering, where such viewing angles are very common.

We tried several approaches to address this problem.
The simplest way to reduce the grid visibility is to increase
the virtual plane count. Although this does not solve the

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
13

Figure 5: The grid structure is visible when looking at the
surface at perpendicular angles. The model is rendered
with 32 planes along each texture space axis.

problem, it makes the area with visible grid smaller. To
solve this problem more thoroughly, additional modifica-
tions need to be employed.

We started with the horizontal plane mentioned in the
original paper by Habel et al., positioned in the middle
of the virtual plane space. It helped hide the grid on the
critical places, but it also degraded the overall quality of
the fur (it started having a washed-out look). Therefore
we decided to modulate the color contribution of the half-
z plane by a factor of (−→N ·−→V)2, with −→N being the normal
vector and −→V the view direction vector. This factor causes
the half-z plane to be visible only near the places viewed at
perpendicular angles and also serves as a gradual fade-in
of the visible parts.

The half-z plane does not have to be positioned exactly
in half the height of the space with virtual planes. In fact,
by adjusting the half-z plane position, it is possible to con-
trol its appearance to some extent. Half-z plane positioned
near the top of the fur slices hides the grid but degrades
the visual quality of the fur. On the contrary, rendering the
half-z plane near the bottom does not help much with the
grid visibility problem.

We were able to obtain quite satisfying results with dy-
namic half-z plane positioning. The position is given by
an empiric formula we derived:

h = 0.9(1−−→N ·−→V)+0.1

and is calculated in the pixel shader. Note that the posi-
tion is in the range [0,1] with 0 being the top of the fur
slices. The dot product in the formula is assumed to be
properly clamped to the [0,1] range. The dynamic posi-
tioning further enhances the visibility of the half-z plane
in the critical places, but introduces slight visual artifacts
during camera movement.

Figure 6 shows the results of the dynamic half-z posi-
tioning technique presented in this section.

3.6 Tilted virtual planes

Besides the half-z plane discussed in the previous section,
we also tried some different approaches to the grid visi-
bility problem. One of these approaches, which initially
seemed very promising, is the idea of tilting the virtual

Figure 6: The effect of the half-z plane with dynamic po-
sitioning. Top left: 32 planes, half-z plane on, top right:
128 planes, half-z plane on, bottom left: 32 planes, half-z
plane off, bottom right: 128 planes, half-z plane off.

planes. In the original technique, all planes are assumed
to be perpendicular to the model’s surface. This assump-
tion keeps the amount of calculations inside the ray-tracing
loop in the pixel shader reasonable. However, if the planes
are allowed to be tilted, some parts of shader code are no
longer valid, need to be generalised, and the shader com-
plexity increases considerably.

With perpendicular planes, it is computationally inex-
pensive to determine the first plane intersected by the ray.
Unfortunately, with tilted planes, this step is not straight-
forward and an exact solution would require additional
calculations and non-trivial dynamic branching inside the
ray tracing loop to handle the special cases that arise.

After implementing the described tilting technique, it
was obvious that the visibility of the grid structure was not
eliminated. Instead, this modification changed the viewing
angles at which the grid was visible. Although the main
problem was not solved, the tilting of the planes might still
prove useful, because real fur strands rarely grow straight
up.

Figure 7: The effect of tilting the planes. Left: no tilting,
right: planes tilted at approximately 20 degrees in both
axes. Note the slant of the fur in the right image.

3.7 Problems with geometry curvature

After fixing the eye vector interpolation (see Section 3.3),
the problem of severe distortions of rendered planes did
not go away completely. With the camera near the sur-
face, the rendered structure became wavy and we could

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
14

see some distortions again, though not as apparent as be-
fore.

At first, we suspected another problem with interpola-
tion, so we tried to tessellate the mesh a lot to see whether
it has any effect on the distortions. It had exactly the op-
posite effect from what we expected it to have. The dis-
tortions got much worse. Furthermore, we noticed that the
problem was much more significant in highly curved ar-
eas.

X

Y

Z

W

E

Q Q
′

Figure 8: Schematic view of the problem with non-planar
geometry. Suppose we need to find the intersection of the
ray with the ground of the virtual plane volume extruded
from the carrier triangle XY Z (the situation with intersect-
ing of virtual planes is analogous). The correct intersec-
tion point is Q, since the neighbouring triangle YWZ does
not lie in the same plane as the triangle XY Z. However,
the ray tracing code does not account for this situation and
returns the point Q′ instead.

This led us to identifying the problem in the idea of ex-
truding the volume containing the virtual planes from in-
dividual mesh triangles. During the ray tracing loop, the
pixel shader has only information related to one triangle
and thus cannot account for neighbouring triangles that
can have different slopes. The ray traversal can eventu-
ally end up hitting planes that lie outside the volume of
the original triangle (typically when the triangle is viewed
at very steep angles), where the tangent space basis is no
longer valid. Such a situation is depicted in Figure 8.

Unfortunately, we have to conclude that this is an inher-
ent limitation of the original technique and there are few
ways how to deal with it. This problem is not important
when rendering grass, because grass usually covers some
terrain with nearly coplanar individual triangles. However,
fur is typically rendered on models with significant geo-
metrical curvature.

Possible solutions to this problem include local surface
approximation by quadric surfaces introduced in [8] or
rendering fins on triangle boundaries as in [3].

3.8 Lighting model

To further enhance the realism of the rendered fur, we de-
cided to implement some non-trivial lighting model. The

first choice was the famous model of Kajiya and Kay [4].
The model is basically the Phong model adapted to the
structure of fur (cylindrical strands). The diffuse and spec-
ular components of this model are given by:

Ψdi f f use = kdr sin(T,L)
Ψspecular = ks((T ·L)(−T ·V)+ sin(T,L)sin(T,V))p,

where kd,s are the diffuse and specular reflection coeffi-
cients, r is the radius of the hair strands, T is the tangent
vector pointing from root to tip, L is the light vector, V is
the eye vector and p is the standard Phong specular expo-
nent. For derivation of these formulas, refer to [4].

This model captures only a small part of the light scat-
tering process of real hair strands. The biggest limitation
is the fact that the model deals only with first-order light
reflection. However, real hair exhibits both reflective and
transmissive behavior. An accurate solution would have to
consider scattering of light onto other hair strands and also
onto the underlying skin. These light interactions result in
physically complex visual phenomena such as secondary
highlights observed on real hair (see [7] for a detailed dis-
cussion of these phenomena).

Figure 9: The lighting model (a) without and (b) with
shifting of the tangent vector T . The light is positioned
a bit to the left and above the bear model.

To extend the Kajiya-Kay lighting model, we added
the calculation of a directional attenuation factor, as de-
scribed in [1]. Adding this factor increases the direction-
ality of the hair. Moreover, the relative reflectivity (back-
ward scattering) and transmissivity (forward scattering) is
parametrized by two factors, ρre f lect and ρtransmit , that can
be used to tune the produced result.

After implementing the described lighting model, the
visual results were not as good as we expected. The main
reason behind this is that the hair strands are positioned

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
15

straight up on the model. This is in contrast with real fur,
which usually has some slant. As a quick and dirty solu-
tion, we add a tangential component to the normal vector
on the surface (this vector corresponds to T in the equa-
tions). The length of the component is modulated by a
sample from a noise texture to make the lighting a bit
softer. The effect is shown in Figure 9.

4 Results

4.1 Performance analysis

The custom method we developed can be thought of as
an alternative to the textured shells technique. Both tech-
niques are capable of producing high quality fur, but with
rather different computational requirements.

With textured shells, rendering a model with 32 layers
causes the model to be submitted to the renderer 32 times.
This may pose a burden both on the geometric (in case of
a high polygon count model) and pixel shading stages of
the rendering pipeline. However, the simplicity of the ver-
tex and pixel shader programs makes rendering of a large
number of layers feasible.

On the other hand, with the technique presented in our
paper, the geometric complexity is independent of the
number of virtual planes or the maximum passes of the
ray-tracing loop. Also, due to the nature of the technique,
the overdraw is basically zero. The complexity of this
technique lies in the long pixel shader full of dynamic
branching, where a ray-tracer is implemented.

The performance of this method is expected to be in-
fluenced the most by the average number of iterations of
the main ray-tracing loop. There are two parameters that
can affect this number: the virtual plane count and the ray-
tracing loop limit. With small virtual plane counts, most
of the rays intersect only a few planes before hitting the
ground and breaking the loop. The maximum number of
iterations is not the limiting factor in this case, because it
affects only the rays that penetrate the virtual plane space
at the silhouette. However, this factor becomes critical
when the planes are laid out densely. The dependency of
these factors is discussed in detail in the next section.

4.2 Tests

Let us examine the performance of our method in de-
tail. For reference, we have included some tests with the
textured shells technique applied to the same geometric
model. In each test, the model was rotated in front of the
camera for a fixed amount of time and average FPS was
recorded. The individual tests were:

Tests Shader Resolution planes/layers loops
T1 - T3 Our 1600×1200 32, 64, 128 5
T4 - T6 Our 1600×1200 32, 64, 128 10
T7 - T9 Our 1600×1200 32, 64, 128 20

T10 Our 1920×1200 128 20
T11 Shells 1920×1200 32 -
T12 Shells 1600×1200 32 -
T13 Shells 1600×1200 16 -

The results of the tests, obtained on a desktop PC
with Intel Core2Duo 3.0 GHz CPU, 4GB RAM and ATI
Radeon HD4850 graphics adapter with 512MB of VRAM,
are given in the following table:

Test Average FPS Test Average FPS
T1 297.6 T8 151.6
T2 297.3 T9 139.1
T3 305.9 T10 121.7
T4 224 T11 99.9
T5 207.7 T12 108.4
T6 206.9 T13 190.6
T7 164.2

These results clearly confirm the hypothesis that the
maximum number of iterations in the ray-tracing loop is
the most important parameter from the performance point
of view.

Tests T9 and T12 can be chosen for visual comparison
of both techniques with high quality settings. Details from
the rendered images are shown in Figure 10. As can be
seen from the image, the textured shells produce a more
fluffy fur. The novel technique produces a fur that is op-
tically lower but the fur structure is more detailed from
a close-up look. With these settings, our method runs
slightly faster (a few tens of FPS).

Figure 10: (a) The technique with settings from the test
T12. (b) The technique with settings from the test T9.

4.3 Applicable scenarios

The question, which of the two methods to implement, is
more of an artistic one. There are, however, some facts
that might favor one method over the other. The fur ren-
dering method presented in our paper is generally suitable
for shorter fur types because of the behavior at the silhou-
ette. Long fur would probably be more realistic with the
textured shells technique.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
16

The novel method integrates well into existing render-
ing pipelines. There are, however, some changes beyond
the shader compilation and usage that need to be taken care
of when implementing this technique. The most important
is the generation of fins’ geometry. This step is required
with textured shells as well, though. The amount of work
needed for authoring the textures used in the shaders is
comparable for both techniques.

The target shader model of the HLSL compilation must
be at least the version 3.0, as the previous versions do not
support dynamic branching. This places a restriction on
the hardware capable of running these shaders. This is
in contrast to textured shells, whose shaders utilize only
a very basic feature set enabling the use of this technique
even on older hardware not capable of shader model 3.0.

Another factor, that should be taken into consideration,
is the memory usage. Textured shells, being a volumetric
method, consume a significant amount of memory. The
proposed solution has much lower requirements, as it uses
only four textures of reasonable size.

5 Conclusion

5.1 Summary

We have introduced the topic of fur rendering and dis-
cussed possible approaches along with their respective ad-
vantages and limitations. We have put emphasis on de-
scribing the textured shells technique, because it was used
for comparison with the novel method.

As the main goal of the paper, we have presented a new
fur rendering technique, utilizing an approach introduced
in the context of grass rendering in [2] and then proceeded
to a discussion of problems we encountered. We have pre-
sented solutions to most of these problems and, where
possible, stated the impact of the modifications on the
source code complexity and performance. We have also
presented some ideas for implementation of a non-trivial
lighting model. Finally, we discussed the pros and cons
of the novel technique, and presented some performance
tests with a comparison with the textured shells method.

5.2 Future directions

The method, as it has been described, does not include any
form of LOD (Level of detail). Developing some kind of
LOD could prove interesting as it would widen the range
of applications of this technique. We have not investigated
the possibilities in detail but we think that the parameter
controlling the maximum number of ray-tracing loop iter-
ations could be used to create some LOD scheme.

Furthermore, the last problem described in Section 3.7
needs a solution. At the end of that section, we give ref-
erences to papers containing work related to similar prob-
lems. We believe that a viable solution to our problem
could be derived from them.

Finally, the lighting model could be improved to ac-
count for self-shadowing and to better handle the uniform
fur direction that results from perpendicular virtual planes.

6 Acknowledgements

I would like to thank Petr Kmoch for his guidance during
the creation of this work.

References

[1] Dan B. Goldman. Fake fur rendering. In Proceedings
of SIGGRAPH ’97, pages 127–134, New York, NY,
USA, 1997.

[2] Ralf Habel, Michael Wimmer, and Stefan Jeschke.
Instant animated grass. Journal of WSCG, 15(1-
3):123–128, January 2007.

[3] S. Jeschke, S. Mantler, and M. Wimmer. Interac-
tive smooth and curved shell mapping. In Rendering
Techniques 2007 (Proceedings Eurographics Sympo-
sium on Rendering), pages 351–360, 6 2007.

[4] J. T. Kajiya and T. L. Kay. Rendering fur with three
dimensional textures. In Proceedings of SIGGRAPH
’89, pages 271–280, New York, NY, USA, 1989.

[5] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe.
Real-time fur over arbitrary surfaces. In I3D ’01:
Proceedings of the 2001 symposium on Interactive
3D graphics, pages 227–232, New York, NY, USA,
2001.

[6] J. E. Lengyel. Real-time hair. In Proceedings of the
Eurographics Workshop on Rendering Techniques
2000, pages 243–256, London, UK, 2000.

[7] S. R. Marschner, H. W. Jensen, M. Cammarano,
S. Worley, and P. Hanrahan. Light scattering from
human hair fibers. In SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, pages 780–791, New York,
NY, USA, 2003. ACM.

[8] M. M. Oliveira and F. Policarpo. An efficient repre-
sentation for surface details. Technical Report RP–
351, UFRGS, January 2005.

[9] L. Szirmay-Kalos and T. Umenhoffer. Displacement
mapping on the GPU - State of the Art. Computer
Graphics Forum, 27(1), 2008.

[10] Scheuermann T. Hair Rendering and Shading. GDC
presentation, 2004.

[11] Scheuermann T. Hair rendering and shading. In
Wolfgang Engel, editor, ShaderX3: Advanced Ren-
dering with DirectX and OpenGL, pages 239–250.
Charles River Media, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
17

18

Time-Varying BTFs

Tobias Langenbucher, Sebastian Merzbach, David Möller,
Sebastian Ochmann, Richard Vock, Welf Warnecke, Michael Zschippig

Supervised by: Martin Rump

Institute of Computer Science
Rheinische Friedrich-Wilhelms-Universität Bonn

Bonn/Germany

Abstract

There have been several approaches to model and cap-
ture time-varying materials. Modeling approaches provide
good results but are sometimes hard to apply because un-
derlying processes are not yet understood or very complex.
In this paper, we present a data-driven approach to record
aging effects of metal and car paint with the help of Bidi-
rectional Texture Functions. BTFs precisely capture spa-
tially varying reflectance properties of a given material.
However, once captured, one cannot change the appear-
ance of a material that ages. Instead, we measure at sev-
eral distinct aging steps and combine this information into
a time-varying BTF which allows the user to interpolate
between different stages of the aging process.

1 Introduction

One goal of computer graphics is to create photo-realistic
images. In order to accomplish this goal, it is necessary
to take reflectance properties of materials into account.
These properties depend on color, shininess, translucency
and inner structure of a given material.

Additionally, almost all materials age, e.g. through cor-
rosion, scratches, or bleaching, leading to a change of their
visual properties over time. It is important to capture these
effects as well since they strongly contribute to the realism
of rendered materials and being able to smoothly interpo-
late the age of materials offers vast possibilities for indus-
trial, artistic and scientific applications. This can be used
for example to examine what a product will look like after
months or years of use.

This paper is a practical report about our work measur-
ing and rendering TV-BTFs (Time-Varying Bidirectional
Texture Function). We chose time-varying BTFs because
they capture these effects very well and have not been an-
alyzed before.

Solving the rendering equation by Kajiya [4] for any
given scene is the primary challenge in realistic render-
ing. One important component of this equation is a func-
tion that returns the amount of reflected light given the
direction of incoming and outgoing light. A popular ap-
proach to represent this function is called BRDF (Bidirec-

tional Reflectance Distribution Function). The BRDF is a
function that describes how much light from an incoming
angle is reflected to an outgoing angle. It does not take
subsurface-scattering into account and is restricted to ho-
mogeneous surfaces only. Some other groups have already
worked on Time-Varying BRDFs [8]; those however, un-
like BTFs, are not capable of capturing visual properties
of whole patches of a material.

There are two popular ways to generate a BTF. The
first one uses phenomenological and analytical models, the
second one is a data-driven approach. One big disadvan-
tage of the model-based concept is the fact that you have
to create a very detailed and physically accurate model of
the material, which is often excessively time-consuming or
even impossible. We therefore use a data-driven approach,
measuring the BTF of a material using a dome consisting
of 151 digital consumer cameras. An in-depth description
of this setup is given in chapter 4.1.

We examined our approach by letting a simple metal
plate rust and scratching a sample of green car paint. To
get time-varying results, we measured several times with
our increasingly aged materials and combined the data into
a single Time-Varying BTF. Using this TV-BTF, it is pos-
sible to interpolate over the lifetime of the material.

In the following chapters we will describe the basics of
rendering techniques, global illumination, capturing, com-
pression and decompression of Time-Varying BTFs. In
chapter 6 we will present some images of basic geometric
figures rendered with our Time-Varying BTF.

2 Basics

To achieve photo-realistic rendering, one has to measure
reflectance behavior of materials. This behavior is charac-
terized by how a ray of light with wavelength λi, hitting
the surface in a point xi in direction ωi at time ti, travels
through the material and leaves at another point xr in direc-
tion ωr at time tr and with possibly altered wavelength λr.
As shown in Figure 1, this leads to a twelve-dimensional
function (the points xi, xr have two spatial coordinates and
the directions ωi, ωr are represented by two angles).

It is, however, computationally way too complex and
thus currently impractical to fully describe arbitrary ma-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: The twelve-dimensional function describing
light transport in materials. [5]

terials because of the high dimensionality of a physically
correct surface reflectance function. Measuring or stor-
ing this information is beyond today’s hardware capabil-
ities. As a result, several simplifications are used to re-
duce the parameter count. Phenomena such as fluores-
cence (change of wavelength during reflection) or phos-
phorescence (re-emission of absorbed light after a certain
amount of time) are usually neglected, i.e. λi = λr and
ti = tr. Furthermore, the electro-magnetic spectrum is usu-
ally discretized into three wavelengths, i.e. red, green and
blue light.

These simplifications lead to the time-independent
eight-dimensional BSSRDF (Bidirectional Surface Scat-
tering Reflectance Distribution Function). The BSSRDF
is still quite complex and hence, further reductions have to
be applied. A simplification of the BSSRDF is the BTF
(Bidirectional Texture Function) which does not fully ac-
count for subsurface scattering.

BTF(xr,θi,φi,θr,φr)

=
∫

Surface

BSSRDF(xi,xr,θi,φi,θr,φr)dxi
(1)

One can easily see in the above equation that the BTF only
depends on one position. It accumulates light that is scat-
tered in the material from neighboring regions. Most mea-
surement setups that are used to capture BTFs of planar
materials (c.f. chapter 4.1) usually gather the subsurface
scattering part; it is, however, inseparably contained in the
measurements.

Even further simplifications include the four-
dimensional BRDF (Bidirectional Reflectance Distri-
bution Function) that discards any positional information
and only depends on incident and outgoing directions.

BRDF(θi,φi,θr,φr) =

∫
Surface

BTF(xr,θi,φi,θr,φr)dxr

||Surface||BRDF
(2)

Rendered with a BRDF, a material shows the same re-
flectance behavior over the whole surface.

3 Previous Work

In the field of time-varying materials, BRDFs, variable
textures and aging-models have already been analyzed. [2]
provides a good overview of this.

Time-varying BRDFs: At the CAVE laboratory at
Columbia University, Sun et al. have created a database
for time-varying BRDFs. They measured BRDFs of aging
materials every 36 seconds. With this setup, they obtained
a wide range of data about different time-varying materi-
als. In the next step, they fit BRDF functions to this data
and extracted the parameters. After that, they used these
parameters to develop time-varying BRDFs. In [8], Sun et
al. focused on drying materials and accumulation of dust.

Time-varying textures: In [3], Enrique et al. captured
several hundred pictures of a given material over time.
They extended the texture function with a time parame-
ter. Afterwards, they were able to texture a material at any
point of time.

Aging-models: To model aging effects on metallic pati-
nas, Dorsey et al. use a collection of operators applied to
a layer model. Each of these operators represent a differ-
ent weathering effect. The result is a surface of different
thickness and therefore varying reflectance properties [1].

4 BTF-Pipeline

4.1 Acquisition

A bidirectional texture function (BTF) is a six-
dimensional function which provides information about
the appearance of a material depending on the position
on the object’s surface as well as the viewing and light-
ing directions. Practical measurement of this function on
a material sample, or rather an approximation thereof, is
performed by taking several thousand pictures from dif-
ferent, discretized viewing and lighting angles.

We obtain the required images by using a hemispherical
camera dome by Sarlette et al., consisting of 151 consumer
cameras as described in further detail in [7]. All cameras
simultaneously shoot photos of a material sample placed
in a fixed position inside the dome while the integrated
flash light of one of the cameras illuminates the sample.
This process is repeated for each lighting direction which
yields photos for all 22,801 combinations of camera and
lighting positions.

The setup allows for rapid, automated measurement of
the materials thanks to the highly parallelized process as
well as a relatively simple post-processing phase due to
the rigid camera setup with known extrinsic (position and
orientation of the camera) and intrinsic (focal length, etc.)
camera parameters.

4.2 Geometric Calibration

To determine these parameters, we use the same calibra-
tion technique as presented in [7], which uses a planar cal-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
20

ibration object with 121 well-known LED features. The
use of active markers compared to passive ones leads to a
more accurate and robust detection.

We first measure without optical zoom. As we can make
the assumption that the intrinsic parameters are the same,
the extrinsic parameters can be estimated using Zhang’s
camera calibration algorithm [9]. Afterwards, the intrinsic
parameters are calculated zoom step by zoom step until the
measurement zoom step is reached.

4.3 Radiometric Calibration

To compensate slight differences of the camera sensors
and the spectral distribution of the flash lights, four re-
flectance targets with different albedo values and known
reflectance behavior are positioned near the target.

Using these markers, white-balance factors are calcu-
lated to achieve consistent color reproduction and to cal-
culate the effects originating from spectral differences in
flash light. In a post-processing step, these effects are
eliminated by simply multiplying measured values with
white-balance factors.

4.4 Image post-processing

After the raw images have been acquired they need to be
transformed into a common coordinate system where all
images have the same orientation and size.

We can compute the necessary transformation to re-
project the region of interest within each image to the de-
sired coordinate system by using the known extrinsic cam-
era parameters as well as corner markers in the images.
Small inaccuracies during measurement are compensated
by searching a small region around the assumed corner po-
sitions and using the adjusted positions for the transforma-
tion.

For decent rendering results, we need high dynamic
range images. However, one measurement pass from the
consumer cameras with some given ISO speed (i.e. CCD-
sensitivity) and flash light intensity only provides low dy-
namic range images. Thus, we perform multiple passes
with different settings for the ISO speed and flash inten-
sity which we later merge into one HDR image for each
combination of the camera and light directions. The rel-
ative position of the single LDR steps in energy space is
extracted from the white markers.

4.5 Compression and Decompression

Storing the resulting images uncompressed - assuming an
image size of 768× 768 pixels each - takes up approxi-
mately 150 GB of storage capacity, which is not feasible
for later usage in a shader.

In order to use the captured BTF data for fast rendering,
a decent compression algorithm is needed which has three
key requirements:

1. It should allow for fast random access to a single
pixel.

2. It should exploit recurring patterns and similarities in
the data in order to achieve high compression rates,
feasible for GPU calculations.

3. It should compress the data in reasonable time.

While the latter (as an offline computation) is a less crit-
ical requirement than the other two, the time spent com-
pressing should meet at least decent practical considera-
tions.

Traditionally, algorithms that fit these requirements
project the data into a lower-dimensional space by build-
ing a set of orthogonal base vectors and dropping the least
significant ones.

Since the uncompressed TV-BTF data is a seven-
dimensional tensor, common ways to compress it involve
either tensor or matrix decomposition, i.e. unfolding the
tensor into a matrix beforehand. Tensor decomposition
techniques allow for exploitation of patterns and simi-
larities in each dimension separately and hence tend to
achieve higher compression ratios than a matrix decom-
position which is restrained to one or two dimensions.

However, known tensor decomposition algorithms take
too much time to precompute and are thus not applicable.
We therefore chose a matrix decomposition approach by
using principal component analysis (PCA) to project the
BTF data into a theoretically optimal orthogonal base. A
PCA currently fits our requirements stated above best:

1. Access to a single value of the BTF data involves only
a scalar product of 2 c-dimensional vectors - c being
the dimension of our orthogonal subspace (i.e. the
number of principal components kept).

2. Considering an intelligent unfolding into a matrix, a
PCA builds an ”optimal” subspace by using orthogo-
nalized directions of the highest covariance, thus ex-
ploiting similarities and patterns in our data.

3. By using an EM-PCA algorithm introduced in [6] we
are able to compute only the c most important compo-
nents in a fast way without losing computation time
on components we would drop later anyways.

In order to calculate the PCA, a matrix representation
of the measured data is needed. For the PCA to work
properly, i.e. generate quickly descending eigenvalues and
hence allow for good compression, similarities in the data
should be placed close to each other in the matrix. The
expected variance between adjacent pixels is less than the
expected variance between one pixel under different light-
ing conditions.

To meet these requirements, we decided to store each
color channel for each time step in separate matrices, com-
pressing each of them using PCA. Therefore, one time step
consists of three matrices. The scheme works as follows:

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
21

Each column of each matrix holds the values of one
color channel (red, green or blue) of one entire HDR-
image. All images are written into the matrix sorted by
light and view directions (see Figure 2). The dimension of
the resulting matrix is (w · h)× (v · l), where w and h are
the width and height of the HDR-images, v is the number
of view directions and l is the number of light directions.

(0)ω i
(1)ω i

(150)ω i

(0)ω o

...
(1)ω o

(0)ω i
...

px(0)

px(1)

px(2)

...

Figure 2: BTF data matrix layout for one color channel.

Regarding the large amount of data involved, compos-
ing the BTF data matrix in this way involves the problem
of an out-of-core matrix transposition, since only a limited
amount of images can be kept in memory simultaneously.
However, this computation is a very time-consuming task
if the matrix is big. As IO (reading images from hard
disk, writing the data to the matrix file) is the bottleneck
of this task, we used an algorithm, that writes the matrix in
chunks that fit into memory (see Figure 3). This minimizes
the number of times each image has to be read.

Creating a single matrix including all measured time
steps and thus using a global compression for one large
matrix would significantly increase compression time and
memory usage (beyond what we are able to compute using
our GPU-implementation in decent quality). For this rea-
son, we chose to use separate matrices for each time step
and interpolated individual pixel values from these matri-
ces linearly in the shader. In the case of rusting metal,
color and geometric properties of the material change dra-
matically over time so that a global compression would not
provide any reasonable benefits concerning compression
ratio and quality. Using separate matrices, we achieved a
sufficient compression ratio to use for realtime-shading (in
case of the metal we cut down matrix size from 17.5 GB
to 78.7 MB).

5 Measurement

The following table gives a quick overview of the mea-
surement setup. In detail explanation follows in the next
two sections.

i m g L i s t = ge tSor tedHDRImageFi lenames () ;
l a r g e F i l e R = reserveMemory () ;
l a r g e F i l e G = reserveMemory () ;
l a r g e F i l e B = reserveMemory () ;
w r i t t e n = 0 ;
/ / chosen a c c o r d i n g t o r e s u l t i n g memory usage :
numScan l ine s = 2 0 ;

b l o c k s = emptyLi s tOf Images () ;
whi le (w r i t t e n < imgHeight) {

/ / l oad images i n t o RAM
f o r (i = 0 ; i < s o r t e d L i s t . s i z e () ; ++ i) {

/ / g e t i ’ t h b l o c k o f s c a n l i n e s
b l o c k s [i] = read ImageBlock (

i m g L i s t [i] ,
/ / f i r s t s c a n l i n e
w r i t t e n ,
/ / l a s t s c a n l i n e
min (imgHeight , w r i t t e n + numScan l ines)

) ;
}

/ / w r i t e da ta i n t o m a t r i x f i l e p i x e l−wise
f o r (px = 0 ; px < imgHeight∗ imgWidth ; ++ i) {

f o r (img = 0 ; img < b l o c k s . s i z e () ; ++ i) {
/ / w r i t e R , G and B v a l u e s
l a r g e F i l e R . w r i t e (b l o c k s [img] [px] [R]) ;
l a r g e F i l e G . w r i t e (b l o c k s [img] [px] [G]) ;
l a r g e F i l e B . w r i t e (b l o c k s [img] [px] [B]) ;

}
}

w r i t t e n += numScan l ines ;
}

Figure 3: Pseudo code for writing the BTF data matrix.

light directions 151
view directions per flash 151
iso levels 4
aging levels 4
total pictures taken 364,816

5.1 Metal

To measure visual properties of metal rusting over time,
we took measurements of a metal plate in a progressively
rusted state. Between the measurements in the dome we
sped up the aging process using a rusting-chamber as
schematized in Figure 4. The bottom was filled with warm
(approx. 28◦C), salted water which was tempered and cir-
culated with an aquarium heater and pumps. The probe
stood nearly upright (with an angle of about 75◦) on a sup-
port frame. Because the rusting process is greatly acceler-
ated by the presence of acid we placed a small basin filled
with vinegar in front of it. To counteract water drops on
the probe, we heated the roof above with a lamp, so that
the vapor could not condense in this area.

Whenever we considered a new stage of aging to have
been reached, a new measurement was taken. The (en-
tirely experimental) time intervals used for the aging of
the material are listed in Table 1. We measured four

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
22

Figure 4: Our setup to accelerate the rusting process be-
tween measurements.

states of the rusted material, each measurement consist-
ing of four different exposure time and flash settings for
later HDR combination. Thus we acquired a total of
1512 · 42 = 364,816 individual images, resulting in about
1,075 GB of storage space for the unprocessed shots.

Figure 5 shows photo-montages of the different rust-
ing states assembled from raw measurement footage of
the metal experiment. The pictures from the four differ-
ent rusting states have been combined and faded from left
to right, showing the different rusting states.

Measurement # Time rusted
1 0 min
2 +10 min
3 +30 min
4 +30 min

Table 1: Time intervals for the rusting process.

5.2 Car Paint

Before taking initial measurements of the car paint, we
had to clear it of pre-existent scratches by applying com-
mon car polish. We then recorded the pictures for a BTF.
Afterwards, we added new scratches with a coarse and
raspy sponge that is normally used to wipe insect rem-
nants off your windshield. We tried to move the sponge
in circles to scratch the surface evenly along all directions.
Utmost care had to be taken not to add too many new
scratches because the procedure is irreversible. After each
step of scratching, we carefully determined the amount of
scratches by taking photos with a flash light, because the
scratches are hardly visible in a diffuse lighting as it is
common indoors.

Just like the patina material, the car paint shows highly
specular reflections, so we had to use four different ISO
speeds and flash intensities to get qualitatively acceptable
HDR pictures. We used five different stages of altered ma-
terial, leading to a total of 364,816 pictures of the material
and about 1 TB storage space.

A problem exists in our measurement setup with highly
reflective materials, as there are reflections of cameras

from the opposite side of the dome from low angle shots.
This problem and its solution are discussed in [7]. How-
ever, we did not apply this solution because these artifacts
are negligible with our materials.

6 Results

Figure 5: Montages of raw measurement footage.

We were able to compress more than one terabyte of raw
image data to a few megabytes. Using only the 100 most
significant components in the PCA, we achieved compres-
sion ratios of 42,000 : 1 for the car paint.

Figure 6 depicts path tracer renderings of a sphere with
the different rusting states and linear interpolations be-
tween them applied to the surface.

In Figure 7, three actual photographs of the first, second
and fifth measurement are shown. The third and fourth
picture were created by linear interpolation between the
real data. In Figure 8 you can see actual renderings of the
first and last aging stage.

Interpolation works well on the data and it can be used
for TV-BTFs. One can argue that linear interpolation is
unsuitable for our approach. Scratches appear suddenly
and do not fade in smoothly, as it occurs when interpo-
lating linearly. However, these artifacts are hardly visible
and handling this problem properly is beyond the scope of
this paper.

7 Conclusion

The results show that our approach can be used to render
images of time-dependent materials. The data can be com-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
23

Figure 6: Rusted metal renderings. Left column: Ren-
dered images of the four measured rusting states; right col-
umn: linear interpolations between the neighboring states
within the shader.

pressed very well and the interpolated aging levels appear
realistic.

There are however some problems that have to be dealt
with in future projects. Small errors in measurement can
lead to big errors in the resulting BTFs, e.g. scratches
on the car paint do not match in different aging steps.
This problem is caused by the sample holder not being
fixed in the dome. It is possible for the sample to lie in
a slightly different angle or position relative to the flash-
lights in subsequent shots, resulting in different highlights
on the scratches. This effect can not be compensated by

Figure 7: Montages of raw measurement footage, from
top to bottom: First measurement, second measurement,
followed by two interpolations and the last measurement

the rectifications used so far. It is, however, hardly visible
because of the small scale of these highlights.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
24

Figure 8: Actual renderings of the first and last aging stage
of the car paint material.

8 Acknowledgment

We would like to thank our project supervisor Martin
Rump, as well as Ralf Sarlette and Professor Dr. Rein-
hard Klein who allowed us to gain better knowledge of
BTFs and insight into the research activities and work in
our university’s computer graphics department.

References

[1] Julie Dorsey and Pat Hanrahan. Modeling and ren-
dering of metallic patinas. In SIGGRAPH ’96: Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 387–396,
New York, NY, USA, 1996. ACM.

[2] Julie Dorsey, Holly Rushmeier, and François Sillion.
Advanced material appearance modeling. In SIG-
GRAPH ’08: ACM SIGGRAPH 2008 classes, pages
1–145, New York, NY, USA, 2008. ACM.

[3] Sebastian Enrique, Melissa Koudelka, Peter Bel-
humeur, Julie Dorsey, Shree Nayar, and Ravi Ra-

mamoorthi. Time-varying textures: definition, ac-
quisition, and synthesis. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Sketches, page 130, New York, NY,
USA, 2005. ACM.

[4] James T. Kajiya. The rendering equation. SIGGRAPH
Comput. Graph., 20(4):143–150, 1986.

[5] Gero Müller, Jan Meseth, Mirko Sattler, Ralf Sarlette,
and Reinhard Klein. Acquisition, synthesis and ren-
dering of bidirectional texture functions. Computer
Graphics Forum, 24(1):83–109, March 2005.

[6] Roland Ruiters, Martin Rump, and Reinhard Klein.
Parallelized matrix factorization for fast btf compres-
sion. In Eurographics Symposium on Parallel Graph-
ics and Visualization, pages 25–32, March 2009.

[7] Martin Rump, Gero Müller, Ralf Sarlette, Dirk Koch,
and Reinhard Klein. Photo-realistic rendering of
metallic car paint from image-based measurements.
Computer Graphics Forum, 27(2), April 2008.

[8] Bo Sun, Kalyan Sunkavalli, Ravi Ramamoorthi, Peter
Belhumeur, and Shree Nayar. Time-Varying BRDFs.
In Eurographics 2006 Workshop on Natural Phenom-
ena, Sep 2006.

[9] Zhengyou Zhang. A flexible new technique for camera
calibration. IEEE Trans. Pattern Anal. Mach. Intell.,
22(11):1330–1334, 2000.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
25

26

Layered Materials in Real-Time Rendering

Oskar Elek

Faculty of Mathematics and Physics
Charles University

Prague / Czech Republic

Abstract

Today’s games and other real-time 3D applications often use only
basic empirical models for modelling the appearance of materi-
als and rely on complex geometry and texturing to make them
more visually appealing. In this paper we explore the possibili-
ties of bringing more physically plausible models to real-time 3D
graphics.

We do this by implementing the layered BRDF of Wei-
dlich and Wilkie on GPU. This model utilizes the well-known
Torrance-Sparrow and Oren-Nayar microfacet models. We show
how to make this layered model useful for real-time rendering
through various optimizations. Then we derive two specialized
models based on this basic layered model. These two models at-
tempt to simulate the appearance of metallic car paints and metal-
lic patinas.

Keywords: surface reflectance models, appearance modelling,
layered materials

1 Introduction

Our environment contains a large variety of objects and materials
with surfaces composed of multiple layers, for instance coated
ceramics and plastics, varnished and patinated metals, organic
tissues etc. Rendering such materials in real-time applications
is difficult — traditionally used empirical BRDFs, such as the
Phong reflectance model, are not capable of reproducing the
appearance of most of them, and possibility of utilization of
measured BRDF or BTF data is limited on GPU. There is a need
for a simple analytical BRDF that can reproduce the appearance
of layered materials in interactive applications.

This paper extends the work of Weidlich and Wilkie [21],
who presented a simple analytical physically-based BRDF
suitable for rendering layered materials. Their model is based
on combination of commonly used BRDFs, such as Torrance-
Sparrow [20] and Oren-Nayar [15] reflectance models. We show
how to transfer their work into the environment of real-time
evaluation in fragment shaders, along with various convenient

optimizations. We then demonstrate the potential of this model
by employing it in two specialized models for rendering metallic
car paint and copper patina.

The paper is organized as follows: we first give an overview
of related work in the field and review the layered model of Wei-
dlich and Wilkie. Then we discuss a real-time adaptation of this
model, along with two specialized models for rendering metallic
car paint and metallic patinas. Finally, we measure the perfor-
mance of our implementation and discuss its possible utilization
in real-time applications.

2 Background and Related Work

2.1 Microfacet Reflectance Models

Analytical reflectance models used in 3D computer-generated
imagery can be generally divided between two groups: empir-
ical and physically-based. Empirical models are based on direct
observation and therefore are usually physically implausible (ex-
cept for the limit cases — ideal diffuse and mirror reflectors).
The most common BRDFs from this group are Phong [16] model
and its modification by Blinn [1], both widely used in real-time
rendering applications. The prevalence of these models in real-
time rendering is due to their low computational requirements
and fairly good reproduction of overall object appearance.

In contrast to these, physically-based BRDFs model re-
flectance properties of materials from first optical principles,
which leads to a more plausible appearance of materials. A
BRDF is physically plausible, if it conserves energy (i.e. albedo
is always at most 1), obeys Helmholtz reciprocity principle
and is non-negative. To retain a closed analytical form, they
often use a statistical surface representation, instead of an
explicit one. Surfaces are represented by statistically distributed
tiny microfacets or V-shaped cavities. We will discuss two
physically-based BRDFs, namely the Torrance-Sparrow [20]
and Oren-Nayar [15] reflectance models.

The Torrance-Sparrow reflectance model builds on the as-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

sumption that the material surface consists of microscopic V-
shaped cavities that behave like perfect mirrors with Fresnel re-
flectance. The amount of reflected light fr is defined as

fr =
FDG

π(N ·L)(N ·V)
(1)

• F(β ,n,κ) is the Fresnel term. It expresses the reflectance
coefficient of each individual microfacet. β is the angle
between incident light direction L (or view direction V) and
half vector H, n and κ are real and imaginary components
of the material’s index of refraction (IOR). Note that F is
wavelength-dependent. The full Fresnel term equations can
be found in [2] or [7].

• D(α,m) is the microfacet slope distribution function rep-
resenting the amount of microfacets oriented towards the
observer. α is the angle between half vector H and sur-
face normal N, m ∈ 〈0,1〉 is the surface roughness param-
eter. Small values of m represent very smooth surfaces,
while values close to 1 correspond to rough surfaces. For
m→ 0 the term D converges to Dirac δ -function. Com-
monly used distributions are for instance the Beckmann
distribution (D = 1

m2 cos4 α e−(tanα/m)2
), the Blinn distribu-

tion or the Gaussian distribution.

• G(L,V,N) is the geometry attenuation term, which ex-
presses the amount of light attenuated after shadowing-out
in the surface microfacet structure. Please refer to [3] for
the complete formula.

The Torrance-Sparrow model was introduced to computer
graphics by Cook and Torrance [3], who added a diffuse term
and some minor modifications into the model. It is suitable
for modelling wide variety of surfaces, especially metals. It is
also successful in predicting phenomena such as off-specular
reflection and specular backscattering. The HLSL code of this
model can be found in Appendix B.

The Oren-Nayar model represents a generalization of the
standard Lambertian reflectance. It is similar to the Torrance-
Sparrow model in its assumptions; the only difference between
them is that the Oren-Nayar model treats each individual micro-
facet as diffuse reflector, not as a prefect mirror. This compli-
cates the situation, because it is now necessary to take multiple
interreflections between neighbouring microfacets into account.
The resulting model from Oren and Nayar is therefore only an
approximation of the full solution, although a very good one. Its
full formulation can be found in [15].

The model is suitable for modelling rough materials with dom-
inant diffuse component, such as clay, stone or uncoated paper.
It is capable of reproducing the effect of diffuse backscattering,
characteristic for example for the full Moon. Despite its moder-
ate computational costs, it is rarely used in real-time rendering.
The reason for this is that the standard ‘N-dot-L’ Lambertian re-
flectance exhibits very similar reflectance behaviour, but is far
superior in terms of computational performance.

2.2 Layered Reflectance Models

Due to the frequent occurrence of layered materials in our envi-
ronment, the search for model capable of rendering such materi-
als has received adequate attention. Kubelka and Munk [12, 10,
11] developed a physical model for modelling subsurface scatter-
ing within multiple layers. Hanrahan and Krueger [8] presented

a model for subsurface scattering computation in the context of
computer graphics, and made it directly usable in a Monte-Carlo
renderer. These models are comprehensive, but lack an analytical
closed form, and therefore are not suitable for real-time applica-
tions.

As for analytical models, Neumann and Neumann [14]
proposed a simple model for modelling multiple layers. How-
ever, they considered only perfectly smooth, transparent layers
without including internal reflection. Kelemen and Szirmay-
Kalos [9] presented a composite BRDF derived from the
Cook-Torrance model. Their model does not explicitly consider
surface layers and therefore does not account for absorption and
internal reflections, but thanks to the tight coupling between
diffuse and specular BRDF components, their model estimates
the appearance of single-layered surfaces fairly well.

Finally, the model of Weidlich and Wilkie [21] accounts for
both internal reflection and absorption and supports unlimited
number of layers. Each layer can have any arbitrary BRDF; the
only requirement on these BRDFs is that for all layers except the
lowest a transmission component, which allows the light enter
the layer underneath, must exist (for example the Cook-Torrance
model does contain a transmissive component, while the Oren-
Nayar model does not). The only limitation is that the model
does not support scattering within the layers. Since this model
forms the starting point for our work, we will briefly review it
now.

It is worth mentioning that the model relies on the assump-
tion of layers, which are thin in comparison with the surface ge-
ometric features. This is not uncommon; in fact all previously
mentioned models rely on this. This allows to assume that all
incident and refracted rays meet at a single point at every layer
(which is very convenient, as it allows purely local evaluation
of the model, without including surface spatial position into the
model). Fortunately, this condition, along with the assumption of
nonpresent subsurface scattering, still hold true for wide variety
of materials.

Figure 1: The recursive evaluation scheme. Each stage is also
shown graphically. Scheme used with permission.

The evaluation of the model is carried out in a recursive man-
ner and can be described in four steps for two given layers i and
i+1 (see also Equation 2 and Figure 1):

1. The BRDF of the upper layer fri is evaluated for given light
and view directions L and V . This also produces the trans-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
28

mittance coefficient Ti→i+1 = 1−Fi. Two refracted direc-
tions L′ and V ′ are calculated, according to Snell’s law for
given refractive indices ni−1 and ni (n0 ≈ 1 if the object is
in the air).

2. The refracted light is attenuated by the absorption term ai.

3. The BRDF of the lower layer fri+1 is evaluated for L′ and
V ′. If the layer i + 1 is not the lowest one, we recursively
continue from Step 1 (fri+1 ≡ f (i+1)

r).

4. On return from the recursion, the light coming from the
lower layer is attenuated by Ti+1→i and subjected to possi-
ble total internal reflection ti. The contributions from both
layers are added together.

This can be expressed in the form of a recurrent equation for the
composite BRDF at layer i as:

f (i)
r = fri(L,V)+Ti→i+1 · fri+1(L

′,V ′) ·ai · ti (2)

• ai is the attenuation term according to Bouguer-Lambert-
Beer law. The portion of absorbed light depends on the
material-specific wavelength-dependent absorption coeffi-
cient σ and the distance the light travels in a particular
layer:

ai = e−σ li li = di · (1
N·L′ +

1
N·V ′) (3)

where di is the thickness of the layer i.

• ti is the internal reflection term. It compensates for the en-
ergy lost during the potential total internal reflection of light
when crossing an inter-layer boundary from denser into a
less dense medium on its way upwards. It is defined as

ti = (1−Gi)+Ti+1→i ·Gi (4)

where Gi is the Torrance-Sparrow geometry attenuation
term.

The final value of the entire model is simply obtained as fr =
f (1)
r . For the detailed discussion of the model, please refer to the

original paper [21].

2.3 Specialized Material Models

Specialized material models are utilized when the available gen-
eral BRDFs cannot reproduce the desired material’s appearance
well enough. As a consequence there is a large variety of such
models, each aiming to simulate a single particular effect. There-
fore we will list only those few which are relevant for us here; for
a comprehensive overview of these models, please refer to [5].

Modelling of car paint is a subject of intensive research, since
it is important for virtual prototyping in the automotive industry.
Takagi et al. [18, 19] developed techniques for both acquisition
and rendering of car paints, that are directly applicable in the
industry. Ershov et al. [6] developed an interactive model for
pearlescent car paint rendering by simulating scattering between
virtual thin sublayers. Recently, Rump et al. [17] introduced a
realistic hybrid model for metallic car paint rendering that com-
bines acquired BTF data and classical BRDFs, such as Cook-
Torrance model.

As for modelling of metallic patinas, Dorsey and Hanrahan [4]
presented a method for simulating growth of patinas on metallic
objects by considering multiple layers of material and applying

Figure 2: Variation of the upper layer’s roughness influences
shape of the reflection from the lower layer with m2 = 0.3. The
image on the right shows a torus with m1 = 0.4 and m2 = 0.05
without the correction.

eroding operators on them. For rendering they used the Kubelka-
Munk theory with three layers for copper substrate, tarnish and
the patina itself. Yao-Xun and Zen-Chung [22] simulated patina
growth on objects buried underground, using L-systems. How-
ever, these works are focused on patina development simulation
and not on rendering.

3 Layered Materials in Real-Time

The basic version of the real-time layered model adaptation
is a relatively straightforward implementation of the evaluation
scheme presented in Section 2.2. Algorithm 1 shows a Cg frag-
ment shader for the model with two layers, one light source and
an environment reflection from the upper layer. Both layers use
the Torrance-Sparrow BRDF, plus a diffuse component for the
lower layer, and are normal-mapped.

The main difference is of course the lack of capacity to explic-
itly cast sampling rays. This has several implications. First, we
must strictly stick to the evaluation of the local model with given
L and V directions (or L′ and V ′ for the lower layer, respectively).
Also the environment reflection must take into account the up-
per layer roughness, and without sampling this can be achieved
only by providing an adequately blurred environment map for the
texture lookup at Line 29. Otherwise an inconsistency between
the environment reflection sharpness and the specular highlight
shape will occur.

Another consequence of the inability to actually sample the
BRDF is that a discrepancy between the roughness of the layers
might cause an incorrect appearance of the surface, specifically
when m1 > m2. Figure 2 depicts the problem. This cannot hap-
pen in Monte-Carlo rendering, because the light gets properly
blurred during the refraction on the upper layer. The solution
here is to clamp the value of m2 to the value of m1 (see Line 21),
so that the lower layer’s roughness is always greater or equal to
the one of the upper layer.

Although the shader we show uses only two layers, there is
no obstacle to using more layers (except performance considera-
tions), thanks to the recurrent character of Equation 2. Adding a
layer would mean calculation of a new pair of refracted vectors
L′′ and V ′′, terms a2 and t2 for the new layer and of course of
its own BRDF. Another means of enhancing the model’s visual
richness would be for example adding a thickness map for the
upper layer (as in Figure 2), or using a roughness map to vary m
across the surface.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
29

Figure 3: Examples of surfaces that can be generated by the layered model. Top row: Results from the original paper. Bottom
row: Images generated by our real-time implementation, with parameters adjusted to the best visual match with their corresponding
Monte-Carlo versions. Note that the only qualitative difference is the absence of global illumination. The original image used with
permission.

3.1 Optimizations

Undoubtedly the largest performance impact is caused by eval-
uation of the Torrance-Sparrow model. We will therefore try to
speed up its evaluation, what practically means optimizing eval-
uation of F , D and G terms. We will show that it is possible to
precompute F and D.

Fresnel term F(θ ,n,κ): The Fresnel term evaluation is the
most expensive operation in the model, and is called three times
in the basic version of the layered model. The value of F depends
on the angle θ between two considered vectors and on the mate-
rial index of refraction (n,κ). This yields 7 degrees of freedom
(for RGB colour components), making a naive precomputation
impossible. Of course, it would be possible to separate the R, G
and B components of (n,κ) and create three 3D tables, one for
each colour component. This is however not the best solution,
because it would increase the number of lookups needed to eval-
uate F from one to three. The solution lies in the fact that for a
given material, the value of (n,κ) is fixed, which allows creation
of a 1D table parameterized only by the incident angle θ . Such
1D table would contain all possible values of F for that particular
material and would be very compact — since the gradient of F
in respect to θ is low, the resolution of this table can be small,
for example 128 samples. For R8G8B8 texture (which is suffi-
cient, since the value of F is always ∈ 〈0,1〉) this means the size
of only 384 bytes. This allows for creation of a 2D texture atlas
for hundreds of materials in the scene with the size in the order
of tens of kB.

If precomputation is not desired for some reason, F can be
approximated. Lazányi and Szirmay-Kalos [13] presented an ac-
curate and inexpensive approximation of the full Fresnel term,
which deviates from the full formula in 5% at most.

Figure 4: Zoom on a sharp specular highlight (m1 = 0.01) using
tabulated D term with linear mapping (top), nonlinear mapping
(middle) and the full evaluation (bottom). The right image shows
a highlight when MIP-mapping is enabled on the texture which
contains D.

Distribution term D(α,m): Dimensionality is not an issue
here, since both α and m are scalars, so a 2D table can hold
the entire distribution term. The complication here is the con-
vergence of D towards the Dirac δ -function when m→ 0, inde-
pendent of which distribution is used. This implies that for very
small values of m and α → 0, the large gradient of D cannot
properly be reproduced, even if a large sampling rate is used for
α (see Figure 4). To remedy this problem, a non-linear mapping
must be used for α — on the coordinate u ∈ 〈0,1〉 the texture
holds a value of D, which would be stored in the linearly-mapped
texture on the coordinate ux. We use x = 8, since u8 can be com-
puted in 3 multiplications. But still, even with linear mapping,
this issue starts to be apparent just for very smooth surfaces (with
m < 0.02).

It is also better to disable MIP-mapping for the texture con-
taining D. The reason for this is that the higher MIP levels
will blend together adjacent values of the texture (which corre-
spond the different values of m), resulting in an incorrect size
and jaggedness of the specular highlight, when viewed from dis-
tance. As for the texture resolution, we use a single-channel 16b

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
30

Data: vertex shader output structure IN, uniform variables m1, m2, d
(float) and n1, κ1, n2, κ2, σ , lightCol (float3), texture samplers

Result: fragment colour
begin1

// calculate involved vectors...
float3 N = normalize(2 * tex2D(normalMap, IN.UV).xyz - 1);2
float3 L = normalize(IN.lightDir);3
float3 V = normalize(IN.eyePos - IN.fragmentPos);4
float3 H = normalize(V + L);5
float3 R = reflect(-V, N);6
float3 L’ = -refract(L, N, 1/n1);7
float3 V’ = -refract(V, N, 1/n1);8
float3 H’ = normalize(V’ + L’);9

// ...and their dot products
float NdotL = dot(N, L);10
float NdotH = dot(N, H);11
float NdotV = dot(N, V);12
float VdotH = dot(V, H);13
float NdotL’ = dot(N, L’);14
float NdotH’ = dot(N, H’);15
float NdotV’ = dot(N, V’);16
float V’dotH’ = dot(V’, H’);17

// BRDFs for both layers
float3 F1, F2;18
float G1, G2;19

// F and G are ‘out’ parameters
float3 f1 = TorranceSparrow(NdotL, NdotV, NdotH, VdotH, n1,20
κ1, m1, F1, G1);

float3 f2 = TorranceSparrow(NdotL’, NdotV’, NdotH’, V’dotH’,21
n2, κ2, max(m2, m1), F2, G2);

// diffuse contribution of lower layer
f2 += (1 - F2) * max(NdotL, 0) * tex2D(diffuseMap, IN.UV);22

// internal reflection term
float3 T12 = 1 - F1;23
float3 T21 = T12;24
float3 t = (1 - G1) + T21 * G1;25

// attenuation term
float l = d * (1/NdotL’ + 1/NdotV’);26
float3 a = exp(-sigma * l);27

// environment reflection for upper layer
float3 F1env = FresnelTermNP(NdotV, n1, κ1);28
float3 envCol = F1env * texCUBE(environmentMap, R);29

// final summation
float3 fr = lightCol * (f1 + T12 * f2 * a * t);30
return float4(fr + envCol, 1);31

end32

Algorithm 1: The layered model shader code.

floating-point texture with 512 samples for α and 512 samples
for m, resulting in the size of 0.5MB.

Geometry term G(L,V,N): The precomputation of the
geometry term is not necessary, as most of the involved dot
products have to be calculated anyway, leaving only a few mul-
tiplications and two divisions to be evaluated. However, should
such need arise, Kelemen and Szirmay-Kalos [9] showed a way
to exclude the evaluation of G from the Torrance-Sparrow model.

Of course, a completely different way of speeding up the com-
putation can be taken — instead of using the Torrance-Sparrow
model, one can use a simpler BRDF for the layers. Even the
Phong model can be used, with the transmission term T derived
from the amount of reflected light or by explicitly evaluating the
Fresnel term. However, usage of the Phong model decreases the
richness of appearance that can be achieved with physically plau-
sible models.

A comparison between the full and precomputed model ver-
sions can be seen on Figure 5. A comparison between the results
of the real-time version of the model and the original Monte-
Carlo implementation of Weidlich and Wilkie can be seen in Fig-

Figure 5: Visual comparison of the full evaluation (left)
and using precomputed tables for F and D (middle). The
right image shows a magnified difference between the two
(| f ull− precomputed|); the largest error is less than 6%.

Figure 6: Left: Sparkling effect on an object coated with metal-
lic paint. Right: An example of a texture representing the metal-
lic flakes heightfield and the corresponding normal map.

ure 3. Figure 10 shows more examples of the model usage.

4 Specialized Materials Modelling

In this section we will present two specialized models for mod-
elling the appearance of metallic car paint and metallic patina.
Both are straightforward modifications of the model discussed
previously.

4.1 Metallic Paint

Standard solid car paints usually consist of an opaque pigment
layer sprayed over base substrate. Metallic paints use translucent
pigments which in addition contain very small metallic flakes and
can optionally be covered with a clear coating. This structure is
responsible for two characteristic appearance features of metallic
car paints — an overly metallic look (naturally caused by the ma-
terial the flakes are made of, e.g. chromium) and sparkling effect,
which is especially visible under direct sunlight. This sparkling
effect is caused by the fact that the flakes spread in the medium
are almost randomly oriented and reflect the incoming light to
different directions (see figure 6 for illustration).

To model a surface with such structure it is natural to use the
layered model. We use two layers, a lower ‘substrate’ layer made
of chromium and a tinted ‘coating’ layer. The sparkling effect is
achieved by perturbing the surface normal with the texture shown
in Figure 6, but only for the lower layer. This normal map is tiled
many times across the surface, so that the individual flakes are
not visible.

Two problems arise from this approach. The first problem is
the consequence of the fact that the flakes are smaller than the
size of a pixel. This is modelled by the aforementioned tiling
of the perturbing normal map. By doing this, however, a MIP
map of the texture is used instead of the full texture to fetch the
value of the perturbed normal. This effectively smoothes out all

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
31

original surface
perturbed surface

N N

N'

p

x1

x2

x3

x4

Figure 7: Left: The scheme depicting the scaling of the perturbed normal. Middle: Four distances from the object corresponding to
the scheme. Right: The object without the scaling correction.

details provided by the flakes normal map. To overcome this,
all filtering must be disabled for the normal map. This produces
the effect of noisy sparkling, which dynamically changes as the
observer moves.

The second problem arises from the solution to the first
one. Minification filtering and MIP mapping ensure that high-
frequency features on the texture are filtered so aliasing does
not occur. By disabling these, the noisy sparkling is apparent
even from distance. In reality this cannot happen, because as the
observed object gets further from the eye, more flakes are pro-
jected onto the same area on the retina, effectively averaging and
smoothing the perceived image. This can be solved by scaling
the original surface normal by the distance of the observer from
the fragment and add this scaled normal to the perturbed normal
(see Figure 7). This effectively decreases the influence of the per-
turbed normal, making the surface look smooth from distance. In
code, this can be written as:

float distance = length(IN.eyePos - IN.fragmentPos);
// N currently contains the normal-mapped normal
// also remember we are in tangent space

N += max(distance, 1) * float3(0, 0, 1) +
(2 * tex2D(flakesNormalMap, 1000 * IN.UV).xyz - 1);

N = normalize(N);

Multiplication of the UV coordinates by a large number tiles
the normal map. This block of code is to be inserted between
Lines 13 and 14 in the Algorithm 1 (to influence only the angles
between the refracted rays).

4.2 Patina

Patination is a chemical oxidation process which occurs on met-
als. It changes the chemical composition near the surface of the
material, often resulting in a layer of substance with different
optical properties than the original material. Unlike rusting, pati-
nation does not destructively erode the metal; instead, it forms
a solid protective layer atop of the metal substrate, which then
stays stable. Patination occurs on many common metals and al-
loys, for example on copper, brass, aluminium, tin and even on
silver. We chose to model copper patina, because of its distinct
appearance.

Copper patinas often have complex chemical composition,
which tend to differ with the atmospheric conditions the cop-
per object is exposed to. The involved substances are cuprite
Cu2O, antlerite, brochantite and possibly others. Since the phys-
ical constants for these are not widely available, we use for the
patina the IOR of cuprite and an empirically matched light-green
absorption spectrum.

An important thing is to have control over the patina growth,
i.e. to determine places where patina is already developed and

Figure 9: Left: A grayscale map that controls the patina de-
velopment. Right: Blurry (transition = 0.9) and sharp
(transition = 0.2) boundaries of the developed patina re-
gions.

where not yet. Naturally, this changes over time. To model
the development we use a single grayscale texture (see Fig-
ure 9) and two parameters: transition ∈ 〈0,1〉 and extent ∈
〈−transition,1+ transition〉. The first one controls the sharp-
ness of the patina regions and the second one controls the ex-
tent of patina development (the larger is the extent parameter,
the more of the surface is covered with patina). As for the tex-
ture, the darker the value, the earlier will the patina develop on
that particular position. The texture can be derived from the sur-
face curvature (as in our case, since the patina develops earlier
in places like cracks and wrinkles) or can be an output from an
actual weathering simulation. The code for this looks as follows:

float patinaValue = tex2D(patinaMap, IN.UV).r;
float extentFactor = 1-smoothstep(extent - transition,

extent + transition,
patinaValue);

The variable extentFactor ∈ 〈0,1〉 is then used through the entire
shader to control the amount of patina.

It is necessary to realize that on the places where the patina is
not developed yet, only the reflection from the lower layer has to
be taken into account. The development of patina also changes
some properties of the lower layer, for example its roughness.
Figure 8 demonstrates this process. Therefore the model has to
be evaluated for both cases (with and without the upper patina
layer) and the extentFactor variable should be used to linearly
interpolate between them. The extentFactor should be also used
to interpolate between the model parameters influenced by the
patina growth, namely the aforementioned roughness parameter
m2 and the IOR value (n, κ) used to calculate the environment
reflection (Line 28 in Algorithm 1).

Unfortunately, the substance that forms the patina layer does
not conform to the assumption that no light is scattered within
the layer. Quite the contrary — it is the scattering that makes the
patina appear primarily as a diffuse reflector. To avoid subsurface

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
32

Figure 8: Patina development ‘over time’ by changing the extent parameter value (from left to right −0.65, −0.05, 0.15, 0.45, 0.75
and 1.65; transition = 0.65).

scattering computation we approximate this effect by adding a
diffuse component to the BRDF of the patina layer, that is:

float3 patinaDiffuse = (1 - sigma)

* (1 - F_1) * max(NdotL, 0);
f_1 += patinaDiffuse;

We modulate the diffuse component by the remainder of the ab-
sorption spectrum σ to strengthen the characteristic colour of the
patina. To further improve the appearance of patina, we control
its thickness with an additional texture (as proposed in Section 3)
and modulate the base copper layer with a dark-orange tone to
mimic the appearance of tarnish.

5 Results and Conclusions
We implemented the basic model and the derived specialized
models in HLSL, using NVIDIA FX Composer 2.5 for devel-
opment and measurements. We test the basic two-layer model in
two versions, using the full evaluation and using precomputed
tables for F and D, against a single-layer Phong shader with
similar features (normal mapping, environment reflection). We
do not measure the two specialized models, as these are sim-
ple modifications of the basic model and do not add significant
computational overhead. The measurements used GeForce 8800
GTX (G80) as a reference GPU. Table 1 summarizes the mea-
surements.

Model GPU cycles MPix/s
Layered (full) 436 348
Layered (precomp.) 236 757
Phong 104 1648

Table 1: Performance comparison of the layered model and
standard Phong model. The measured quantities are the number
of G80 GPU cycles used for model’s evaluation and the corre-
sponding pixel throughput.

So, the discussed layered model is still roughly 2.3 times
slower than the Phong model. This is expected however, since
we are evaluating two BRDFs instead of one, and each of them
being far more complex than the Phong model.

Conclusions Although the discussed layered model is slower
than the commonly used reflectance models in real-time 3D ap-
plications, it provides superior appearance reproduction of a wide
variety of surfaces, and is physically plausible. Moreover, it is
very likely that the performance impact of using this model in a
real-time application would be only a few percent, because:

• It is not necessary to use the model on all objects in a scene,
but only on objects in the user’s primary attention (e.g. cars
in a racing game).

• The performance of any renderer is not given solely by the
performance of the used reflectance models, but is mainly a
consequence of many other tasks the renderer have to per-
form.

This indicates that the model is a viable alternative for use in
today’s real-time 3D applications, including games.

To conclude the paper; we have presented a real-time imple-
mentation of the physically-based layered BRDF introduced by
Weidlich and Wilkie [21]. We have then shown how to optimize
this model to be useful in real-time 3D applications. Further-
more, we have explored the capabilities of this model by deriving
two specialized models for modelling the appearance of metallic
car paint and metallic patina from it. The FX Composer project
containing all discussed shaders will be made available on the
author’s webpage.

6 Acknowledgements

I would like to thank Alexander Wilkie for his insights and advice
regarding this work.

References

[1] J. F. Blinn. Models of light reflection for computer synthe-
sized pictures. In Proceedings of SIGGRAPH ’77, pages
192–198, 1977.

[2] M. F. Born and E. Wolf. Principles of Optics. Cambridge
University Press, 7th edition, 1999.

[3] R. L. Cook and K. E. Torrance. A reflectance model for
computer graphics. In Radiometry, pages 42–59, 1992.

[4] J. Dorsey and P. Hanrahan. Modeling and rendering of
metallic patinas. In Proceedings of SIGGRAPH ’96, pages
387–396, 1996.

[5] J. Dorsey, H. Rushmeier, and F. Sillion. Digital Modeling
of Material Appearance. Morgan Kaufmann Publishers,
2008.

[6] S. Ershov, K. Kolchin, and K. Myszkowski. Rendering
pearlescent appearance based on paint-composition mod-
elling. Comput. Graph. Forum, 20(3), 2001.

[7] A. S. Glassner. Principles of Digital Image Synthesis Vol-
ume Two. Morgan Kaufmann Publishers, 1995.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
33

Figure 10: Examples of the model usage. Left: Car paint with strong sparkling effect. Middle: Varying upper layer thickness (orange
and purple lacquers used). Right: Concrete ball coated in a blue transparent varnish. The lower concrete layer uses the Oren-Nayar
BRDF.

[8] P. Hanrahan and W. Krueger. Reflection from layered sur-
faces due to subsurface scattering. In Proceedings of SIG-
GRAPH ’93, pages 165–174, 1993.

[9] C. Kelemen and L. Szirmay-Kalos. A microfacet based
coupled specular-matte BRDF model with importance sam-
pling. In Eurographics Short Presentations, pages 25–34,
2001.

[10] P. Kubelka. New contributions to the optics of in-
tensely light-scattering materials. Part I. J. Opt. Soc. Am.,
38(5):448–448, 1948.

[11] P. Kubelka. New contributions to the optics of intensely
light-scattering materials. Part II: Nonhomogeneous layers.
J. Opt. Soc. Am., 44(4):330–334, 1954.

[12] P. Kubelka and F. Munk. Ein beitrag zur optik der farben-
striche. In Z. tech. Physik 12, pages 593–601, 1931.

[13] I. Lazányi and L. Szirmay-Kalos. Fresnel term approxi-
mations for metals. In WSCG 2005 Short Communications
Proceedings, 2005.

[14] L. Neumann and A. Neumann. Photosimulation: Inter-
reflection with arbitrary reflection models and illumination.
Comput. Graph. Forum, 8(1):21–34, 1989.

[15] M. Oren and S. K. Nayar. Generalization of Lambert’s re-
flectance model. In Proceedings of SIGGRAPH ’94, pages
239–246, 1994.

[16] B. T. Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311–317, 1975.

[17] M. Rump, G. Müller, R. Sarlette, D. Koch, and R. Klein.
Photo-realistic rendering of metallic car paint from image-
based measurements. Comput. Graph. Forum, 27(2), 2008.

[18] A. Takagi, H. Takaoka, T. Oshima, and Y. Ogata. Accurate
rendering technique based on colorimetric conception. In
Proceedings of SIGGRAPH ’90, pages 263–272, 1990.

[19] A. Takagi, A. Watanabe, and G. Baba. Prediction of spec-
tral reflectance factor distribution of automotive paint fin-
ishes. Color Research and Application, 30(4), 2005.

[20] K. E. Torrance and E. M. Sparrow. Theory for off-specular
reflection from roughened surfaces. In Radiometry, pages
32–41, 1992.

[21] A. Weidlich and A. Wilkie. Arbitrarily layered micro-facet
surfaces. In GRAPHITE 2007, pages 171–178, 2007.

[22] Ch. Yao-Xun and S. Zen-Chung. Physically-based pati-
nation for underground objects. Comput. Graph. Forum,
19(3), 2000.

A Selected coefficients
The following table lists a few selected indices of refraction for
materials that have been used in the paper (in the models for
metallic car paint and metallic patina rendering).

Material\λ r[690nm] g[550nm] b[450nm]
Copper (Cu)
n 0.213 1.04 1.17
κ 4.05 2.59 2.36
Chromium (Cr)
n 3.84 3.18 1.99
κ 4.37 4.41 4.22
Cuprite (Cu2O)
n 2.83 3.10 3.06
κ 0.083 0.19 0.6

B Torrance-Sparrow model
float3 TorranceSparrow(float NdotL, float NdotV,

float NdotH, float VdotH,
float3 n, float3 k, float m,
out float3 F, out float G)

{
//D term - Beckmann distribution

float D;
float tg = sqrt(1 - NdotH * NdotH) / NdotH;
D = 1 / (m * m * NdotH * NdotH * NdotH * NdotH)

* exp(-(tg/m) * (tg/m));

//F term - Lazanyi-Szirmay-Kalos approximation
float q = 1 - VdotH;
F = ((n - 1)*(n - 1) + 4 * n * q*q*q*q*q + k*k)

/ ((n + 1)*(n + 1) + k*k);

//G term
G = min(1, min(NdotV * (2 * NdotH) / VdotH,

NdotL * (2 * NdotH) / VdotH));

//entire model
return F * D * G / (4 * NdotV);

}

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
34

Computer Vision

Comparison of face recognition algorithms in terms of the
learning set selection

Simon Gangl∗

Domen Mongus†

Supervised by: Borut Žalik‡

Laboratory for Geometric Modelling and Multimedia Algorithms
Faculty of Electrical Engineering and Computer Science

University of Maribor / Slovenia

Abstract

A suitable selection of facial features is of key importance
for the successfulness of face recognition algorithms. Be-
cause a straightforward selection of them does usually not
ensure sufficient reliability, statistical tools are often used
for feature extraction. In this paper the influence of the
selected set of learning samples on the efficiency of face
recognition algorithms is observed. For this purpose, three
of the most often used algorithms are presented in de-
tail. The feature description based on the Gabor wavelet
transformation is presented first. In this approach fea-
tures are selected based on human physiognomy basis and
formed to feature graphs, where the actual recognition is
performed by graph matching. On the other hand, prin-
cipal component analysis (PCA) is a statistical tool for
identifying patterns in data by reducing its dimensionality.
That way, key features for face recognition are extracted to
a comparable form. Meanwhile, linear discriminant anal-
ysis (LDA) allows for face recognition by establishing the
borders between classes in multidimensional data. To en-
sure equal conditions for those algorithms, a method for
image normalization is presented also. By the results it
is shown, that the statistical approaches are significantly
more reliable yet at the same time strongly dependant on
the learning set selection. Even if no significant influence
of the learning set on the Gabor wavelets based method
can be observed, its successfulness is clearly below those
of PCA and LDA.

Keywords: Face recognition, PCA, LDA, Gabor
wavelets, Learning set selection

1 Introduction

Although various methods for face recognition have been
developed, it remains an important field of research. One
of the main reasons certainly lies in high market demands

∗simon.gangl@uni-mb.si
†domen.mongus@uni-mb.si
‡zalik@uni-mb.si

for secure systems based on biometrical identification.
Face recognition is recognized as one of the more ele-
gant approaches, since it is user-friendly as well as cost-
efficient. At the same time, findings in face recognition
research are often applied to industrial projects for the pur-
pose of pattern recognition in general [1]. Whatever the
purpose may be, the efficiency is strongly dependent on
the detected features and the quality of their representa-
tion in the model base [2]. Although many approaches
are known for this task [2, 3], features are usually assem-
bled as components of a feature vector [2, 5, 6, 7]. In
such cases, each component of a vector caries important
information, which is the basis for distinguishing between
faces. In a most simple case, features can describe the
colour of the human eye, the colour of the skin or the shape
of the face, but unfortunately such simple features are usu-
ally not sufficient enough. Therefore, statistical techniques
are often used to determine adequate features. When the
feature extraction is based on statistical attributes of the
selected face population, then the final set of features may
be very dependent on the subset of faces that were used
in the learning process. Because of that it makes sense to
study the possible influence on the accuracy of the face
recognition algorithms.
In this paper we present a study of the influence of the
training set selection on the face recognition accuracy. For
this purpose the training set dependency of three algo-
rithms was analyzed: feature graphs based on a wavelet
transform, principle component analysis (PCA), and lin-
ear discriminant analysis (LDA). The efficiency of recog-
nition techniques was compared in terms of dependency
on the learning set of faces.
A detailed review of the image normalization procedure,
which ensures robust detection of features and provides
equal conditions for testing the efficiency of methods, is
given in Section 2. This is followed by a detailed presen-
tation of the used face detection techniques (Section 3).
Results, obtained using these procedures are presented in
Section 4. The most important conclusions are empha-
sized in Section 5.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics

2 Input image normalization

Main issues that need to be considered when dealing with
computer based detection and recognition systems are re-
lated to unequal light distribution, camera position, image
quality, and image resolution. The capabilities of such
systems can be reduced dramatically by these parameters.
Therefore, the elimination of these factors needs to be
accomplished before the recognition is performed. This
process is called image normalization [5, 6] and is, in our
case, achieved in four steps:

Step 1 (face detection): The detection of the face is
usually the first step of the image normalization process.
A neural network is used for this purpose. In the training
process the neural network was trained to detect the
presence of a face in an image with resolution of 128x128
pixels. Such a neural network is capable of detecting faces
only in images with the same resolution. Because the
input images are of arbitrary size, face detection cannot
be performed directly. Therefore a sliding window is
defined. By testing the sliding window region for the
presence of a face at each position, faces can be detected.
That way all faces in the input image, located at one of the
regions sized 128x128 pixels, can be found. Nevertheless,
the faces in input images are usually much larger and
are not detected at this step. Therefore the input image
size has to be reduced multiple times and scanning for
faces repeated at each iteration. For this task a sufficient
scaling factor has to be chosen, which is a trade-off
between execution speed and reliability of detection.
In our case a scale factor of 0.9 is used that assures us
with 100% face detection ratio on the FERET database [4].

Step 2 (histogram equalization): According to the
detected face region, the image is then cropped and thus
the background is removed. However, noise, caused by
illumination, may still present a disturbing influence. To
increase robustness of the face recognition process against
that, histogram equalization is performed on the cropped
image.

Step 3 (eye detection and rotation of the image): Eye
detection is performed during image normalization to in-
crease robustness of the following steps against camera ro-
tation (or rotation of the head) and thus ensures that all
faces appear in horizontal position. Similar to the face de-
tection, the detection of eyes is performed with a neural
network. The middle points of the eyes are then used to
calculate the sufficient angle of rotation θ . The rotation of
the image is formally defined by the following equation:

x′1 = cos(θ) · (x1 − x0)− sin(θ) · (y1 − y0)+ x0 , (1)
y′1 = sin(θ) · (x1 − x0)− cos(θ) · (y1 − y0)+ y0 ,

where (x0, y0) is the centre point of the rotation; in our
case this is the middle point between the eyes, (x1, y1) is

the pixel that is transformed at the given step, and (x′1, y′1)
are the transformed coordinates of the pixel.

Step 4 (scaling of the image): To achieve the best pos-
sible matching among the normalized images, they are
scaled so that the centre points of the eyes are located at
the same positions on the normalized images. The scal-
ing factor is defined as the ratio between the desired and
observed between eye distance.

When scaling the image is completed, an additional
mask is applied to it, so the remaining background fac-
tors, like hair for example, are eliminated. Examples of
normalized images can be seen in Figure 1.

Figure 1: Normalized images, which are the input to face
recognition techniques.

3 Face recognition techniques

The process of image normalization leads us intuitively to
the possibility of face recognition by feature graph match-
ing. This is the first presented approach, where features for
face representation are selected on human physiognomy
basis and represented using a wavelet transformation with
Gabor wavelets. In the continuation, two more often used
techniques for face recognition are presented also. Both
are based on a linear transformation of the image to a fea-
ture subspace. These techniques are Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA).

3.1 Feature graph matching based on Gabor
wavelet transformation

Because of the image normalization process, the introduc-
tion of face recognition according to feature graph match-
ing is relatively straightforward. In our case a modified
approach presented in [7] is used for this purpose. The
presented approach introduces a vector of wavelet coeffi-
cients (jet), which carries the facial features at a given key
point. The components of such a jet describe the response
to a Gabor wavelet transformation at a given key point.
Since the key points are at fixed positions, the structures
of the graphs are equal and thus the graph matching can
actually be performed only by comparing the jets, using
the given metric.

The Gabor wavelet transform is employed here because
it is robust against variations in illumination and small
changes in phase [7]. In our case 40 different wavelets (5
different frequencies at 8 different orientations) are used.
Figure 2 shows the construction of such jets, and their for-
mation to a feature graph.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
38

Figure 2: Construction of a vector of wavelet coefficients,
where the convolution with the Gabor wavelets is per-
formed at a given point.

The basic difference between our approach and the ap-
proach, presented in [7], is that in our case no complete
adaptation of the feature graph is needed, since the input
images have already been normalized. This way the pro-
cedure is much more time efficient, but it also becomes
much less flexible. Some important information regarding
distances between features is lost, making the recognition
less reliable (Section 6).

The facial features are chosen with regard to facial phys-
iognomy [8], where four points, which are important for
human facial recognition yet not subject to quick evolu-
tion, are chosen. These points are selected at the left and
right cheek, on the forehead, and above the chin. At each
of the selected points the vectors of wavelet coefficients
can now be obtained by calculating the responses to all
of the 40 Gabor wavelets. Because even small changes in
position can cause a phase shift in the response [7], the
wavelet transformation is calculated actually in a 7x7 ad-
jacency of the selected key points. Thus a single face is
presented in the model base with 49 feature graphs.

In the process of recognition the jets can now be com-
puted only at the selected key points of the test image. The
model base is then searched for the best match to the re-
sulting graph, where the distance between jets is measured
with the L1 or Manhattan metric, defined with the

d(p,q) = ∥p−q∥1 =
n

∑
i=1

pi −qi , (2)

where d(p, q) is the distance between two vectors p and
q.

3.2 PCA

PCA is a statistical tool for identifying patterns in data.
It allows a representation of various sets of data in a
way, where similarities between samples are emphasized.
Because it is difficult to search for patterns in multidimen-
sional data, PCA is an important tool for data analysis.
Nowadays, PCA is present also as one of the most popular
approaches for recognition of faces [9, 10, 11] and
patterns in general [12, 13]. The implementation of PCA

for face recognition can be described in six steps:

Step 1: The inputs of the process are normalized facial
images, from which a model database is built. The images
are transformed to vectors by dividing them to rows (or
columns) which are placed one after another (in our case
the images are of dimension 256 x 256, thus each vector
has 65.536 components). Each image now represents a
base vector of a vector space, with as many dimensions
as there are input images. These vectors are formed in
a matrix, where each vector represents a column, for a
clearer representation.

Step 2: The origin of the vector space is then translated
to the point (0, 0, ... , 0) by subtracting the average value
of each base vector from its components (the average
image intensity is subtracted from its pixels).

Step 3: The dimensionality of the vector space is then
decreased by expressing the mutual dependency of the
base vectors with a covariance matrix:

Ci, j =
∑N

i=1(xi − x̄i)(x j − x̄ j)
(NPCA −1)

, (3)

where Ci, j is the (i,j)-th element of the covariance
matrix, xi and x j are the vectors for which the covariance
in the given step is calculated, x̄i and x̄ j are their average
values, which are because of step 2 in our case always 0
and NPCA is the dimensionality of the vectors.

Step 4: The eigenvectors and according eigenvalues of
the covariance matrix can then be obtained. Because the
eigenvectors represent the interdependency of data, they
can be interpreted as facial features in which the patterns
from the learning set resemble or differ (Figure 3). Al-
though the obtained vector space allows for face recogni-
tion, its efficiency can be increased by discarding eigen-
vectors corresponding to the highest eigenvalues. These
vectors are namely under the influence of illumination
distribution and do not resemble valid facial information
[11]. In our case, the eigenvectors are sorted descend-
ing in terms of their eigenvalues and the first two vectors
are discarded. The remaining eigenvectors form the vector
subspace E, and are presented in matrix form, where each
vector represents one column.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
39

Figure 3: The eigenvectors, where the influence of illumi-
nation in the input images on the vectors with the biggest
eigenvalues can be seen (the upper row), and the vectors
with smaller eigenvalues, which represent features (the
two bottom rows).

Step 5: In vector space E face recognition can be per-
formed. The base of known faces is created by projecting
the input images to the vector space E, thus expressing
them as a linear combination of the eigenvectors, what can
be defined by the following equation:

yi = ET ·xi , (4)

where yi is the projection of the input image xi to the
PCA vector subspace E defined by the reduced matrix of
eigenvectors of the covariance matrix C.

Step 6: In the process of recognition each input image
is projected to the vector subspace E and then compared
to the vectors in the model base of known faces using the
normalised Euclidean, or the Mahalanobis metric, defined
by:

d(yi,y j) =

√√√√NPCA

∑
n=1

(yin − yjn)2

σ2
n

, (5)

where d(yi,y j) is the distance between vectors yi and y j,
σi is the standard deviation, which is in our case replaced
by the eigenvalue corresponding to the i-th eigenvector.

3.3 LDA

Similar to PCA, also LDA can be used for data classifi-
cation. LDA is based on maximizing the between-class
variance to within-class variance ratio. The most im-
portant difference between PCA and LDA is that PCA
minimizes the projection error by emphasising similarities
between samples; meanwhile LDA defines the classifica-
tion boarders. Both methods include a projection of data
to a subspace, where classification can be performed more
accurately. PCA changes the form and location of the
input data, while LDA leaves the input data unchanged
[14]. In our case LDA is performed globally on the PCA

output vectors and this can be described in five steps:

Step 1: The inputs to the LDA process are vectors
already projected to the PCA subspace. Because LDA
permits many samples belonging to a single class (each
person can be presented by multiple images), an additional
component is added that defines the class of the vector.

Step 2: The average of each class separately
(µ1,µ2, ...,µNR) and the average of all classes µ are then
computed. The average of all classes is obtained using the
following equation:

µ =
NR

∑
i=1

piµi , (6)

where pi is the probability of occurrence of a spe-
cific class, and can be computed as straightforward as
pi = 1/NR for all classes, where NR is the number of all
classes.

Step 3: From the data collection two scatter matrices
can now be obtained. The scatter matrix Sw describes
the expected covariance within each class R j;1 ≤ j ≤ NR,
while the scatter matrix Sb describes the scattering be-
tween classes. When many samples of a class yj

i ;1 ≤ i ≤
M j, exist, the matrix Sb can be understood as a descrip-
tion of covariance between the average vectors µ j of each
class. The equations for calculating the two matrices can
be written as:

Sw =
NR

∑
j=1

M j

∑
i=1

(y j
i −µ j)(y

j
i −µ j)T , (7)

Sb =
NR

∑
j=1

(µ j −µ)(µ j −µ)T ,

Step 4: As already mentioned the LDA optimization
criterion is defined as the ratio between Sw and Sb. Since
Fisher LDA is used, the optimization criterion can be writ-
ten as:

J(W) =
WT SbW
WT SwW

, (8)

where the matrix W is obtained by maximizing the
value J(W). Although this can be achieved by several
methods, in our case the ratio det|Sb|/det|Sw| is max-
imized [15]. It has already been shown that, if Sw is
a nonsingular matrix, the ratio is maximized, by form-
ing the columns of W from the eigenvectors of S−1

w Sb
[16]. Although in real cases Sw is usually nonsingular,
its non-singularity can be ensured by using at least
two samples of each class [15]. After that, the matrix W
is normalized before it is used in the following procedures.

Step 5: W now represents the vector subspace in which,
according to the given set of learning patterns, optimal

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
40

classification can be performed. Formally the process of
recognition in the LDA space can be defined with the fol-
lowing equation:

yi = ET ·xi , (9)
zi = WT · yi .

where E is the vector space of PCA, W is the projection
matrix of LDA, yi the image xi projected to PCA subspace
and zi the projection of yi to subspace W. The patterns are
compared using the Euclidean or L2 metric, defined by the
following equation:

d(zi,z j) =
√

(zi1 − z j1)2 + ... +(ziNLDA
− z jNLDA

)2 , (10)

where d(zi,z j) is the distance between NLDA-
dimensional vectors zi and z j.

4 Measurements and results

Tests were performed on the FERET image database [4].
The FERET image database consists of images of more
than one thousand people, taken at different time inter-
vals, with different poses and facial expressions. The pre-
sented approaches were tested on three model bases, se-
lected from the FERET base. The first base contains 10
individuals, the second 20 and the third 40 individuals,
varying in gender, age, pose, and race. For each individual
five images were used for testing, while one images was
employed as the learning sample. Because the main inter-
est of our work is the influence of the learning set selec-
tion, and not the efficiency of the algorithms, only limited
numbers of individuals and only one training image per in-
dividual were employed. That way this effect can clearly
be studied. Table 1 shows the number of correctly identi-
fied samples x̄ in percents, while the standard deviation σ
describes the class variance from the average efficiency.

Table 1: Successfulness of face recognition with Gabor
wavelets, PCA, and LDA.

Gabor wavelets PCA LDA
Base 1: x̄ 68% 80% 77%
Base 1: σ 0.9940 0.5164 0.4830
Base 2: x̄ 56% 88% 85%
Base 2: σ 1.0940 0.9987 0.9679
Base 3: x̄ 56% 82% 79%
Base 3: σ 1.3940 1.1873 1.4118

The first, perhaps a bit surprising, result is that PCA as
well as LDA produced better results on base 2 than on base
1, where less testing samples were used. The main reason
for this is that both methods can become over-determinate
[11, 14], when the learning base contains a smaller number
of samples. LDA is especially prone to this effect, since

PCA is part of it, and thus produces worse results than
PCA alone. Because it is evident that statistical methods
of recognition need more learning samples to extract im-
portant features, it could be expected that both methods
would work even more efficient on base 3. But that is not
the case, even an unexpected high decrease in effective-
ness can be observed.

To study this effect, several testing sets were employed,
created by replacing the learning samples of individuals.
By doing that, a high increase of efficiency was noticed
when a specific image (see figures 4a and 4b) was not in-
cluded in the training process. The efficiency of PCA in-
creased to 90% (with standard deviation σ = 1,0671) and
that of LDA increased to 87% (with standard deviation σ
= 0,9901). In figures 4c and 4d the significant influence
of an individual on the entire projection space can be seen
clearly. When the specific image of an individual is in-
cluded in the formation of the projection space, features
are accented weakly and are under the influence of illu-
mination distribution (figure 4c). This is evident even on
eigenvectors with smaller eigenvalues, although this effect
would usually be expected only on some of the eigenvec-
tors with higher eigenvalues (figure 4d).

For the verification of the obtained results, a base of
known faces with a higher number of training samples
was created. In test base 4 images of 236 persons were
included (again only one training image per person was
used). The results of our experiments have shown that
by applying the same methods as mentioned above, the
recognition ratio could be improved by 4%. The relative
improvement is this time smaller, which is not entirely un-
expected, but the number of additionally recognized im-
ages is still a good motivation to observe the influence of
the learning set selection also on bases including a higher
number of samples.

Figure 4: The influence of a learning sample on the eigen-
vectors, where (a) shows the image of the specific individ-
ual, (b) is the normalized form of that image, (c) displays
the first 10 eigenvectors when this image was used as a
learning sample and (d) are the corresponding eigenvec-
tors when another image of the individual was used.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
41

The selection of the model base has no such particu-
lar influence on the recognition method based on Gabor
wavelets. The decrease of effectiveness of recognition
with increasing number of models in the base is evident,
but it is not unexpected. Anyhow, this method produces
a relatively unsatisfying result compared to PCA or LDA.
The main drawback here is the method for measuring dis-
tances between graphs. When using this method, a higher
degree of recognition cannot be achieved with simple met-
rics (like L1). Because of that, various authors have pro-
posed a use of Gabor wavelet based methods, where the
actual comparison is performed with statistically based
tools, such as PCA or LDA [17, 18].

Situations, where the tested person is not present in the
model base, are often encountered in real-world applica-
tions. In such cases the person must be classified as an
unknown individual. Because of that, an additional thresh-
old needs to be introduced. If the calculated distance be-
tween a sample and its nearest class is greater than the
threshold, the given sample is identified as unknown. In
our case this threshold is defined as the mean value be-
tween the average distance of correctly identified samples
and the average distance of a set of unknown samples.
For this purpose, additional 100 negative testing samples
were included iqnto the previously described test base 3,
which contains 200 positive testing samples. The results
of this test are shown in Table 2, where the number of cor-
rectly identified positive samples is presented as TP (true
positives), FN (false negatives) is the number of errors,
where a positive sample is recognized as a negative one,
FP (false positives) is the number of errors, where a nega-
tive sample is recognized as a person from the base and TN
(true negatives) represents the number of correctly identi-
fied negative samples. The numbers TP and FN sum up
to the percentage of correctly identified persons from the
test base 3 as shown in Table 1 (thus they represent how
many of the previous correctly recognized images are still
correctly recognized - TP, and how many are recognized
as unknown because of the introduced threshold - FN).

Table 2: Efficiency of face recognition with Gabor
wavelets, PCA and LDA, tested on positive and negative
samples

Gabor wavelets PCA LDA
TP 50% 80% 76%
TN 81% 96% 94%
FP 19% 4% 6%
FN 6% 2% 3%

From the results shown in Table 2, it can be observed
that the introduced threshold does not reduce significantly
the efficiency of the presented methods. At the same time,
a relatively high percent of negative images is identified.
This is most obvious for the PCA and LDA techniques,
which again confirms the mentioned fact about the influ-
ence of training samples on the efficiency. The distance

between a negative sample and its closest class is in most
cases significantly greater than the distance from a positive
sample to the classification classes. Because of that, there
is a higher error rate in recognition of known samples, than
of those which are not. Based on the mentioned facts, it
can be concluded that the selection of training samples for
the creation of the projection subspace is of high impor-
tance for the efficiency of PCA and LDA. Consequently,
this applies also for methods based on Gabor wavelets, if
the actual comparison between features is performed with
one of these two techniques.

5 Conclusion

Three approaches to face recognition were presented in
this paper; an approach based on the Gabor wavelet trans-
form, PCA, and LDA. Additionally, a method for image
normalization, which ensures sufficient conditions for face
recognition, was demonstrated. The presented methods
were tested on different testing sets with special empha-
sis on analyzing the influence of learning samples on their
efficiency. The first conclusion is that the efficiency of
the PCA and LDA techniques improves with an increas-
ing learning set. Because both methods are based on sta-
tistical laws, they require a larger set of learning sam-
ples that provide high representability. Even further, using
PCA or LDA the selection of eigenvectors for the projec-
tion subspace formation is of great importance. Some of
the eigenvectors associated with the highest eigenvalues
namely represent illumination distribution in the learning
samples, and it thus makes sense to exclude them. It also
makes sense to observe the influence of each learning sam-
ple on the efficiency of recognition. It was shown how a
single learning sample can noticeably change the projec-
tion space and decrease the efficiency of the PCA and LDA
techniques. At the same time, it is possible to identify un-
known samples reliably by projecting them to the eigen-
vector subspace. Because these samples were not included
in the formation of projection subspace, their features are
not emphasized and the distance to the defined classes is
noticeably greater. Most of the undesired effects can be
omitted using the technique based on the Gabor wavelet
transform.

References

[1] C. Liu, H. Wechsler Comparative Assessment of Inde-
pendent Component Analysis (ICA) for Face Recog-
nition, pp. 211-216. Second International Conference
on Audio- and Video-based Biometric Person Authen-
tication, Washington, 1999.

[2] R. Jain, R. Kasturi, B. G. Schinck Machine Vision.
New York: McGraw-Hill, 1995.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
42

[3] H. F. Liau, K. P. Seng, Y. W. Wong, L.-M. Ang
New Parallel Models for Face Recognition, pp. 306-
309. International Conference on Computational In-
telligence and Security, Washington: IEEE Computer
Society, 2003.

[4] P. J. Phillips, H. Moon, S. A. Rizvi, P. J. Rauss The
FERET Evaluation Methodology for face-recognition
algorithms, pp. 1090-1103. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 22(10),
2000.

[5] Y. Zana, R. M. Cesar Face recognition based on polar
frequency features, pp. 62-82. ACM Transactions on
Applied Perception, vol. 3(1), 2006.

[6] M. Lee, C. H. Park An efficient image normalization
method for face recognition under varying illumina-
tions, pp. 128-133. Proceeding of the 1st ACM in-
ternational conference on Multimedia information re-
trieval, New York: ACM Press, 2008.

[7] L. Wiskott, J.-M. Fellous, N. Krueuger, C. von der
Malsburg Face Recognition by Elastic Bunch Graph
Matching, pp. 775-779. Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 19(7), 1997.

[8] W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips
Face Recognition: A Literature Survey, pp. 399-458.
ACM Computing Surveys, vol. 35(4), 2003.

[9] M. Turk, A. Pentland Eigenfaces for Recognition, pp.
71-86. of Cognitive Neurosicence, vol. 3(1), 1991.

[10] A. Pentland, B. Moghaddam, T. Starner View-Based
and Modular Eigenspaces for Face Recognition, pp.
84-91. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Seattle: IEEE
Computer Society, 1994.

[11] H. Moon, P.J. Phillips Computational and Perfor-
mance aspects of PCA-based Face Recognition Algo-
rithms, pp. 303-321. Perception, vol. 30, 2001.

[12] A. Ferraz, E. Esposito, R.E. Bruns and N. Durn The
use of principal component analysis (PCA) for pattern
recognition in Eucalyptus grandis wood biodegrada-
tion experiments, pp. 487-490. Journal of Microbiol-
ogy and Biotechnology, vol 14(4), 1998.

[13] R. Saegusa and S. Hashimoto Pattern Recognition
Using a Nonlinear PCA, pp. 73-80. Proceedings of
GVIP 05 Conference, Cairo: CICC, 2005.

[14] W. Zhao, A. Krishnaswamy, R. Chellappa, D.L.
Swets, J. Weng Discriminant Analysis of Principal
Components for Face Recognition, pp. 73-85. Face
Recognition: From Theory to Applications, H. Wech-
sler, P.J. Phillips, V. Bruce, F.F. Soulie, T.S. Huang
(eds.), Berlin: Springer-Verlag, 1998.

[15] A. M. Martinez, A.C. Kak PCA versus LDA, pp. 228-
233. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 23(2), 2001.

[16] R.A. Fisher The Statistical Utilization of Multiple
Measurements, pp. 376-386. Annals of Eugenics, vol.
8, 1938.

[17] C. Liu Gabor-Based Kernel PCA with Fractional
Power Polynomial Models for Face Recognition, pp.
572-581. IEEE Transactions on Pattern Analysis and
Machine Intelligenc, vol. 26(5), 2004.

[18] W. Li, W. Cheng Face Recognition Based on Adap-
tively Weighted Gabor-LDA, pp. 130-134. Proceed-
ings of the 2008 Fourth International Conference on
Natural Computation, Washington: IEEE Computer
Society, vol. 4, 2008.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
43

44

Usage of the webcam as 3D input device

Pavel Vlašánek
Supervised by: Alexej Kolcun

Faculty of Science
University of Ostrava

Ostrava / Czech Republic

Abstract

The paper is focused on using the webcam as a 3D input
device. Generally it means the user may use any object and
shadow of this object to obtain the coordinates x, y and z
(position in the space). This idea allows to use a naviga-
tion in three dimensions without an expensive or atypical
hardware. The system needs one ordinary webcam, an or-
dinary computer and a source of suitable light.

The goal of this paper is to describe an implementation
of a software usable for handling an input from webcam
with conditions described previously.

Keywords: navigation, shadow detection, foreground
separation, webcam

1 Introduction

We know many devices that can be used for communica-
tion with a computer. A keyboard and a mouse are com-
mon but nowadays they may not be sufficient and com-
fortable. The reason is simple, each of these devices is
a piece of hardware not allowing modifications. You can
neither add the additional buttons into the mouse nor the
new keys into the keyboard. The modern way for commu-
nication with a computer is the input from webcam. The
user does not need a special controller very often and that
is a big advantage. Good examples are Microsoft project
Natal [1] and project Cam Space [2]. In the case that we
do not need to use a depth we can use a system for a hand
gestures recognition [3].

Instead of webcam and computer vision the special
hardware for 3D navigation may be used. The way to con-
trol the computer by using a data glove and gestures [4]
or multimodal input [5] is very natural. We can also use
a special hardware for virtual finger tap. The company
NOVIA AG [6] offers touchscreens with this functional-
ity.

Basically, role of commonly used devices is allowing
to work with the computer in the most natural way. The
mouse is a good example because of using it as a hand.
The operating system obtains position of the mouse and
state of the buttons. We can say the mouse is 2D input
device but via click we can provide something like a touch.

The touch may be interpreted as a level of depth.
The main idea of this paper is shown in Figure 1. A

finger works as a mouse (has a position) but we can also
obtain better information about depth instead of a simple
click.

Figure 1: Image of the real scene

The parameters of a finger (or any another object) are a
position (x and y) and the distance from the surface. The
distance will be proxy for z coordinate allowing to work
with the depth.

2 Previous works

The system needs to capture an image, detects an object
and the shadow and then computes the coordinates depen-
dently on mutual positions of those. I have studied lots of
materials regarding object/shadow detection and chose a
version via color (instead of e.g. contours). The first idea
was to use HSV colour space because this space is more
suitable for shadow detection [7]. At least RGB colour
space was selected because we do not need to have a whole
compact image of the object/shadow. The second reason
was that surface colour(s) should be a very different com-
paring to object/shadow. The third reason was faster com-
puting.

Detection based on the contours was explored too. I
have experimented with Canny edge detector [8] but re-
sults were indicating another way of thinking. The solu-
tion based on contour detection instead of colour detection
will be deeply investigated lately and is it a part of the fu-
ture work.

The next problem was an foreground image. Colour val-
ues were very unstable and very often there was an edge
between the object and the shadow practically invisible.
The reason was that thresholds levels were very hardly
setup. The pixels from object had a same value as the pix-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

els of the shadow. This situation may causes some trouble,
because shadow/object image may be very unclear. The
first idea for improvement was to use an erode and dila-
tion algorithms [9]. The results were not good enough so
I have tried another idea. The meanshift image segmenta-
tion seems to be a better solution and it will be presented
in chapter 4.2.

3 Hardware setup

There is the input image in Figure 2. The system needs an
object, a surface, a source of the light and a webcam. From
algorithmic point of view the system needs a mechanism
for the foreground separation with some kind of smooth-
ing, and for the shadow and the object recognition.

Figure 2: o point is a the end of finger, s point of the
shadow

While the finger is falling down/raising up s point is
coming closer/further to the o point. From these facts we
can assume formula

hl = |Ox−Sx|
where Ox is the x position of the finger and Sx is the x po-
sition of the thrown shadow. The formula above is valid
(and we can assume that hl is proportional to the z coordi-
nate) for the scene with one shadow (or the strongest one
among more shadows) coming closer/further to the object
from the side. Practically the horizontal distance between
points must be dependent on the real distance between ob-
ject and surface. The relationship between the result hl
and z coordinate depends on the lighting. The comparison
is shown in Figure 3.

(a) (b)

Figure 3: light L, camera C, object O and shadow S

If the shadow lies exactly under the object distance hl
is not affected by the distance between the object and sur-
face. In Figure 3 (a) the distance hl is roughly constant

but in the second image (b) it depends on the height of the
object over the surface. You can see that important thing
is the mutual position of the camera and the light. There
is shown a whole scene in Figure 4. Our goal is to express
dependency between the height h and the distance between
the object and the shadow as

ξ = ξ1 +ξ2

We can assume from triangle similarity that

ξ1 =
hx

H−h

ξ2 =
h(∆− x)

H−h
From these formulas we can assume the final formula

h =
Hξ

∆+ξ

Figure 4: The exact view of the scene from up

There is dependency graph between h and ∆ in Figure 5.
There is shown an effects H to ∆. The outermost curve is
for ∆ = H/4 and the lowest for ∆ = 2H. The increased ∆
approaching a linear relationship thus linear formula above
may be used instead of linear fractional. The linear for-
mula is much simpler and faster and for more correct be-
havior variable hl should be used as

h = hlc

where c is the calibration constant1.

4 Image processing

We briefly present the techniques used in the paper in this
section. The output of these techniques will be more suit-
able image for processing than the original input from the
webcam.

The system works as it is shown in the pseudo code be-
low:

1A value depends on difference between the real height h and the
measured height hl .

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
46

Figure 5: Dependency graph

d e t e r m i n e b a c k g r o u n d () ;

whi le (! end ())
{

d e t e r m i n e f o r e g r o u n d () ;
s m o o t h f o r e g r o u n d () ;
c r e a t e i m a g e s I o I s () ;
d e t e r m i n e t h e p o i n t s O S () ;
c o m p u t e c o o r d i n a t e s () ;
s h o w r e s u l t s () ;

}
The while cycle is repeated till the user stops the pro-

gram.

4.1 The foreground separation

We are using an averaging background method which is
suitable for static background and for scenes with the
fairly constant lighting [10]. The average and averaged
difference of each pixel are used in this method. As the
first step the user has to provide a couple of images of the
background. Then we can compute an average as

Iavg = ∑n
i=0 Ii

n

and the averaged difference as

Idi f f = ∑n
i=1 |Ii− Ii−1|

n

where n is a number of the background images and I is the
background image. Now we can create a model which will
be used for the foreground detection. We will use the two
thresholds defined as

Ilow = Iavg− Idi f f sl

Ihigh = Iavg + Idi f f sh

where Ilow is the lower threshold, Ihigh the higher one and
s is for determine a range2.

2sl = 6, sh = 7 according to [10].

After this analysis we can already process a new image
from the webcam containing a foreground. Each of the
pixels of Inew covered by

Ilow [x,y]<Inew [x,y]<Ihigh [x,y]

is recognized as a foreground.

4.2 The meanshift image segmentation

The technique was used to simplify a foreground image.
The pixels of the shadow have very similar values and we
may suppose the same for the pixels of the object3. Sit-
uation may be different in the captured image because of
the noise. Therefore the usage of the meanshift image seg-
mentation is very suitable because it smooths colour vari-
ations [11].

The algorithm is based on meanshift clustering over the
colour [10]. A meanshift window passes through the space
and finds the groups with the highest density of data. Each
point which is converging at a peak becomes connected
by the peak. This ownership forms the segmentation of
the image [10]. The Figure 6 shows a comparison of an
intensity of the row of the image without this segmentation
and with the segmentation.

Figure 6: The intensity of the same line without meanshift
segmentation (up) and with the segmentation (down)

Clusters with similar colour are replaced by the one
colour. The shadow and the object are more recognizable
and some noise is also eliminated.

4.3 The object detection and the shadow de-
tection

Colours of the object (finger) and of the shadow have to be
different than the background colour. The prerequisite is
very important because of RGB colour space4.

The finger has a value of the red channel higher than
value of the green and the blue channel. All three values of
the shadow are very similar. It seems that the blue channel

3Object with small colour variations is highly recommended.
4Segmentation is based on colours so shadow and object must be vis-

ible.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
47

is not important so only red and green channels will be
used.

I =
{

Ir, Ig, Ib
}

The new image Ip is defined as follows

Ip = Ir− Ig

where Ir and Ig are channels from the image I mentioned
above. The images related to this formula are in Figure 75

and you can see that each pixel in the shadow has a very
similar colour and each pixel in the finger too.

(a) (b)

(c)

Figure 7: (a) Ir (the red channel of the foreground); (b)
Ig (the green channel of the foreground); (c) Ip (difference
between red and green channel)

In the chapter 4.4 there is explained how we can obtain
an images of the object Io and of the shadow Is. The image
Is contains the white pixels represent a shadow and black
pixels represent the rest. Similarly the white pixels in an
image Io represent an object and black pixels represent the
rest. The points o and s from Figure 2 are the first white
points in images Is and Io from right bottom.

In comparison with [3] our system does not need to
know the contours. The main points are obtained from
similar pixels recognized as shadow and from pixels rec-
ognized as object.

The user have to observed the rule about the object po-
sition. The system is depend on the pivot points thus the
object have to be positioned as is shown in Figure 2. It
means that the top of the object must come closer/further
to the top part of the captured area.

4.4 Calibration

A suitable lighting source is very important prerequisite
for the correct behaviour of the system. In other words
there have to be a clearly visible shadow and an object
(finger) in the image Ip as it is shown in Figure 7. In

5These images were captured with indoor lighting.

other words, after Ir− Ig shadow and object must be visi-
ble. From observations we can say that floodlight is more
appropriate than a sunlight.

The requirements for the calibration are very simple.
We have to set thresholds of the finger and of the shadow.
It will be used for separation from the foreground. Only
four variables below have to be set:

• shadow low threshold Tsl

• shadow high threshold Tsh

• object low threshold Tol

• object high threshold Toh

The low/high thresholds mean the highest/lowest values
of the pixels in the shadow or the object part. The range
between the Tsl and the Tsh must be different compared to
the range between the Tol and the Toh. We can obtain the
images of the object Io and of the shadow Is as follows

Io [x,y] =
{

255 Tlo<Ip [x,y]<Tho
0 otherwise

Is [x,y] =
{

255 Tls<Ip [x,y]<Ths
0 otherwise

In Figure 8 there is shown one row in Ip image. You can
see the edge between the shadow and the object as rapid
change in intensity. The pixels with lower intensities will
be recognized as shadow where exact bounds are chosen
via Tsl and Tsh. Similarly, the object will be represented by
higher intensities defined by Tol and Toh variables.

Figure 8: The intensity of the line of the Ip image.

5 Application

We are presenting the possible usage in this section. The
application is written in C++ for graphic routines and ob-
taining images from a webcam an OpenCV library [12]
was used. The user needs a computer, one ordinary web-
cam, a paper and a pencil.

We have chosen a virtual keyboard for demonstration of
the whole idea. The application provides handling of the
key drawn by hand. The user may tap on the paper and
virtually press the key and use it for comunication with
the computer. The user may draw any number of the keys
exactly how many really needs. For example the user will

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
48

need a controller for any car game thus draw only key for
acceleration, key for break and keys for turning. This so-
lution has a big advantage because the user may choose
count and position. The user may draw also a special con-
troller as piano keyboard and on the touch react by playing
a sound.

5.1 The keyboard detection

The user may draw any number of the keys as the arbitrary
quadrangles. There are shown sketches and recognized
keys in Figure 9.

(a) (b)

Figure 9: (a) Image of the four hand drawn keys; (b) Keys
have been found and drawn as the rectangles

The recognition is based on the corners. We need only
the strongest corners because there may occur a roughness
on the line of the hand drawn key. At first we need to cal-
culate minimal eigenvalue of gradient matrices using the
Sobel operators (for more information [13], [14]). The re-
sults are stored to the Isrc. Then non-maxima suppression
is computed as follows

Idst [x,y] =
{

Isrc [x,y] Isrc [x,y]>mq
0 Isrc [x,y]≤ mq

where Isrc is a source image, Idst is a destination image,
m is the max value of the intensity obtained from Isrc and
q is quality level6.

We have the corners as a result of the method above.
The recognition starts with the left up point. Then we find
the nearest point in the x-direction and the y-direction. The
fourth point is the nearest point in the x-direction from the
third point.

5.2 Graphic output

There was added an isometric view for better navigation in
the 3D space. Figure 10 shows 2D input image captured
from the webcam. It is drawn as an isometric image with
some level of depth.

6 Results

We are able to provide the navigation in the 3D space us-
ing one webcam. The navigation may be controlled via

6q = 0.2 according to [10].

(a)

(b)

Figure 10: (a) The original image; (b) Isometric view
drawn

object and the shadow of this object. The user has to show
a background using a source of the light for obtaining a
clearly visible image of the foreground composed from the
object and the shadow. The places with very similar gray
colours (according to Figure 7 (c)) are recognized as the
object and the other one as the shadow using the thresh-
olds. Middle top points of these places are chosen as the
pivot points. The distance between the points is used as
the level of depth and the position of the object point as x
and y coordinates in Cartesian xyz-system. The coordinate
z may be computed via linear or linear fractional depends
on the position of the light and webcam. The computing
of these coordinates works fast enough and it is usable for
the usage in the real time.

The system has been tested in home conditions. It
means that distances H and ∆ from Figure 4 has been in
tens of centimeters. Additionally the distance ∆ was much
longer than H thus linear formula was used. If the user
set the suitable c then value of the h corresponds with real
distance between the object and the surface.

7 Conclusions and future work

Functionality of the system was shown on virtual keyboard
example where the level of the depth (z coordinate) is used
for click detection. The virtual click is only one aspect
of the possible usage and it has been chosen because of
not very demanding dependencies on lightness and cali-
bration. We can expand the idea of the virtual click using
the projector showing an image on the wall. According to
Figure 4 the projector is the Light. From the foreground
image obtained as described above a hand and the main
finger are separated. The user may tap on the wall and
press the button shown by the projector. Then a computer
obtains a press event and handles it by a particular way.

As mentioned above a virtual click is only one possible
usage. In general the system may be used as a navigation
in the 3D space using an object as the controller. The con-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
49

troller may be used for 3D modeling and via gesture we
can create and grab the virtual points and than make the
models, move models, and so on.

We can also use a simple object as a virtual pencil and
draw via touching the wall. The webcam obtains an im-
age. On the places where the pencil is touching the wall
the program draws the points. This idea may be expand
by third dimension. The distance between object and the
surface will be used for computing of the z coordinate as is
shown in chapter 1. The user have to set an specific event
to begin drawing and event for stop. We have the webcam
and the system for the computer vision thus usage of ges-
ture is very suitable [3]. For example the user may join
index finger and thumb and than via the object (or the fin-
ger) draw in space. The system will be interpreted as path
of the object as colour track and then when the user makes
a stop gesture drawing will be stopped.

The work on this project is still ongoing and these ideas
presented in this chapter will be the main targets in the
future.

References

[1] “Project natal.” http://www.xbox.com/
en-us/live/projectnatal/. visited:
28.3.2010.

[2] “Camspace.” http://www.camspace.com/.
visited: 28.3.2010.

[3] J. Cı́ger and J. Plaček, “The hand as an ultimate tool,”
SCCG, 2000.

[4] E. Sánchez-Nielsen, L. Antón-Canalı́s, and
M. Hernández-Tejera, “Hand gesture recogni-
tion for human-machine interaction,” WSCG,
vol. 12, 2004.

[5] J. Garcı́a, J. P. Molina, D. Martı́nez, A. S. Garcı́a,
P. González, and J. Vanderdonckt, “Prototyping and
evaluating glove-based multimodal interfaces,” Jour-
nal on Multimodal User Interfaces, vol. 2, 2008.

[6] “Interactive devices.” http://www.novia.ch.
visited: 28.3.2010.

[7] “Shadow detection.” http://dali.mty.
itesm.mx/˜autonomos/Navdyn/node11.
html. visited: 28.3.2010.

[8] J. Canny, “A computational approach to edge detec-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 8,
no. 6, pp. 679–698, 1986.

[9] J. R. Parker, Algorithms for image processing and
computer vision. John Wiley & Sons, 1997.

[10] G. Bradski and A. Kaehler, Learning OpenCV.
Gravenstein Highway North: O’Reilly, 2008.

[11] D. Comaniciu and P. Meer, “Mean shift: A ro-
bust approach toward feature space analysis,” IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24, pp. 603–619, 2002.

[12] “Open source computer vision.” http:
//opencv.willowgarage.com/wiki/.
visited: 28.3.2010.

[13] M. Nixon and A. Aguado, Feature Extraction & Im-
age Processing. Linacre House: Elsevier, 2008.

[14] “Opencv feature detection.” http://opencv.
willowgarage.com/documentation/
cpp/feature_detection.html. visited:
28.3.2010.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
50

Computer-Vision based Pharmaceutical
Pill Recognition on Mobile Phones

Andreas Hartl∗

Supervised by: Clemens Arth†

Institute for Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

In this work we present a mobile computer vision sys-
tem which simplifies the task of identifying pharmaceuti-
cal pills. A single input image of pills on a special marker-
based target is processed by an efficient method for ob-
ject segmentation on structured background. Estimators
for the object properties size, shape and color deliver pa-
rameters that can be used for querying an online database
about an unknown pill. A prototype application is con-
structed using the Studierstube ES framework, which al-
lows to perform pill recognition on off-the-shelf mobile
phones. System runtime and retrieval performance with
the estimated features is subsequently evaluated on a real-
istic test set. The retrieval performance on the exemplarily
used Identa database confirms that the system can facilitate
the task of mobile pill recognition in a realistic scenario.

Keywords: pill recognition, mobile phones, marker, fea-
ture estimation, database

1 Introduction

Correct and timely identification of drugs which are en-
countered without packaging, is a major problem in
healthcare. If the exact type of drug taken by a patient
is known, a more directed therapy can be applied and un-
necessary medical effort can be avoided. The identifica-
tion of pharmaceutical pills like tablets, capsules and pills
(dragées) must often be performed as fast as possible. If
pills need to be identified on the way, only a visual inspec-
tion is possible. This task can be supported by performing
computer vision on mobile devices. The ubiquitous nature
of mobile phones, the built-in camera as well as advance-
ments in processing power make up an attractive platform
for application development. The main challenges can be
seen in the changing environment of operation as well as
the limited computational resources of mobile devices.
Some domain research reveals three main methods for
pill identification: (1) look-up in a book, (2) applica-

∗ahartl@student.tugraz.at
†arth@icg.tugraz.at

tion of a special identification scheme, (3) querying a
database. From the aforementioned methods, an identi-
fication scheme offers best accuracy within a reasonable
amount of time. In mobile applications, the availability
of an identification method and the necessary skill of the
operator are critical. This drawback may be mitigated by
using mobile phones for pill identification.
In a visual identification system a set of features must be
determined. These could be shape, size, color, scores and
imprints, but also transparency or texture. Such features
can be estimated directly on the device or on a server
which is used to process an image taken by the mobile
phone. It is important to note that mobile network cover-
age is still imperfect, which can render a solution that em-
ploys server-side processing entirely useless. In the pro-
posed approach, properties of pills may be instantly esti-
mated without requiring a network connection. Thus, fea-
tures such as object size can still be used to identify pills
by other means. Besides, on-device feature estimation is
an essential building block for a truly independent solution
in which pill information is stored directly on the device.
In the following we present a system for instant visual pill
recognition on mobile phones based on an image taken
with the built-in camera. Initially, a set of features is es-
timated for each individual pill. This information is used
to query an online available database. Then, a series of
candidates is presented on the mobile phone along with
additional information. In this work the features shape,
size and color are estimated since they are supported by
freely available online databases.
The remainder of this work is structured in the follow-
ing way: In Section 2 a short review of related work in
the area of pill recognition as well as computer vision on
mobile phones is presented. Section 3 is devoted to seg-
mentation, as it is a fundamental problem in the applica-
tion to be developed. Section 4 deals with the feature ex-
traction process from the segmented regions. In Section
5 an overview of a prototype implementation for mobile
devices is given, followed by an evaluation of the system
on an exemplary database in Section 6. A conclusion and
additional remarks are given in Section 7.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

2 Related Work

To the best of our knowledge there is only a single report
of a pill recognition system so far, which is described in
a US patent [13]. It deals with an automatic method for
the task of verification that the content of a container filled
by a dispensing system, corresponds to a given prescrip-
tion. Little knowledge is available about the inner work-
ings of the system. According to the given source, this is a
fixed system which uses a frame grabber as input and em-
ploys color, geometry and surface features to identify all
pills that a given machine may process. Prior knowledge
is used to simplify the problem which gives better results.
Ubiquitous mobile devices are used for various tasks in
computer vision. Wagner et al. perform robust 6DOF nat-
ural feature tracking using modified SIFT and Ferns as de-
scriptors [11]. In order to allow computation on mobile
devices, extensive modifications are carried out to the ba-
sic concepts of SIFT and Ferns, followed by an instructive
evaluation of system performance. Despite severe limi-
tations in processing speed and memory bandwidth, they
achieve real-time performance when using textured planar
targets on current-generation phones.
Klein and Murray present a system for parallel tracking
and mapping on camera phones [7]. They implement a
key-frame based SLAM system that is capable of generat-
ing and augmenting small maps. Limited computational
resources and problems in image acquisition such as a
rolling shutter are specifically accounted for to allow com-
putation on mobile devices (iPhone 3G).
In the system at hand robust estimation of object features
from a single input image must be performed. Due to the
nature of the problem, it seems justified to run through a
separated segmentation, feature extraction and classifica-
tion step (depending on the feature), in which tasks may
be optimized independently. For each of the steps needed
in our application a vast amount of literature is available,
but self-contained work on how to perform these steps ef-
ficiently on mobile devices is not available. Thus, we pro-
pose a series of solutions which make the problem com-
putable on current mobile phones in instant time.

3 Robust Segmentation

Segmentation is a critical problem in the system at hand,
because the results determine the quality of any subse-
quent feature estimation task. As the setup used for image
acquisition is not fixed and lighting conditions may vary,
performance with changes in scale, perspective distortion
and non-uniform lighting is particularly important. Since
it is necessary to estimate the size of arbitrarily colored
pills, a marker-based target of known geometry and back-
ground is used. For reasons of practicability, the dimen-
sions of this target are chosen to fit into a wallet. Using
a checkerboard background (see Figure 1), it is possible
to robustly segment objects with reasonable requirements

in processing speed. Applicable images may be obtained
from an autofocus camera, since fixed focus cameras are
unable to give a sharp image of suitable size.

3.1 Reduction of Input Data

The marker-based target can also be used to reduce the
amount of input data for segmentation. Besides, feed-
back about the image geometry is possible before further
computations take place. This may be helpful, because
rectification of the entire image is not efficient. For im-
age regions, rectification is feasible, however, because the
amount of input data is much smaller.
In the problem at hand, a homography between points on
the image plane and points lying on a plane defined by
the dimensions of the target can be computed. This bijec-
tive mapping of coordinates between planes can be repre-
sented by a non-singular matrix of size 3x3 with 8 degrees
of freedom (see e.g. the work of Hartley and Zisserman
[6]). For the computation (estimation) of the 3x3 Matrix
HIW (HWI = HIW

−1) at least n = 4 point correspondences
must be found between image plane and the correspond-
ing world plane. In consideration of a possibility to re-
alize such a rectification procedure efficiently, the mini-
mum number of 4 points is chosen. They correspond to
the corners of the reference rectangle of the marker-based
target. Thus, a rectangular region of interest (ROI) can be
defined in the image plane using the known location and
dimensions of the checkerboard area and the previously
computed homography.

Figure 1: Frame marker with structured background

3.2 Segmentation Algorithm

A segmentation of objects on the proposed card can be ob-
tained by local adaptive thresholding and morphological
operations on a grayscale input image. All relevant com-
putations may be carried out on a square neighborhood
that extends into both directions wh pixels, giving a mini-
mum total square length of 2 ·wh +1 pixels. The principal

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
52

algorithm is as follows:

Mseg = (¬(MT h1 •SE1)◦SE2)•SE1, (1)

where MT h1 denotes a mask obtained by local adaptive
thresholding with a neighborhood size of 2 ·wh + 1, and
SE1 and SE2 denote structuring elements of length 2 ·wh +
1 and 2 ·wh + 3. The symbol ¬ is used for mathemat-
ical inversion and the symbols ◦ and • denote morpho-
logical opening and closing. In our implementation, the
checkerboard pattern is detected by application of the pro-
posed procedure using an efficient method for local adap-
tive thresholding by Shafait et al [9].
Further processing is necessary to extract smooth con-
tours. Thus, region labeling with integrated boundary
computation is carried out after the work of Chang et al.
[3], in which a linear-time method is described. Subse-
quently, the convex hull of each boundary is computed us-
ing the algorithm by Graham [5]. In the final step, we
apply variant of the line drawing algorithm by Bresenham
[2] to obtain connected chains (see Figure 2). If necessary,
the region may be calculated in a flood fill operation then.
It must be noted that the choice of the single parameter
wh is uncritical in the application at hand. However, the
length of the checkerboard pattern must be chosen with
care, since it determines the quality of segmentation to a
large extent. This choice is dependent on the desired res-
olution, since a sufficiently sharp image of this pattern is
required. Currently the length is set to 0.6mm, favoring
images of 640 x 480 pixels, as a compromise between ac-
curacy, runtime and usability.

Figure 2: Segmentation borders for Figure 1 (extract)

4 Feature Estimation

In the application at hand we measure objects and perform
a coarse estimation of shape and color. The following con-
siderations are based on the assumption that the starting
position for property estimation is the boundary of an im-
age region that resembles the silhouette of an object as
closely as possible. For each step, an efficient solution is
needed to allow for computation on mobile devices.

4.1 Size Estimation

Geometric properties of pharmaceutical pills such as
length, width and height are important features for identifi-
cation (see Section 6). Invariance to perspective distortion
is necessary to allow for correct measurements. With a sin-
gle input image, measurements can be carried out in two
dimensions by using an available homography (see Sec-
tion 3.1). In the current approach for size estimation, dis-
tortions in image acquisition are not considered, since the
error caused by segmentation is assumed to be dominant.

4.1.1 Measurement of Length and Width

In the following, the length of a pill is defined as the ex-
tension of its boundary along the major axis of its perpen-
dicular projection. This suggests that the extension in the
perpendicular direction is defined as width. With this def-
inition the majority of pill shapes may be measured cor-
rectly without further interaction. Consequently it seems
reasonable to determine the direction of maximum vari-
ance within a region where a pill is supposed to be. To
achieve this goal, we propose a procedure in which a sub-
set of all region points is used for increased robustness.
First, a flood fill operation is carried out on the contour and
a suitable number of points is selected and rectified using
an available homography. Subsequently, the direction of
maximum variance v1 = [v1;v2] is determined by analysis
of the covariance matrix C [12]. In order to obtain a more
accurate estimate for the length and width of an object, it is
necessary to project the boundary that makes up an object
using the obtained vector v1. In the absence of outliers, it
is sufficient to project the world points of the convex hull,
because they bound the extension of the object. If the vec-
tor m = [mx;my] corresponds to the centroid of all world
plane points that make up a region, a projection may be
computed as:

[
xiW (p)
yiW (p)

]
=

[
v1 v2
−v2 v1

][
xiW −mx
yiW −my

]
, (2)

where [xiW ;yiW] denotes a point in the world plane that be-
longs to the current region, and [xiW (p);yiW (p)] denotes its
projected counterpart. An estimation of length and width
may then be obtained by computation of differences be-
tween minimum and maximum values of these coordinates
(see Figure 3 for an illustration of this process).

Figure 3: Projecting boundary points (world plane)

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
53

4.1.2 Considerations on Accuracy

The square size sqw of the checkerboard pattern, that lim-
its the accuracy of segmentation, is identified as the ma-
jor source of error. Under the assumption of a target that
entirely fills the viewable area and does not exhibit other
kinds of distortion, the expected error is dependent on the
square size sqw. As an upper bound, the error may be as-
sumed to be double the square size then. The minimum us-
able square size sqw is dependent on the image resolution.
If we assume that pills may be correctly segmented under
the previous conditions, the maximum error emax can be
estimated as follows:

emax = 2 · sqw (3)

With a square size of 0.6mm, the expected error emax is
1.2mm. With images of 640 x 480 pixels, the square size
may be reduced to 0.5mm, giving an estimated error emax
of about 1mm. Using an ordinary ruler as measurement
tool, it is rather difficult to measure lengths below 1 mm,
and the shapes of pills further aggravate measurements.
For these reasons, the accuracy of the proposed method
can be expected to be better than what can be obtained
with a ruler.

4.2 Shape Estimation

For reasons of efficiency, the boundary of an object is cho-
sen to serve as a basis for the estimation of object shape. A
shape estimator should be as invariant to changes in trans-
lation, rotation and scale as possible. A certain degree of
perspective distortion should still be tolerable to account
for artifacts. In the following we use a modified pairwise
geometric histogram (PGH) as shape descriptor and sub-
sequently perform shape matching.

Figure 4: Examples of pill shapes with classes

An analysis of available samples as well as examples from
literature led to the decision to categorize each example
into one of 9 representative shape classes containing only
convex instances. A class termed special is added to rep-
resent shapes that do not fall into any of the other cate-
gories (see Figure 4). Shapes of pharmaceutical pills show

a pronounced intra-class variance as well as partially low
inter-class variance. Thus, an applicable shape descriptor
needs to have considerable discriminative power. We pro-
pose a modified pairwise geometric histogram (PGH) for
this task, which is efficiently computable and sufficiently
invariant to changes in scale. This development of a PGH
also allows for efficient shape matching.

4.2.1 Modified Pairwise Geometric Histogram

In the PGH descriptor oriented line segments are investi-
gated (see the work of Evans et al. [4]). Their relative ori-
entation and perpendicular distance is analyzed and this
information is collected in a 2D histogram of size D ·A.
The set of possible angles and distances is mapped onto
the histogram by accumulation of occurrences. During the
process, each line is used as a reference line and the an-
gle, as well as the perpendicular distance is computed to
all the other lines. In fact, every line is represented as a
histogram and the accumulation of all histograms repre-
sents the shape of the object. An exemplary histogram is
shown in Figure 5. Although mainly designed for polygo-

Figure 5: PGH computation of a single line

nal shapes, application to non-polygonal types is possible,
if a polygonal approximation is computed as an initial step.
Besides, the PGH is not scale invariant in its original form.
Limited scale invariance may be achieved by application
of a suitable and stable similarity metric[1]. For reasons
of efficiency, we perform the following method to achieve
invariance for a limited range of scales: We assume that
the maximum distance for a PGH can be estimated from
the rectified contour. As the computation of the convex
hull is part of the segmentation algorithm, no outliers may
be expected. So, a measure of scale can be found just by
searching for the maximum distance dmax in the key from
their centroid. The maximum PGH distance may be com-
puted as

dPGH = 2 ·dmax (4)

then. As the vast majority of pharmaceutical pills is con-
vex, the PGH is constructed with a reasonable amount of
bins using just the points which make up the convex hull.
This corresponds to considerable savings in computation.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
54

4.2.2 Classification

Due to the achieved scale invariance, we perform shape
matching on a set of predefined samples using the Eu-
clidean distance as a similarity metric. Although the pos-
sibly large size of the PGH may still be prohibitive for
certain applications, this drawback can be mitigated by ap-
plication of a suitable data structure.

4.3 Color Estimation

A color estimation procedure should correspond to hu-
man perception as good as possible. Besides, the proce-
dure should be able to give reasonable results with vary-
ing lighting conditions. In general, pharmaceutical pills
may have arbitrary colors (transparent pills are not consid-
ered). Research in literature and online databases reveals
that most pills have one or two colors, out of a set of 16
basic color tones (black, white and gray are treated like a
color). These are black, white, blue, beige, brown, gray,
green, ocher, pink, violet, orange, peach, rose, red, cyan
and yellow (see Figure 6 for a set of mean colors).

Figure 6: sRGB mean colors for pill color classes

For color estimation, the influence of lighting is reduced
by applying a method for local white balance which is
based on reference measurements on the marker-based tar-
get and subsequent scaling in input space. Due to the small
amount of available samples and for reasons of efficiency,
color estimation is based on a sRGB lookup table (LUT)
which is created by evaluation of the ∆ECIE00 color dis-
tance metric (see e.g. the work of Vik [10]) in CIE LAB
space. Per pixel classification results for a pill can be ag-
gregated in a histogram. An analysis of this information
gives the color estimation result.

4.3.1 Look-up Table Computation

Lookup tables allow fast classification at the cost of ad-
ditional storage and memory requirements. For practical
reasons, the LUT size should be comparatively small. In
the following, the value sLUT denotes the amount of entries
for each channel in a 3D LUT. We propose the following
method for the creation of a sRGB LUT that resembles hu-
man perception of color, from a small number of samples
per class:

• Definition of representative sample colors ci j per
class. They need to be visually similar and should
show a smooth course of color within a class.

• Assignment of a label li to the examples of class i.

• Definition of the desired LUT size sLUT (equal for all
dimensions).

• Conversion of all sRGB sample colors into CIE LAB
space using the D65 white point (daylight).

• Iteration through all sRGB LUT entries, computation
of the corresponding sRGB color in CIE LAB space
and the distances dnn1 and dnn2 to the nearest samples
by using the ∆ECIE00 color distance metric.

• Assignment of a label l to the current LUT entry after
analysis of the distances dnn1 and dnn2.

Cases, where a decision is not possible or no suitable color
may be found, are handled by suitable thresholds. The
proposed approach relies on the assumption that the colors
which may be traversed by exhibiting the step size that is
defined by sLUT on each channel, show no or negligible
perceptual difference.

4.3.2 Color Classification

A classification for up to two colors may be obtained by
analysis of the class histogram hc of per pixel results on
white balanced data. Thus, the relative amount of covered
pixels in the region as well as the significance of the re-
sult, which is based on the distance between the first two
entries of a sorted class histogram hcd (descending order),
is evaluated. The following metrics are used to decide on
the color(s) of a region:

• coverage for a result with one color (label i):

ci =
hcd(0)
∑hc

(5)

• coverage for a result with two colors (labels i and j):

ci, j =
(hcd(0)+hcd(1))

∑hc
(6)

• significance for a result with one color (label i):

si =
hcd(0)−hcd(1)

hcd(0)
(7)

• significance for a result with two colors (labels i,j):

si, j =
1
si

(8)

A decision is possible, if one of these coverages is above
a threshold cth, because this assures a more meaningful
result. Then, the products ci · si and ci, j · si, j are used to
decide, whether one or more colors are present. If the first
product is greater than the second, the result is the corre-
sponding label i of the maximum entry in hcd . Otherwise
two colors are assumed and the labels i, j that correspond
to the first two entries in hcd are reported.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
55

5 Mobile Phone Prototype

We implemented a prototype system suitable for mobile
devices using the algorithms described in the previous
chapters as well as existing functionality from the StbES
framework [8]. It allows to obtain an estimate of recog-
nition performance on mobile devices when querying an
online available database. In Figure 7 an overview of the
basic components is given. The application frontend may
run on a Windows Mobile equipped camera phone as well
as on a Windows PC. The database connection is decou-
pled from the application and may be adapted to arbitrary
sources of information.

Figure 7: Basic system components

All computer vision related processing takes place on the
mobile device (see Figure 8 for an illustration of the re-
quired steps). An exemplary pill recognition session is
shown in Figure 9 A, B and C. The input image is obtained
from live video, using the tracker of the given framework
for target detection. The result of segmentation and color
estimation as well as the obtained directions of measure-
ment may be instantly verified from overlaid data (see Fig-
ure 9 A). In the pill browser, manual correction of query
parameters is possible using just the directional stick of
the mobile device (see Figure 9 B). Alternatively, input
from a touchscreen is possible. In case of the evaluated on-
line database an image for visual verification is provided,
along with name, manufacturer, dimensions and mass of
the candidate (see Figure 9 C). In order to reduce the ini-
tial round-trip time, only textual information is transferred
at first and images are cached on the server for on demand
retrieval.

Figure 8: Course of the pill recognition application

Optimizations include excessive preallocation of memory,
avoidance of floating point operations or use of fixed-point
types. The retrieval of pill information is possible through
any of the built-in communication facilities.

Figure 9: A feature estimation result, B pill browser, C
result browser, D test with mobile phone

6 Evaluation

We evaluated the system in terms of estimator perfor-
mance with suitable test sets that resemble typical operat-
ing conditions. Pill identification performance is evaluated
with optimal estimator parameters using a set of manually
classified examples as well as the Identa1 online database.
The latter is chosen to serve as the backbone for the ap-
plication, because access is free. Thus, training of feature
estimators needs to comply with Identa categories. Only
a subset of possible pill shapes are supported as query pa-
rameters. The shape categories represent circular, oval,
oblong and special shapes (see Figure 10). The created
general shape data for pills was subsequently categorized
to be in accordance with the shape classes of Identa. In
the Identa query form, 14 colors are differentiated by their
names as well as a small number of visually similar tones.
For reasons of robustness, the tones rose and peach are
merged. The samples for each class are taken from previ-
ously collected data on pill color. The Identa database is
not fully consistent concerning shape and color, however.
Mobile performance is evaluated on an Asus M530w
smartphone2, running Windows Mobile 6 (see Figure 9
D). It features a 2 mega pixel autofocus camera, a 416MHz
fixed-point CPU, 64 MB of RAM and 256 MB Flash.

6.1 Datasets

In the proposed evaluation procedure, reference data for
the captured pills is necessary. For this purpose, each sam-
ple was manually classified into the appropriate categories

1http://www.gelbe-liste.de/pharmindex/identa
2http://www.asus.com

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
56

Figure 10: Examples for Identa shape classes: A special
class; B oval class; C oblong class; D circular class

for shape and color. The length and width of each sam-
ple were measured using a nonius. All collected informa-
tion about the samples was subsequently stored for later
use (see Table 1 for a description of contents). Despite its
small size, the set contains pharmaceutical pills with the
most current shapes, colors and dimensions. In Table 2
a detailed listing of the distribution of colors for single-
colored pills is given. Test images for each example in

Shapes circular oval oblong special
Instances 41 26 33 8
Colors single multi
Instances 98 10
Sizes [mm] min. length min width max length max width

5.68 5.68 18.07 18.07

Table 1: Contents of the reference set: shape, colors, size

the global reference set were captured at 640 x 480 pixels
with differing lighting conditions. A labeled example is
obtained by storing each filename at its corresponding en-
try in the global reference database. This means that one
representative image for each sample in the global refer-
ence set (108 samples) is included for set D (daylight) and
set F (fluorescent lighting).

Color black white blue beige brown
Instances 1 29 6 11 4
Color gray green ocher pink/violet orange
Instances 1 5 6 3 6
Color rose/peach red yellow - -
Instances 11 5 10 - -

Table 2: Contents of the reference set: single-colored pills

6.2 Results

Initially shape and color estimators were extensively eval-
uated to obtain optimal parameters (shape PGH: D=12,
A=12; color LUT: sLUT = 36). In this step, the best recog-
nition rate for shape is 0.89 and that for color is 0.84, with
little dependence on lighting. In size estimation the aver-
age deviation is 0.43mm (maximum deviation: 1.37mm).
Runtime on the mobile device was evaluated for a pill of

average size and for the largest available pill (see Table 3
for a detailed listing). For this purpose, the input image is
read from a file. Segmentation consumes the largest por-

Task RT [ms] (largest) RT [ms](average)
overall 1205 1114
preparation 20 18
segmentation 698 714
shape features 204 213
shape class. 6 4
size estim. 44 29
color estim. 233 136

Table 3: Runtime evaluation on specific pills (640 x 480
pixels): results for largest pill in set DF as well as an aver-
age pill (optimum settings; rounded), RT...runtime

tion of runtime, but the problem may still be computed on
the mobile test device in a reasonable amount of time.

6.2.1 Pill Recognition

Due to the small amount of samples, pill recognition per-
formance is evaluated in two different ways. First, the cre-
ated global reference database is used as the source of pill
information. In the definition of a query range for length
and width, a deviation of 0.7mm is assumed. In the second
part, pill retrieval performance is evaluated with Identa us-
ing a filtered set of 27 pills, that can be positively assigned
to instances within Identa. In this case a correction of pa-
rameters by a human operator is assumed.

Figure 11: Pill retrieval on the global reference set (single
features): results for set D

Retrieval performance for single features gives informa-
tion about the descriptive power of a feature (see Figure
11). This means that size is the most powerful feature,
followed by color and shape because higher recognition
rates are achieved with a smaller amount of considered
candidates. Size and color have a steeper slope and give

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
57

better results faster than the feature shape. Performance
with the feature size reaches a recognition rate of 0.814
(N = 6 candidates), when querying using a range defined
by the measurements and the expected accuracy in size.
Performance of feature size improves considerably, if re-
sults are ordered by the minimum sum of deviations in
length and width. Peak performance may drop when us-
ing several features.The reason may be mutual reactions
of errors from the individual feature estimators, because
their results were not corrected. We have included the re-
sults for a very conservative query strategy, using no prior
information about the set and reporting the result of se-
quential querying for features. In Table 4 a summary of
results is given.
When querying the Identa database using the filtered set,
the final retrieval performance is 85.19 percent. On av-
erage, N = 8 candidates must be inspected to obtain the
correct match (Identa contents 12/2009).

Size Size (sorted) Shape Color RRmax #
x 0.8148 6

x 1.0000 8
x 0.4722 10

x 0.6574 10
x x 0.7315 6
x x 0.6389 3
x x x 0.5556 3

x x 0.8889 5
x x 0.8148 2
x x x 0.7037 2

Table 4: Pill retrieval on the global reference set (set D,
N = 10): best results, RR...recognition rate

7 Conclusions

In this work we present a mobile pill recognition system
for conventional smartphones. An algorithm for segmen-
tation of pills from a business card sized marker is pre-
sented. Hereafter, relevant properties, such as size, shape
and color are chosen to be determined by means of CV.
A domain analysis is carried out to identify the most rele-
vant shapes and colors of pills. The estimated features can
be used for identification of medical pills within a database
then. An example of this application interfacing an online-
available database for medical matters is presented, fol-
lowed by an extensive evaluation of the system in terms of
algorithm speed and pill retrieval performance.
The obtained results show that the approach is able to
work in instant time using commonly available smart-
phone hardware. Furthermore, the retrieval performance
of the system on the exemplarily used Identa database con-
firms that the system can facilitate the task of visual pill
recognition in a realistic scenario.
For the verification of practical use an extensive user study
will be necessary. The incorporation of additional features
such as brick lines or text could be the topic of future work.

In the context of a human operator and higher runtime, the
benefit must be evaluated. If the pill database is stored on
the mobile device, a fully independent solution is possible.

References

[1] A.P. Ashbrook, N.A. Thacker, P.I. Rockett, and C.I.
Brown. Robust Recognition of Scaled Shapes using
Pairwise Geometric Histograms. In Proceedings of
BMVC, pages 503–512, 1995.

[2] J. E. Bresenham. Algorithm for Computer Control of
a Digital Plotter. IBM Systems Journal, 4(1):25–30,
1 1965.

[3] Fu Chang, Chun-Jen Chen, and Chi-Jen Lu. A
Linear-Time Component-Labeling Algorithm using
Contour Tracing Technique. Computer Vision and
Image Understanding, 93(2):206–220, 2004.

[4] A.C. Evans, N.A. Thacker, and J.E.W. Mayhew. Pair-
wise Represenations of Shape. In Proceedings of the
11th ICPR, pages 133–136, 1992.

[5] R.L. Graham. An Efficient Algorithm for Determin-
ing the Convex Hull of a Finite Planar Set. Informa-
tion Processing Letters, 1(4):132–133, 1972.

[6] R. Hartley and A. Zisserman. Multiple View Geome-
try in Computer Vision. Cambridge University Press,
2nd edition, 2008.

[7] G. Klein and D. Murray. Parallel Tracking and Map-
ping on a Camera Phone. In Proceedings of IS-
MAR’09, pages 83–86, 2009.

[8] D. Schmalstieg and D. Wagner. Experiences with
Handheld Augmented Reality. In Proceedings of IS-
MAR’07, pages 1–13, 2007.

[9] F. Shafait, D. Keysers, and T. Breuel. Efficient Im-
plementation of Local Adaptive Thresholding Tech-
niques Using Integral Images. In Proceedings of
SPIE, 2008.

[10] M. VIK. Industrial Colour Difference Evaluation:
LCAM Textile Data. In Proceedings of AIC’04,
pages 138–142, 2004.

[11] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond,
and D. Schmalstieg. Pose Tracking from Natural
Features on Mobile Phones. In Proceedings of IS-
MAR’08, pages 125–134, 2008.

[12] S. Wijewickrema and A. P. Paplinski. Principal Com-
ponent Analysis for the Approximation of a Fruit as
an Ellipse, 2004.

[13] J. R. Wootton, V. V. Reznack, and G. Hobson. US
Patent 6535637 - Pharmaceutical Pill Recognition
and Verification system, 2003.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
58

Segmentation and classification of fine art paintings

Zuzana Haladova ∗

Supervised by: Elena Sikudova†

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

Since the development of the first text-based image search
on the internet, the area of image retrieval has come a long
way to sophisticated content based image retrieval sys-
tems. On the other hand, the semantic gap causes that
it is still not possible to create a system which can cor-
rectly identify any object in the image. However, this
paper proposes a solution for classifying the one sort of
objects - paintings. This approach includes segmentation
of the painting from the image, creation of the descrip-
tor file from the segmented painting, and classification of
the painting by matching its descriptor file to the created
database of descriptor files of original paintings. The seg-
mentation of the painting is achieved with 3 preprocessing
steps, followed by adjusted Hough transformation. For
the estimation of key points and creation of the descrip-
tor file, the SIFT (Scalable Invariant Feature Transform) or
the SURF(Speeded Up Robust Features) technique is used.
The performance of both techniques is validated within the
paper. The solution proposed in this paper was tested on
the database of 100 Rembrandt Harmenszoon van Rijn’s
paintings.

Keywords: Fine art paintings, Segmentation, Classifica-
tion, SIFT, SURF

1 Introduction

This paper interlopes three scientific areas, image retrieval
and the classification and the digital preservation of art.
The approach proposed in this paper consists of a CBIR
(Content based image retrieval system) which operates
over a database of fine art paintings. This CBIR system
is defined (according to the categorization proposed by
Data et al. [6]) as a system operating over domain specific
collection, which queries by an image, with content-based
processing of the query.

The motivation for the creation of the system are defi-
cient retrieval possibilities in the most art web-galleries.
In these one can retrieve the painting only by its name,
which causes problem when you want to find the beautiful

∗zhaladova@gmail.com
†sikudova@sccg.sk

painting which you have photographed in the gallery (and
immediately forgot the name). This system requires a pho-
tograph of a painting on the input and returns the name and
the author of the painting found on the photograph. The
system works in 2 phases. Firstly, it segments the region
consisting of the painting and the frame from the photo-
graph. Segmentation is done by different methods which
includes different preprocessing steps, edge enhancement
methods followed by the Hough transform [14] or water-
shed transformation. In the next step the corresponding
painting from the database of originals is retrieved. The
retrieval is done by comparing the descriptor file of the
segmented region created using SIFT [10] or SURF [2] al-
gorithms with the descriptor files of the paintings stored in
the database.

This paper is organized in the following way: In the first
section the works of other authors in the area of the clas-
sification and the digital preservation of art are presented.
In the second section the datasets used in this paper for
testing and verification are presented. In the third section
the process of the segmentation is detailed. In the fourth
section the classification methods are recounted. In the
fifth section the paper presents the comparison of different
methods and the sixth section concludes the paper.

2 Previous work

Since the 80’s the computer graphics and vision commu-
nity is focusing on the problem of the preservation of the
cultural heritage. This big mission includes the restoration
and the classification of the fine art painting. In this area
the most significant assignments are the digital restora-
tion of the paintings, classification of the author’s style
and categorization of paintings based on the style [8], dis-
tinguishing paintings from real scene photographs [5] and
determination of new features for paintings classification
(Example: Description of painting’s texture using brush
strokes [15]). For the relatively complete overview see
Lombardi [9].

Works in the area of the classification of paintings are
mostly focused on author’s style or iconography. How-
ever one paper shares the assignment with this paper. In
the paper [4]a group of students from Stanford were clas-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

sifying the paintings from photographs they took in the
Cantor Arts Center. Photographs were taken under con-
stant lighting, without any distractive elements covering
the painting. Under these conditions segmentation of the
painting from the photograph could be achieved with sim-
ple thresholding method. For the classification they used
the matching of the color histograms of the photographs
with the database of the color histograms of originals.

3 Datasets

For testing and verification of segmentation and classifi-
cation methods two different datasets were used. Both
datasets consist of images of the paintings created by Rem-
brandt Harmenszoon van Rijn (Figure 1).

The first dataset, (the Originals), consists of 15
photographs of paintings obtained from the Olga’s
gallery [12], the internet gallery with over 10.000 works
of art. These photographs contain the paintings without a
frame or a wall photographs are in the resolution 600 times
600 dpi.

The second dataset, (the Photographs) includes 100 pho-
tographs taken in museums or galleries by tourists with
unspecified digital cameras. This dataset contains pho-
tographs from the collection of the author of this pa-
per, from the initiative on her website 1 and from the
travel.webshots [1] web portal. Photographs are in differ-
ent resolutions, miscellaneous scales and are taken under
varying lighting. In 8 images the painting is partly covered
by the bodies of tourists.

All of the photographs from both datasets are resized to the
width of 600px and converted to gray scale. Conversion to
gray scale was done by eliminating the hue and saturation
information while retaining the luminance from the HSV
representation of RGB values of the image.

4 Segmentation

The goal of the segmentation phase was the segmenta-
tion of the painting and its frame in the input image (from
the Photographs dataset). Three different techniques were
used. The primal one used the Gauss gradient method [7],
in the improved method the Anisotropic diffusion [13] was
applied and the additional method is based on the water-
shed transformation [11]. Results of the three different
methods of the segmentation are presented in the Conclu-
sion section.

1http://members.chello.sk/halada-j/diplomovka.html

Figure 1: Sample images from the Originals dataset (left)
and the Photographs dataset (right). Photographs of the
Jewish bride painting in the first row, and of the painting:
Portrait of a Young Man in the second row.

4.1 Gauss gradient method

In the primal method the image is processed using Gauss
gradient function which computes the gradient using first
order derivative of the Gaussian. It outputs the gradi-
ent images Gx and Gy of the input image using convo-
lution with a 2-D Gaussian kernel. In the next phase the
Gx and Gy gradient images are send as an input to the
Hough transform. The Matlab’s implementation of the
Hough transform is used, since it enables to count the lines
from the Hough peaks directly and to connect or trim them
based on their length. Lines created in the previous step
are then expanded to the borders of the image and lines
with big slope are filtered. Lines are then divided into four
groups, one for upper, lower, left and right edges. Consec-
utively, the painting is segmented as the smallest quadri-
lateral created from the lines. Gauss gradient method is
depicted in the figure 2.

4.2 Anisotropic diffusion method

In this approach firstly the histogram equalization is done.
Then the image is processed using Anisotropic diffusion,
the technique which smooths the image, but preserves the
edges. The function is used with the following parame-
ters: number of iterations = 10, kappa = 30, lambda= 0.25
and option = 1 (kappa controls conduction as a function of
gradient, lambda controls speed of diffusion, it is 0.25 for
maximal stability, option = 1 means the Diffusion equa-
tion, this choice favors high contrast edges over low con-
trast ones). The output image of the function was then
convolved with the horizontal and vertical Sobel edge fil-
ter, resulting in two binary images Sx, Sy. The images

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
60

(a) The input image (b) Gx image (c) Gy image

(d) Lines created using Hough trans-
form

(e) Final segmentation

Figure 2: The process of the Gauss gradient method of the segmentation.

(a) The input image I, (b) Top hat (c) Bottom hat (d) (I+ tophat)-bottomhat

(e) Extended minima of (d) (f) Minima imposition from the com-
plement of (d) with the marker (e)

(g) Clusters created with watershed
transform

(h) Final segmentation

Figure 3: The process of the watershed method of the segmentation.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
61

(a) The input image (b) The input image processed with
Anisotropic diffusion

(c) Sx image

(d) Sy image (e) Lines created using Hough trans-
form

(f) Final segmentation

Figure 4: The process of the Anisotropic diffusion method of the segmentation.

Sx, Sy are processed equally to Gx and Gy images in the
first method, and also the input image is segmented in the
same way. Anisotropic diffusion method is presented in
the figure 4.

4.3 Watershed method

In the third approach the input image is firstly prepro-
cessed to enhance edges of the painting’s frame. After-
wards the watershed transform is applied. The preprocess-
ing phase consists of 4 steps: 1. Create top and bottom
hat of the input image. 2. Create image I2= (I+ tophat)-
bottomhat. 3. Create Im3 as extended minima (regional
minima of the H-minima transform) of Im2. 4. Im4 is
created as the minima imposition from the complement of
Im2 with the marker Im3. In the next step, clusters are
created with watershed transform applied on the Im4 im-
age. In the last phase the final segmentation is made by
growing the background from the corners in the clustered
image. Watershed method is presented in the figure 3.

5 Classification

The process of the classification of the painting segmented
from the input image is divided in two steps. First the
database of descriptor files of the Originals is created.
Then the descriptor file of the painting is matched with
the database to find the corresponding original. The de-
scriptor file is a N by M matrix, where N is number of
the interest points found in the image and M is the length
of the descriptor (128 values for SIFT and 64 for SURF).
The two different methods are used for producing the de-

scriptor files. SIFT (Scalable Invariant Feature Transform)
developed by D. Lowe [10] and SURF (Speeded Up Ro-
bust Features) developed by H. Bay et al. [2].

5.1 SIFT

Sift method consists of a detector and a descriptor of fea-
tures invariant to translation, rotation, scale, and other
imaging parameters.

In the first step of the method the interest points (IPs) are
identified in the image by the detector. Then the descrip-
tor for each IP is created. The detector is localising the IPs
in the scale-space pyramid, which is created by the conse-
quent scaling of the image, its filtering with the Gaussian
kernel and the substraction of subsequent filtered images
in each scale. IPs are chosen as the local extremes in the
3x3x3 neighbourhood.

The descriptor for each IP is summarized from the ori-
entation histograms of 4x4 subregions of the IP neighbour-
hood. In every sample point of the subregion the size and
the orientation of the gradient is computed and weigted by
the Gaussian window indicated by the overlaid circle. Ori-
entation histogram with 8 directions is created from these
values. The descriptor of IP than consists of 8 values for
all 16 subregions (128 values).

5.2 SURF

SURF likewise SIFT includes the detector and the descrip-
tor. SURF also operates in the scale-space for identifing
the IPs, but unlike SIFT it convolve the original image
with the different scales of the box filters (approximations
of the Gaussian second order partial derivatives in the y a

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
62

Figure 5: Correspondence of interest points between two paintings matched with SIFT. Painting Danae from the Pho-
tographs dataset on the left side and Danae from the Originals on the right side.

xy directions). In order to localise IPs in the scalespaces,
a non maximum suppression in a 3x3x3 neighborhood is
applied.

64 valued descriptor is created in a few steps. Firstly,
the dominant orientation of the IP is extracted from the
circular neighborhood as the longest vector estimated by
the calculating the sum of all response (the Haar-wavelet
responses in the x and y direction, weighted by the Gaus-
sian window) within a sliding orientation window cover-
ing the angle of Π

3 . Than, the square region around the
IP is created and oriented along the dominant orientation.
Lastly, the region is divided into 4x4 subregions. In ev-
ery subregions 4 features are counted from 5x5 uniformly
distributed points. These 4 features are ∑dx, ∑dy, ∑ |dx|,
∑ |dy| : sum of Haar-wavelet responses in the horizontal
and vertical direction and the sum of absolute values of
Haar-wavelet responses in the horizontal and vertical di-
rection. Four features for all of 16 regions produce the 64
values for every IP.

5.3 Matching

In the matching phase of the classification the binary rep-
resentations of the descriptor files from the database are
loaded and matched with the descriptor file of the seg-
mented painting (DF1) using the nearest neighbor tech-
nique. In both SIFT and SURF approaches for each de-
scriptor file (DF2) from the database, the value of the
matching with DF1 is counted. For every row (correspond-
ing to the descriptor of one IP) of DF1 the nearest neigh-
bor and the second nearest neighbor from DF2 is counted.
Nearest neighbor is a row from DF2 with the smallest Eu-
clidean distance from the DF1 row. The matching value is
then the sum of DF1 rows for which the nearest neighbor
has value smaller than distanceRatio times second nearest
neighbor. The distanceRatio was determined by authors
of SIFT and SURF as 0.6 and 0.7. The painting from
the Originals dataset with the greatest matching value is

elected as the painting best corresponding to the input im-
age.

It is possible that two non corresponding paintings have
the matching value greater a 0. This is caused by the fact
that features recognized by the SIFT and SURF are not
distinctive at 100% and additional inaccuracies are caused
by the blur and the noise. In order to prevent incorrect
classification of the paintings not present in the Originals
database, the threshold for minimal matching value is es-
tablished. If the DF2 best corresponding to the DF1 of
the input painting has the matching value smaller than the
treshold, the input painting is not present in the Originals
dataset.

5.4 Other methods

In the scope of this paper, one additional method for cre-
ating descriptors was verified - the colorSIFT developed
by G. J. Burghouts and J. M. Geusebroek [3]. The color
extension to the original SIFT considers color gradients,
rather than intensity gradients, in the Gaussian derivative
framework. This approach, however, proved to be ineffec-
tive for our purpose. In the 10 tested images, there was
found only 10% of the matches found by SIFT.

6 Results

This section summarizes the results of each step of the pro-
posed system.

6.1 Segmentation results

In the segmentation phase the methods were tested on the
Photographs dataset (Images from the Originals dataset
are already segmented). This dataset consists of the

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
63

Method Gauss Anisotr. Watershed
gradient Diffusion

Correct 73% 89% 49%
segmentation
Over 6% 3% 1%
segmentation
Under 21% 8% 50%
segmentation

Table 1: Percentage of paintings properly segmented by
different methods

photographs taken by tourists in different galleries, un-
der different lighting condition and with different cam-
eras. Within the segmentation phase most problems were
caused by the low contrast of the photographs, which
was eliminated in the Anisotropic diffusion method by the
equalization of the histogram. Table 1 summarizes the per-
centage of the correct segmented versus over and under
segmented paintings.

Over segmentation, mostly in the Gauss gradient method
was induced by the strong edge responds in the paint-
ings, especially in the painting Night Watch (Rijksmu-
seum, Amsterdam) where the pale flags and spears has
very strong color edges in the black background. Other
problem with the Night Watch was the low contrast of the
black frame of the painting to the dark gray wall paint. In
the Watershed method, over segmentation occurs in one
image, where the shadow in the upper right side of the im-
age blend with the black upper right corner of the painting.
Under segmentation arises, when the paintings frame is
mostly covered or in low contrast with the wall or the back-
ground of the painting contains strong edges (wall corner
or cartouch presented on the photograph).

The problems with over and under segmentation were
partly eliminated by using the Anisotropic diffusion in the
second method, which smoothes the color edges in the
painting and also the edges in the background, but preserve
the edges of the frame. The primal method, the Gauss
gradient uses smoothing with the Gaussian kernel, which
smoothes all edges uniformly. The Watershed method was
integrated to present a different approach to the segmen-
tation, but the results indicates that it is not efficient for
this purpose. Finally, as expected the best results were
achieved with the Anisotropic diffusion method (See table
1).

6.2 Classification results

Two methods were used for the classification purpose,
SIFT and SURF. In this section both methods will be eval-
uated in a sense of a precision and the speed. For the eval-
uation purpose both datasets were used. One hundred im-
ages from the Photographs dataset were divided into 16

Method SIFT SURF
threshold = 0 75% 73%
threshold = 6 88% 90%
threshold = 8 89% 88%
threshold = 12 90% 82%

Table 2: Percentage of properly classified paintings by
SIFT and SURF methods with different thresholds

Method SIFT SURF
time of the 0,8125 s 0,32025 s
computation of one
descriptor file

Table 3: Time spent on the computation of one descriptor
file with different methods

groups, 15 groups corresponding to 15 originals present
in the Originals dataset and one group with the images of
the paintings not presented in the Originals dataset. The
descriptor file from segmented paintings was created and
the best matching original was chosen. Painting was la-
beled with the number of the best matching original and
the label was compared with the number of the image’s
group. If the best matching original has matching value
smaller then a threshold (the threshold was established on
the value 7 for SIFT and 6 for SURF), the image was la-
beled with the 16- not presented in the database. Correct
classification means that image was labeled with the num-
ber equal to the number of its group. Table 2 present the
number of correctly classified images with the SIFT and
the SURF methods. Additional value for the performance
measure is the time of the computation of one descriptor
file in Matlab. The time value is presented in the table 3.

7 Conclusion

As a conclusion the best results in the segmentation and
the classification of fine art paintings from photographs
were achieved with the combination of Anisotropic Diffu-
sion and SURF methods. Both SURF and SIFT achieved
90 % percent of succesfully classified paintings, which
means that 90 photographs were correctly named as the
name of the painting presented in the photograph. From
the 10 uncorrectly classified photographs 5 (3 in SURF)
was falsely classified as not present in the database and 5
(7 in SURF) was classified with the name of the wrong
painting. Unlike the simmilar classification results, the
SUFT method prove to be 2 times faster in the creation
of the descriptor files. The best segmentation measure was
89 % and the classification measure was 90 %.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
64

8 Future work

In the next phase of the work the classification process will
be improved by adding additional criterion to the matching
process. The paintings will be compared also by the aspect
ratio. This criterion will be helpful for the images with the
best matching value close to the threshold. This value may
also accelerate the matching process- the descriptor file of
the image will be matched only with DFs of the paintings
with the similar ratio values.

9 Acknowledgments

The author wish to thank Elena Sikudova, PhD. for her
support and the excellent leadership in this project.

References

[1] Inc. AG.com. Travel webshots., 2009.
http://travel.webshots.com.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and
Luc Van Gool. Speeded-up robust features
(surf). Computer Vision and Image Understanding,
110(3):346 – 359, 2008. Similarity Matching in
Computer Vision and Multimedia.

[3] Gertjan J. Burghouts and Jan-Mark Geusebroek. Per-
formance evaluation of local colour invariants. Com-
put. Vis. Image Underst., 113(1):48–62, 2009.

[4] Etezadi-Amoli M. Chang C. and Hewlett
M. A day at the museum., 2009.
http://www.stanford.edu/class/ee368/
Project07/reports/ee368group06.pdf.

[5] Florin Cutzu, Riad Hammoud, and Alex Leykin. Dis-
tinguishing paintings from photographs. Computer
Vision and Image Understanding, 100(3):249 – 273,
2005.

[6] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z.
Wang. Image retrieval: Ideas, influences, and trends
of the new age. ACM Comput. Surv., 40(2):1–60,
2008.

[7] Xiong G. Gradient using first or-
der derivative of gaussian., 2009.
http://www.mathworks.com/matlabcentral
/fileexchange/8060-gradient-using-first-
order-derivative-of-gaussian.

[8] Shuqiang Jiang, Qingming Huang, Qixiang Ye, and
Wen Gao. An effective method to detect and catego-
rize digitized traditional chinese paintings. Pattern
Recognition Letters, 27(7):734 – 746, 2006.

[9] Thomas Edward Lombardi. The classification of
style in fine-art painting. PhD thesis, New York, NY,
USA, 2005. Adviser-Tappert, Charles and Adviser-
Cha, Sung-Hyuk.

[10] David G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2002.

[11] Jiri Militky. Image analysis and matlab., 2009.
http://centrum.tul.cz/centrum/itsapt
/Summer2005/files/militky 6.pdf.

[12] Mataev Olga. Olga’s gallery., 2009.
http://www.abcgallery.com/index.html.

[13] Pietro Perona and Jitendra Malik. Scale-space and
edge detection using anisotropic diffusion. Technical
report, Berkeley, CA, USA, 1988.

[14] Hough P.V.C. Method and means for recognizing
complex patterns.

[15] Robert Sablatnig, Paul Kammerer, and Ernestine
Zolda. Hierarchical classification of paintings using
face- and brush stroke models. In in Proc. of 14th Int.
Conf. on Pattern Recognition, pages 172–174, 1998.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
65

66

Rendering

Traversal methods for GPU ray tracing

Marek Vinkler∗

Supervised by: doc. Ing. Jiřı́ Sochor, CSc.†

Faculty of Informatics Masaryk University
Brno / Czech Republic

Abstract

Ways of exploiting the raw performance of GPUs for com-
puting ray tracing have been a hot research topic recently.
Performance similar to the multi-core CPU ray tracing en-
gines has been achieved. In this paper we present a new
traversal method created by combining two of the existing
methods. The proposed method is less sensitive to per-
formance loss due to certain object scene distribution. It
can also be faster than the methods from which it origi-
nated. Several possibilities how to create such a method
exist and even better methods can be constructed with the
addition of a single instruction to the next generation of
GPUs. The resulting ray tracer achieves 50+ fps for pri-
mary rays on moderately complex scenes running on cur-
rent mainstream GPUs.

Keywords: Ray tracing, GPU, CUDA

1 Introduction

The graphics hardware has witnessed enormous growth in
both performance and programming flexibility recently [5,
7]. This development enabled creation of general pur-
pose parallel computing architectures such as NVIDIA
CUDA [8]. Many applications have been ported to this
platform to take advantage of its raw performance. The
GPU ray tracing engines became a serious alternative to
CPU-based ones. Several mappings of the ray tracing al-
gorithm to the graphics hardware were proposed [4, 1].
In this paper we compare some of the existing methods
focusing on their performance characteristics with regard
to the object scene distribution. It shows that where one
method works well the other often performs poorly. This
leads to the idea to create a hybrid method that addresses
the drawbacks of both of the existent methods.

There are several promising mappings of the ray tracing
algorithm to the graphics hardware. The packet traversal
method is described in [4]. In this mapping all rays in a

∗xvinkl@mail.muni.cz
†sochor@fi.muni.cz

packet follow the same path during the traversal. To lever-
age the power of the GPU architecture rays are mapped to
threads and packet size is chosen as warp (group of paral-
lel threads) size. This way the threads within the warp can
cooperate in loading the node and triangle data. Also there
is less branching as all the rays, by definition, follow the
same code path. This leads to almost perfect utilization of
the hardware but effective parallelism decreases each time
the threads within the warp want to take different paths.

Another approach named “if-if” traversal can be found
in [1]. In this mapping once again one thread com-
putes one ray but these rays follow their individual paths.
Thus there is no cooperation among the threads. This ap-
proach sacrifices coalesced loads and coherent branching
for higher parallelism. It achieves higher performance than
packet traversal method when rays take different paths fre-
quently e.g. near the leaf nodes. On the other hand its
performance is inferior in places where rays traverse the
acceleration data structure coherently e.g. near the tree
root.

It is not a coincidence that both of the articles mentioned
above use AABB BVH (Axis Aligned Bounding Boxes
Bounding Volume Hierarchy [3, 9]) as an acceleration data
structure. It has been chosen for several reasons. First,
the acceleration data structure should be small as there
is considerably less memory available on the GPU [6].
It should also allow fast reconstruction thus supporting
dynamic scenes. Both of these criteria favour grids and
BVHs. However grids often perform poorly on scenes
with non-uniform object scene distribution making BVH
the acceleration data structure of choice. Detailed descrip-
tion of both of these traversal methods as well as of the
hybrid method constructed from them is given in section 3.

2 Test setup

For the reasons listed above we have chosen AABB BVH
as an acceleration data structure for our ray tracing en-
gine. Hierarchy construction is handled by a third-party
code from Arauna ray tracer [2]. The maximum number
of primitives in a single leaf node is set to 6. The engine
creates the hierarchy just once at the beginning allowing

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

only static geometry to be rendered. However with the
change of the underlined BVH construction algorithm dy-
namic scenes could be rendered as well.

Normal data

Triangle data

BVH data
min max

vertex1 vertex2 vertex3

normal1 normal2 normal3

...

...

...

Figure 1: Memory layout

Each node is a 32-byte wide block (12 bytes min coordi-
nates, 12 bytes max coordinates, 4 bytes number of con-
tained primitives and 4 bytes pointer to the children). The
latter two are integer values promoted to single precision
floating point values for the ease of storing. The left and
right BVH children are stored in continuous 64 bytes and
are always loaded together. All data are stored in 1D float
arrays. There are separate arrays for BVH data, triangle
data and vertices normals as shown in 1. The BVH data
are always fetched through texture while triangle data use
texture only for the packet traversal method. Normal data
are always loaded directly from global memory. This way
the engine achieves maximum performance.

Four popular test scenes were chosen for performance
measurement. Table 1 lists important information about
the models. No hand tuning was applied to the assembly
code produced by the complier.

Scene Triangles Split triangles Nodes
Conference 283k 424k 190k
Fairy 174k 261k 117k
Sibenik 80k 121k 56k
Sponza 76k 114k 52k

Table 1: Triangle counts, triangle counts after split and
number of nodes for the four test scenes. Rendered images
of these scenes are in Figure 2.

3 Methods

To gain maximum ray tracing performance from the GPU
one needs to address several key aspects. First, the regis-
ter count per thread must be kept small enough to allow
sufficient parallelism. Some thread data (e.g. stack, next
node pointer, etc.) must be stored in shared or local mem-
ory instead of registers. Second, the code for data load-
ing, stack handling and traversal decisions should be kept
as simple as possible not to waste instructions. The ker-
nels are completely compute bound (the memory access
latency is completely hidden with computation) and there-

fore any extra instructions lead to noticeable performance
loss.

We have implemented and compared three ray tracing
traversal methods: packet traversal, if-if traversal and hy-
brid traversal. All of these methods share a common pat-
tern and differ only in how the traversal is done. They all
use optimization techniques described in [1]. Namely per-
sistent warps and assigning ray indices based on morton
code are employed. Description of each traversal method
as well as its advantages and disadvantages follows.

3.1 Packet traversal

The basic characteristic of packet traversal is that a group
of rays follows exactly the same path in the BVH tree. This
is achieved by sharing the traversal stack among the rays
in the packet. Each time the rays want to decide which
node to traverse next they have to vote. There are two
options how to do that using current hardware. The first
one is to do reduction in shared memory. The second is
to make use of warp vote functions. These functions eval-
uate a predicate for each thread and then return the same
boolean value (computed from those evaluations) to ev-
ery thread in the warp. Currently vote functions any and

all are supported. While the former method gives a pre-
cise answer to where the majority of threads wants to go
it takes a lot of instructions to compute. The latter method
is only approximate but uses just a few instructions lead-
ing to higher performance. Another advantage of coherent
traversal is that it leads to perfect memory loads. Every
node intersected by the packet is loaded from the global
memory only once (not multiple times for every ray in the
packet) and all loads are coalesced. Also only one (two
for triangle data) memory instruction per thread is issued
to load all of the data for all of the threads. However when
the rays within the packet want to take different paths in
the tree these paths must be serialized using the shared
stack. Parallelism is therefore lost with each such branch-
ing and rays visit (potentially many) nodes which they do
not intersect.

The packet traversal method is the fastest possible method
when the rays want to take nearly the same path, for exam-
ple if the first intersection for all rays within the packet lies
in the same leaf. This is however seldom even for highly
coherent primary rays. To exploit the architecture best the
packet size is chosen as the warp size. Our implementation
of packet traversal kernel uses 25 registers per thread and
about 3kB of shared memory per block. This leads to 50%
occupancy on devices of compute capability 1.2 or higher.
This is more than sufficient as the kernels have high arith-
metic intensity (ratio between arithmetic and memory op-
erations).

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
70

3.2 If-if traversal

In contrast to packet traversal in the if-if traversal method
each ray follows its own path. This is done by keeping
separate stack for each ray. The stack is currently allo-
cated in thread’s local memory as shared memory is too
small. Even though the local memory is as slow as the
global memory, stack loads and stores latencies seem to be
hidden by other threads computation. What actually hurts
the performance is thread serialization during these mem-
ory operations. Different threads often happen to access
different stack indices. In such a case separate memory
instructions must be issued for each stack index follow-
ing the coalescing rules. Another performance loss is due
to branching within a warp - some threads want to inter-
sect nodes while others want to intersect triangles. In this
case both execution paths are serialized as described in [8].
Clearly this increases the number of issued operations and
reduces performance. Another drawback of this method
is the way how loading of both node and triangle data is
handled. Each thread must issue several memory load in-
structions to gain the data it needs.

The final kernel consumes 24 registers per thread and no
shared memory is needed leading to 63% occupancy. In-
terestingly there is little performance loss if one extra reg-
ister is consumed and occupancy drops to 50 %. This
method’s performance is superior to the one of packet
traversal if threads within the warp take different paths
frequently. A perfect example is the tracing of secondary
rays.

3.3 Hybrid traversal

As mentioned above this method is a combination of the
packet and if-if traversal ones. The idea is that packet
traversal performs best near the tree root where rays are
coherent whereas if-if traversal is better suited for travers-
ing nodes near the leaves. It is, however, unclear when and
how to switch between the two of the methods. We can di-
vide the methods into groups based on how the switching
is done.

The straightforward idea is to switch the packet and if-
if traversal each time a certain condition is met. We start
tracing the rays with the packet traversal method and when
the condition is triggered we switch to if-if traversal. Then
after all rays have finished traversing the current path they
load another node from the shared stack and start trac-
ing it again with packet traversal. This continues until the
shared stack is empty. The traversal thus follows the clas-
sical depth-first search scheme but uses different methods
to trace different parts of the tree. This method turns out
to be slow as the next packet traversal phase cannot start
until all of the rays have finished their if-if phase. Thus all
the rays are idle until the longest running one ends and this

happens multiple times. If, however, there were an effec-
tive algorithm for loading work per ray as discussed in [1]
the majority of rays would not be idling and the method
could be interesting.

Another option is to switch between the packet and if-
if traversal only once. This method seems to be more
promising and so we have developed several conditions to
rule the switching. The easiest one and currently achieving
best performance is the one we call “stack-max” traversal
method. In this method packet traversal ends when the
shared stack size is bigger than a predefined threshold. In
this moment if-if traversal starts from the last visited node
and later on visits each of the nodes on the shared stack.
We will discuss the performance characteristics later in
section 4. The register usage for this kernel is 26 regis-
ters per thread and the same amount of shared memory as
for the packet traversal is used. The occupancy is thus at
50 %.

There is also the possibility of counting how many times
rays wanted to take different paths. If this number exceeds
some threshold we make the switch. This method is not
very sophisticated yet it takes quite a lot of extra instruc-
tions leading to poor performance. This is why we will not
mention it in the result section.

The last developed method is the most sophisticated one.
It stops traversing a path with packet traversal if too few
rays want to take that path. If this happens it pushes the
address of the last node on that path to the local stack of
threads which want to take that path. Then it takes an-
other node from the shared stack and the process contin-
ues. This way it traverses all coherent nodes (nodes which
a significant amount of rays want to visit) before switch-
ing to if-if traversal. Such a traversal no longer follows the
classical depth-first search traversal scheme. It resembles
the depth-limited search but the limit is different for each
branch. The if-if traversal then traverses the sub trees de-
fined by nodes saved on the local stack. The main advan-
tage of this method is that it is not dependent on some pre-
defined threshold and should classify coherent/incoherent
parts of the tree well. The drawback of this method is that
computing how many rays want to go to the left and right
children of the current node is expensive. With current
generation of hardware the reduction in shared memory
must be employed to obtain such a number. However, if a
new instruction - returning the number of threads in a warp
satisfying a predicate - is introduced in next generation of
GPUs the method could be the fastest hybrid method. In
the result section this method is denoted as “cut” traversal
method. This method has higher register and shared mem-
ory demands. It consumes 28 registers and about 3.4kB
of shared memory per block. Nonetheless, that is still low
enough to keep the 50% occupancy.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
71

(a) Conference (b) Fairy (c) Sibenik (d) Sponza

Figure 2: Test scenes

4 Results

Images in figure 2 were obtained at output resolution of
1024x1024 using NVIDIA GTX 280. Each FPS count
in table 2 is an average over five different viewpoints.
These viewpoints were chosen randomly so that most of
the scene triangles were visible from them. The timings
include the whole kernel execution (ray generation, traver-
sal, shading, etc.).

As it can be seen in the upper part of table 2 the if-if traver-
sal is the second slowest of all methods for the primary
rays. This is interesting since it is reported to be faster
than packet traversal [1]. The reason for this discrepancy
is unknown to us. Possible candidates are a worse BVH
tree construction algorithm or simply a poor implementa-
tion of the mentioned method. It is important to realize
that poor performance of the if-if traversal reflects also in
performance numbers for the hybrid methods.

The stack-max traversal is slightly faster than the packet
traversal but the speedup is not interesting by itself. The
noteworthy thing is that it has much more balanced perfor-
mance with different types of rays. The method depends
on a constant denoting the maximal number of items in
the shared stack. Its performance slightly varies with the
change of the constant. When rendering the conference
scene the constant for the best performance was mostly so
high that the if-if part of the traversal was skipped. The
important thing to notice here is that even when the stack-
max traversal collapses into the packet traversal it is not
much slower than the specialized kernel. Only one extra
if-statement is evaluated in the main traversal loop. For
the other two scenes a lower choice of the constant leads
to higher performance. The constant value 11 was chosen
for separate measurements because it achieved reasonable
performance in all of the test scenes. This number is, how-
ever, scene specific and cannot be considered a general
guideline. From some special viewpoints the stack-max
achieved noteworthy speedups. This encourages the hy-
pothesis that the tree can be divided into parts of coherent
and incoherent traversal. Though the stack-max is not the

right condition to guide this division.

The cut method is the slowest method for the primary rays.
This is mainly because its performance is limited by the
cost of its traversal decision code. It is cheaper to intersect
one or two nodes than to decide which node to take next.
This makes it a poor choice for current generation of hard-
ware. As discussed above there is potential to change this
state making it interesting to benchmark.

The results for the secondary rays (reflected and refracted
primary rays) are given in the bottom part of table 2. The
important thing about these numbers is that the measure-
ment corresponds to tracing twice as many rays than for
the primary rays. The if-if traversal method is the fastest
for the incoherent secondary rays as predicted. Interest-
ingly the other methods are not lacking far behind.

The stack-max traversal method performs quite well on the
secondary rays. However, as discussed above it needs the
right constant for the switch criterion to be fast. Here con-
stant value 7 turned out to give reasonable performance.
As one might expect this number is lower than for the pri-
mary rays because the rays tend to take different paths of-
ten. Thus the number of rays within the warp that want
to take the same path drops rapidly with increasing depth.
Unfortunately no choice of the constant for the stack-max
method forces a collapse into the if-if traversal method.
The packet part of the traversal always takes place. This
explains why the method cannot achieve performance as
good as the one of the if-if traversal method for the Sibenik
and Sponza scenes. As discussed above the stack-max
traversal method is more versatile with regard to object
scene distribution. This can be observed from the speed-
ups against packet traversal for the secondary rays.

The packet traversal method is a poor choice for the inco-
herent secondary rays. The rays traverse a great amount of
nodes they do not intersect and have to finish paths that the
majority of the rays want to take before taking their own
path. This is why it is almost as slow as the cut method.

The results for the cut method show some promise. It is
still the slowest of all the compared methods but the dif-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
72

ference is not as abysmal as for the primary rays. This is
a sign that the reduction of the amount of needlessly tra-
versed nodes (due to better traversal criteria) outweigh the
criteria cost.

5 Conclusions

The hybrid traversal methods presented in this paper are
comparative to the fastest known traversal methods. They
are able to benefit from coherent traversal of rays while
they sustain good performance in incoherent setting as
well. This is achieved by utilizing most of the GPU re-
sources. Advantageously optimizations presented in other
papers can be used with this traversal method as well.

The performance of the hybrid methods is strongly influ-
enced by the employed switching criterion. The proposed
criteria use heuristics to divide the acceleration data struc-
ture into coherent and incoherent parts. Better heuristics
may be found in the future. They should be fast, consume
as little resources as possible and precise in classification
of coherent/incoherent nodes. With the progress in graph-
ics hardware some known criteria may become more effi-
cient.

6 Acknowledgments

Jacco Bikker (http://igad.nhtv.nl/∼bikker/) for the Arauna
engine. Marko Dabrovic (www.rna.hr) for the Sibenik
cathedral model. University of Utah for the Fairy scene.
This work was supported by Ministry of Education of
The Czech Republic, Contract No. LC06008 and by
The Grant Agency of The Czech Republic, Contract No.
P202/10/1435.

References

[1] Timo Aila and Samuli Laine. Understanding the effi-
ciency of ray traversal on gpus. In HPG ’09: Proceed-
ings of the Conference on High Performance Graph-
ics 2009, pages 145–149, New York, NY, USA, 2009.
ACM.

[2] Jacco Bikker. Real-time ray tracing through the eyes
of a game developer. In RT ’07: Proceedings of the
2007 IEEE Symposium on Interactive Ray Tracing,
pages 1–10, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[3] Andrew S. Glassner, editor. An introduction to ray
tracing. Academic Press Ltd., London, UK, UK,
1989.

[4] Johannes Günther, Stefan Popov, Hans-Peter Seidel,
and Philipp Slusallek. Realtime ray tracing on gpu
with bvh-based packet traversal. In RT ’07: Pro-
ceedings of the 2007 IEEE Symposium on Interactive
Ray Tracing, pages 113–118, Washington, DC, USA,
2007. IEEE Computer Society.

[5] Mark Harris. Many-core gpu computing with nvidia
cuda. In ICS ’08: Proceedings of the 22nd annual in-
ternational conference on Supercomputing, pages 1–
1, New York, NY, USA, 2008. ACM.

[6] Christian Lauterbach, Michael Garland, Shubhabrata
Sengupta, David Luebke, and Manocha Dinesh. Fast
bvh construction on gpus. In Computer Graphics Fo-
rum Volume 28, Issue 2, pages 375–384. The Euro-
graphics Association and Blackwell Publishing Ltd.,
2009.

[7] Erik Lindholm, John Nickolls, Stuart Oberman, and
John Montrym. Nvidia tesla: A unified graphics and
computing architecture. IEEE Micro, 28:39–55, 2008.

[8] NVIDIA. NVIDIA CUDA Programming Guide Ver-
sion 2.3., 2009.

[9] Stefan Popov, Iliyan Georgiev, Rossen Dimov, and
Philipp Slusallek. Object partitioning considered
harmful: space subdivision for bvhs. In HPG ’09:
Proceedings of the Conference on High Performance
Graphics 2009, pages 15–22, New York, NY, USA,
2009. ACM.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
73

Primary rays
Method Conference Speed-up Fairy Speed-up Sibenik Speed-up Sponza Speed-up
packet 68.12 0% 60.44 0% 49.48 0% 47.46 0%
if-if 54.80 -19.55% 54.54 -9.76% 49.48 0% 47.80 +0.72%
stack-max(11) 67.44 -1.00% 60.64 +0.33% 49.93 +0.91% 47.40 -0.13%
stack-max(best) 67.92 -0.29% 61.20 +1.26% 49.94 +0.93% 47.56 +0.21%
cut 61.98 -9.01% 53.04 -12.24% 44.96 -9.14% 42.28 -10.91%

Secondary rays
packet 21.22 0% 18.84 0% 14.94 0% 15.26 0%
if-if 21.80 +2.73% 19.50 +3.50% 16.80 +12.45% 19.18 +25.69%
stack-max(7) 21.72 +2.36% 19.98 +6.05% 15.40 +3.08% 16.26 +6.55%
stack-max(best) 21.78 +2.64% 20.04 +6.37% 15.80 +5.76% 17.32 +13.50%
cut 21.66 +2.07% 18.30 -2.87% 13.82 -7.50% 15.00 -1.70%

Table 2: FPS counts from four static scenes averaged over five viewpoints each. Text in parentheses denotes the constant
used for that method. The speed-up against packet traversal method is given for each test scene.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
74

Eye Tracking in Virtual Environments:
The Study of Possibilities and the Implementation

of Gaze-point Dependent Depth of Field

Bartosz Bazyluk∗

Supervised by: Anna Tomaszewska

Computer Graphics Group
West Pomeranian University of Technology, Szczecin

Abstract

In this paper we present the application of an eye tracker as
an innovative real-time virtual environment interaction de-
vice, that enables a new level of control, and forms a base
for many realistic sight-dependent visual effects. Current
use and main stream of research regarding eye tracking
technology aims at marketing and usability testing, as well
as help for people who suffer from manual disabilities.
The goal of our work is to spread interest in other uses
of this advanced and impressive technology. Apart from
the discussion about possible uses of eye tracking in the
computer-generated worlds, we provide a complete case
study of a depth of field post processing effect for real-
time graphics, that relates on the user’s gaze point.

Keywords: eye tracking, gaze point, depth of field, focus,
virtual environment control, real-time visual effects.

1 Introduction

In the past few years a constant search for still more at-
tractive and more innovative controllers used in human
to virtual environment interaction can be observed. Ex-
amples of this trend that gained commercial success are
the famous Nintendo Wii Remote, the multiple-input sensi-
tive touch screens offered by Apple in its portable devices
and by Microsoft in its Surface and PlayStation Eye from
Sony. Each of these tries to take advantage of previously
unused aspects of user’s natural activity, improving his ex-
perience, and absorbing in an absolutely new and often
much more engaging way [6].

Our goal is to encourage the discussion about interac-
tion with artificial, computer-generated world that involves
the use of an eye-tracker: a device that unleashes great
possibilities that reside in the human visual system by con-
stantly observing the user’s eyes, and interpreting their
movement to provide accurate information on the person’s
behaviour at a real time basis. The idea of such applica-
tion of an eye tracker has emerged together with the recent

∗bartosz@bazyluk.net

Figure 1: A virtual environment with depth of field depen-
dent on user’s gaze point.

advancement in eye tracking technology, which made it
much easier to use and much more comfortable to utilise
(see Section 2).

The first and most basic ideas regarding the use of eye
tracking in video games, relied mainly on shifting the con-
trol of well-known features from other input devices to
the eye tracker. These concepts include gaze-based virtual
camera rotation and weapon aiming [10, 13]. Such appli-
cations however force the player to unnatural behaviour,
requiring him to be constantly aware of where he looks and
disallowing him to perform actions as simple as scanning
the game status display, without invoking unwanted cam-
era movement. The poor reception of these innovations
is clearly shown in [13]. The other approach is driven by
the idea of eye tracking as a technology broad in its ca-
pabilities to such an extent, that it should not just replace
any of the well-known functionality. It rather should ex-
pand it, or open the door to a brand new, wide range of
possibilities for enhancing the user’s experience and creat-
ing previously impossible effects that simulate the natural
world. Identifying ourselves with the latter belief, we took
up the challenge of improving the well known depth of
field effect, using an eye tracker.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Intending to present one of the common post-processing
visual effects, we have built a demo application including
the artificial depth of field phenomenon dependent on the
user’s gaze point (see Figure 1). It allowed us to test our
assumptions. The development process led us to the prob-
lem of universal method for accessing data across differ-
ent commercially available eye tracking platforms, which
we have addressed by creating an interface library. It is
meant to solve incompatibility issues and faciliate devel-
oping visual effects concerning user’s eyes behaviour, by
providing ready to use values rather than those uprocessed,
supplied by the device itself.

Our paper starts with a brief explanation of eye tracking
technology and the way that eye trackers work. It is fol-
lowed by the description of data that such devices provide
and the visual effect, that we will try to enhance later on.
We then provide a short survey of possible applications of
eye tracking in virtual environments, and head towards the
depth of field effect dependent on user’s gaze point, the
algorithm that we have chosen and finally the implemen-
tation.

2 Background

The eye tracking in its original meaning is a technique of
gathering and providing the researcher with accurate real-
time data concerning movement of subject’s eyes and the
point-of-regard, a point that can be simply described as
the one that the person is looking at [14]. This valuable in-
formation was acquired in numerous ways within the past
decades. Inaccuracy, constant researcher’s assistance and
often distracting invasiveness [3] limited the involvement
of eye tracking only to scientific research, mainly in the
fields of psychology and human reactions. The modern
approach, however, lacks the former method’s drawbacks
and therefore may be successfully used in disciplines that
require user’s attention unaffected by any disrupting activ-
ities or those, where the user’s immersion plays the main
role – such as video gaming and exploring virtual environ-
ments.

Present day devices in vast majority apply the video-
based combined pupil/corneal reflection method. The eye,
or more commonly both subject’s eyes, are exposed to di-
rect, invisible infra-red light, what results in the appear-
ance of so called Purkinje image, a reflection in the cornea,
which is accompanied by illumination of the one’s pupil
(see Figure 2). Captured by a video camera sensitive to
the infra-red spectrum, the relative movement of both the
pupil and corneal reflection is measured, which allows to
estimate accurately the gaze angle (commercial eye track-
ers achieve the accuracy of less than 0.5 degree [15, 17]).
After having the device calibrated, which most often re-
quires the subject to follow with his eyes several displayed
points, it is possible to calculate the estimated screen-
space gaze point coordinates on the fly [3].

Bright pupil Corneal reflection

(a) (b) (c)

Figure 2: The pupil and corneal reflections as seen by an
infra-red camera. Gaze point below the camera (a), in the
centre (b) and down and to the right from the camera (c)
[14].

2.1 Data provided by an eye tracker

Apart from what seems to be the most interesting, that is
position in screen-space coordinates of subject’s point-of-
regard, eye trackers provide much more useful informa-
tion that is worth bringing to attention. While calculat-
ing the gaze point, an eye tracker utilises many variables
acquired from observation of person’s eyes actions, that
may be employed into calculating visual and behavioural
effects. Tracking the movement of both eyes and their
Purkinje-image-to-pupil relation, may lead to creation of
a head tracking algorithm, and in consequence, the abil-
ity to implement extensive number of ways to control the
player’s avatar in a virtual environment. Also the diame-
ter of subject’s pupil, eye’s distance from the device, and
the camera image may be retrieved [15] depending on the
actual device’s capabilities.

What is offered by the device’s API is not yet everything
what may be acquired from an eye tracker. These basic
data in connection with the time factor pose a great back-
ground to the calculation of more complex, derived val-
ues. Beside the most obvious and often necessary fixation
times, we propose the introduction of a user’s concentra-
tion factor concerning an amplitude of his eye movements
in certain periods of time. The use of such a variable could
involve for example the player’s weapon’s accuracy.

2.2 Depth of field in real-time graphics

Rendering a scene using artificial methods differs from
capturing the real-world scene with a lens equipped cam-
era in the lack of apparatus’ physical dimensions. When
using an actual device, the rays cast on the sensor are sub-
ject to refractions produced by physical properties of the
lens. They appear in a photography as the phenomena
named circles of confusion (CoCs), with diameter varying
according to the sensor-lens and lens-object distance. As
they blend together, the image appears blurred where the

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
76

objects are closer to the camera than it is focused, or when
they are too far away. In the case of computer rendering,
the image is created with an idealised, pinhole camera con-
taining a virtual lens of zero size. Because of that the rays
always cross at a single point, regardless of the distance.
To achieve the effect of depth of field, special computation
is needed [2].

Depth of field may be called a visual artefact as it
limits the acuity of the scene. However, while talking
about simulating such visual phenomena by the means
of computer graphics, it is important to bring into focus
the purpose of that effort. Indisputably the most com-
monly pursuited branch in artificial generation of images
is their realism and effective real-world resemblance. This
goal can be divided into three concepts: physical real-
ism, functional realism and photorealism [7]. The latter
touches the aspect of viewer being unable to distinguish
the computer-rendered image from a photography, what
must be achieved not only by accurately recreating the
physically-correct light behaviour in the scene, but also
by taking into account the limitations of the optics in de-
vices used for image acquisition. Those renderings, which
present results impossible to reproduce using conventional
photographic techniques, will not fulfil that requirement.

The depth of field rendering is possible using many
methods. The one that most closely follows the real-
world phenomenon, apart from modelling the light rays
behaviour, is an accumulation buffer technique. It involves
rendering the whole scene many times to produce one
frame, while moving the camera slightly to simulate the
acquisition with a device possessing physical dimensions.
Despite accurate results, this technique is highly ineffec-
tive for real-time graphics due to unacceptable computa-
tional overload. There are alternatives that contain sim-
plifications, such as per object multi-layer rendering, or
the most common, depth-buffer based methods. The lat-
ter owe their popularity to the easiness of obtaining the
point’s distance to camera, using values existent in the z-
buffer. They can be divided into several groups regarding
the way of using that information: from forward-mapped
scattering methods that are hard to compute parallelly us-
ing modern programmable graphics hardware [2], through
reverse-mapped gathering methods [5], up to innovative
approaches using heat distribution simulation [1].

3 Depth of field with an eye tracker

Having the access to filtered screen-space coordinates of
user’s point-of-regard, we are able to use the same conven-
tional methods for obtaining the knowledge of place, ob-
ject, location that the user is actually focused on, as when
analysing the mouse pointer coordinates. We present sev-
eral ideas of utilising these valuable data.

• The ability of calculating the luminosity of an im-
age fragment corresponding to the gaze point and its

vicinity, together with high dynamic range rendering
allows to alter the scene’s exposition level dynami-
cally, which may result in much more realistic tone
mapping and accurate blooming, as well as true sim-
ulation of human eye’s sensory adaptation to varying
lighting conditions [11].

• Recording the recent user’s scan path can be used to
create dynamic, artificial after-images, emphasising
the brightness of scene’s elements.

• Altering the viewing frustum depending on the user’s
head position relative to the display screen, e.g. by
slightly expanding the field of view when the inter-
mediate distance decreases, creating the impression
of looking through the window rather than watching
a projected image.

• Also the simulation of vestibo-ocular reflex con-
nected with camera swinging during player’s move-
ment may also be a subtle yet heavily immersive ad-
dition [9].

These examples of visual effects altering upon gaze
shift bring the resulting scene closer to the state of what
can be called interactive photorealism.

Worth mentioning is also a completely different appli-
cation of eye tracking in complex scene rendering, tak-
ing into account the inacuity of human peripheral vision
in favour of that involving the foveal disk region of retina.
Human is in fact able to cover only 1-5 degrees of visual
angle with clear, foveal vision, what may be visualised as
only 3% of a 21” monitor screen viewed from the distance
of 60 cm [3]. What is a human visual system’s disadvan-
tage, may be converted into an advantage in the terms of
real-time computer graphics, by progressive reduction of
rendering quality with the distance from user’s gaze point
to gain improvement in performance. The quality reduc-
tion is possible either in the domain of resolution, dis-
played scene’s geometrical complexity [4], or precision of
post-processing effects. This implementation of eye track-
ing is called the gaze-contingent display method.

In this paper, however, we wanted to present a relatively
simple, yet spectacular effect of an artificial depth of field,
which varies with the distance from camera of a virtual
point that the user is looking at. Our choice emerged ac-
cording to the fact, that besides improving the impression
of scene’s depth, an independent of user’s eyes behaviour
depth of field is often found distracting [8] as it blurs the
screen areas that may catch the user’s interest. The useful-
ness of knowledge about the user’s gaze point in this field
seems to be obvious.

The experiments with interactive, controlled by an eye
tracker depth of field effect described in [9] involved the
simple reverse-mapped z-buffer method, together with mi-
nor artefact correction and a technique of autofocusing,
that helped translating the gaze point coordinates provided

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
77

by an eye tracker into actual focus distance. It though suf-
fered from a drawback typical to classic depth-buffer ap-
proaches that calculate the blurriness with circle of con-
fusion modelling. They are subject to heavily disturbing
depth discontinuity problem, when an out-of-focus object
occludes the in-focus background. It results in the blurred
object’s silhouette being clearly visible as a hard edge,
which is highly unacceptable [2] (see Figure 4a).

This brought up our deliberations according to the per-
ception of gaze-point dependent depth of field. It is worth
noticing, that such way of control results in fully-blurred
areas rarely being visible to the user, as they will instantly
become clear when gaze is shifted upon them. It is then
more important than when creating a non-gaze contingent
depth of field effect, to take care of visual artefacts oc-
curring near the objects’ edges, as it is where the results
of the depth of field will be observed most often. Such
artefacts include both depth discontinuity problem and in-
tensity leaking. These observations led us to the search for
our own algorithm modification.

3.1 Enhancement of the basic approach

Our approach is an extension to the basic reverse-mapped
z-buffer technique with the gathering blurring method
based on Poisson disk samples, and involves implementing
the extrapolation of CoC values for objects closer to the
camera than the focus plane. Similarly as in many other
methods, we base on a thin-lens camera model and derive
from it the circle of confusion diameter equation [5]:

CoC = a ·
∣∣ f
d0− f

∣∣ ·
∣∣1− d0

dp

∣∣ (1)

Where a is the aperture, f is the focal length of the lens,
d0 is the focus distance and dp is the source point’s dis-
tance to camera. The aperture and focal length need to be
selected empirically, as their values should suit the scene’s
dimensions, the camera’s angle of view and the desired in-
tensity of resulting effect. The focal length can be set to
increase in very short focus distances, to extend the depth
of field for extremely small distance values while main-
taining the effect’s visibility in longer distances.

To address the depth discontinuity problem described
in the previous section, we have surveyed existing solu-
tions. The most basic and popular at the same time [2],
involves blurring the CoC values represented as a texture,
which makes the object edges semi-transparent, as they are
mixed with background in the proportion of 50% to 50%
(because of blurred CoC’s gradual distribution; see Figure
3b). We however decided to follow [5] to calculate extrap-
olated CoC value, using both original CoCo and blurred
CoCb textures, with the formula:

CoC = 2 ·max(CoCo,CoCb)−CoCo (2)

In effect, we blur the occluding object outside its sil-
houette, which results in nice, soft edges. The downside is

(a) (b) (c)

Figure 3: Extrapolation of CoC values using original (a)
and blurred (b) CoC texture comparison to produce the re-
sult (c) CoC texture. Centre line is the object’s silhouette,
and darker pixels represent the area with higher CoC ra-
dius.

the fact of background as well being blurred in the occlud-
ing object’s vicinity (see Figure 4c). This problem may be
addressed with multi-layer rendering or per-pixel layers
[12], but it would involve multiple scene rendering what
we tried to avoid, as this common problem seems to be far
less intrusive than the former hard edges.

Intending to test our implementation with a modern, ac-
curate eye tracker, we have decided to rely on the gaze
point data processed in the same way, as for other uses.
We have intentionally abandoned creating an algorithm for
autofocusing that was proposed in [9], in favour of averag-
ing performed in the interface library.

4 Implementation

The development of an application that uses the data pro-
vided by an eye tracker can be divided into two separate
layers: one, that governs the computer-device communi-
cation, and the other which is responsible for the data util-
isation itself.

4.1 Communication interface

Bearing in mind the diversity of programming interfaces
across the available commercial eye-tracking platforms,
it is necessary to introduce a solution which will pro-
vide standardised output usable in end applications. Our
proposition is a universal library, utilising the concept of
adaptor-based architecture (see Figure 5). Offering the
ease of extending compatibility to new devices, exposing
both primitive and derived data in a uniform, platform-
independent manner, as well as offering device capability
tests, the library may become a major step in popularising
the idea of adopting eye-tracking into the field of virtual
reality and gaming. At the time this article is being pub-
lished, the adaptor for SensoMotoric Instruments (SMI)
API is under development, and two adaptors useful for ap-
plication development and debugging are completed: first
simulating the eye tracker with a mouse, and second that
provides an artificial gaze path at random or constant ba-
sis. The latter two were used in the development process
of our demo. Further tests and research will involve the
SMI RED250 eye tracker. The library is due to be released
publicly when completed.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
78

(a)

(b)

(c)

Figure 4: The depth discontinuity problem (a) and the so-
lution (b) with its downside (c).

Debug
adaptors

. . .

Ap
pl

ic
at

io
n

Library

C
or

e
/ G

at
ew

ay Data storage

Capability
information

Data processor
and provider

Adaptors

CalibrationEy
e

tr
ac

ki
ng

 p
la

tfo
rm

s

Figure 5: The proposed library architecture.

4.2 Demo application

To test the method, we have prepared a first person
perspective demonstration program written in C# lan-
guage, using the most recent OpenGL 3.2 together with
GLSL 1.50 in its core profile, and utilising the .Net based
OpenTK 1.0 beta-2 library. The existing scene is intended
to be a testbed for future studies regarding eye tracking
applications in both visual effects and interactivity areas.
It depicts a fantasy-world interior of a magician’s house,
which may be easily suited to demonstrate new techniques.

The eye tracker communication layer, utilising its own
thread, is the library mentioned in Section 4.1. During
each frame generation period, it is queried for both raw
and filtered screen-space coordinates of the user’s current
gaze point. Despite the fact that only the filtered values
are necessary for the depth-of-field calculation algorithm,
both of them are used for drawing optional on-screen feed-
back.

The original scene is rendered to a buffer, using the
Frame Buffer Object with two textures attached: one for
colour output, and the other for depth values storage. Then
the camera distance from the point equal to filtered gaze-
point coordinates is acquired, and assumed to be the focus
distance. In the next pass, CoC values are calculated with
Equation 1 from the depth values in regard to the focus dis-
tance, and they are stored in a texture: the nearer-than and
farther-than the focus plane values separately. The ,,near”
CoC texture is downsampled to 1/8th of its size in each
dimension, in order to obtain the blurred CoC values used
for final computation. In the last pass, blur is applied to
the colour texture from the first pass, according to the CoC
value. To obtain the final CoC value which determines the
actual blurring radius, the ,,near” CoC value is calculated
using Equation 2 and then compared with the correspond-
ing value from the ,,far” texture. The higher value is used.
Finally, the image is rendered on the screen (for the com-
plete diagram see Figure 6).

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
79

Render the scene
to a buffer

Colour
texture

Depth
texture

Calculate CoC

„Far”
CoC values

Downsample CoC

Combine CoC values,
blur according to CoC
and render to screen

Gaze point
coordinates

Focus
distance

Blurred „near”
CoC values

„Near”
CoC values

G
ra

ph
ic

s
ca

rd

Get the depth value
and transform
to world-space

Aperture

Focal length

Figure 6: The depth of field rendering algorithm.

5 Results

Developing the demo application enabled us to test our
assumptions in practice. The introduction of a consistent
interface library led to the possibility of concentrating on
the utilisation of provided data itself, rather than process-
ing them. Separating the eye tracker communication from
our presentation layer thread resulted in achieving the inte-
gration without any noticeable decrease in computing and
rendering performance.

The depth of field algorithm that we have chosen to
implement delivered convincing simulation of this pho-
tographic phenomenon, and offered an improved look of
out-of-focus objects occluding the in-focus surface than in
the method used in [9]. The implementation did not re-
quire us to introduce any changes into the scene rendering
process.

The overall outcome brought a new level of interactiv-
ity to the artificially generated scene, which proved the
very positive results of other studies on using eye track-
ing in virtual environments [9]. The screens taken from
our demonstrative application may be seen in Figure 7.

6 Conclusions and future work

With our work on the demonstration we have proved that
modern commercial eye trackers may be successfully used
to provide data necessary for rendering advanced, gaze-

Figure 7: Example screens from our demo, containing on-
screen feedback. Green crosshair represents the filtered,
while red cross is the raw gaze point.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
80

aware visual effects in real time. The depth of field algo-
rithm we have used may be improved by addressing the
visual artefacts it still produces, like intensity leaking or
background blurring in the out-of-focus object’s vicinity.
However, our approach already emerged to deliver satis-
factionary and realistic results.

Our future efforts will be aimed at experimenting with
other types of visual effects as well, together with eye-
based environment controlling and gaze-contingent ren-
dering performance optimisation. Our demo is planned
to include a multi-display feature, that will allow observa-
tion of actions performed by the user in real time, display-
ing visible overlays providing statistical data regarding his
eyes’ current and recent behaviour, without distracting the
subject. The ability to save such data for future interpreta-
tion is also projected.

Being aware that eye tracking is consequently gaining
interest in the entertainment and portable computers sec-
tor, it seems correct to assume that during the few upcom-
ing years we should encounter the introduction of such
devices to the consumer market. The rumours of Apple
trying to implement an eye tracker in the recently un-
veiled iPad resulted in discussions about the idea of an
eye-controlled operating system, and brought into light
the patent for gaze vector navigation that the company has
been pending [16]. This makes the search for possible eye
tracking use in popular, consumer applications very up-to-
date and encourages studies in this yet largely unexplored
field.

Acknowledgments

We would like to thank Karolina Lubiszewska for her work
on 3D models which we have used in our demo.

References

[1] Marcelo Bertalmio, Pere Fort, and Daniel Sánchez-
Crespo. Real-time, accurate depth of field us-
ing anisotropic diffusion and programmable graph-
ics cards. In 3D Data Processing, Visualization, and
Transmission, 2nd International Symposium, pages
767–773, Washington, 2004. IEEE.

[2] Joe Demers. Depth of field: A survey of techniques.
In Randima Fernando, editor, GPU Gems. NVIDIA
Corporation, 2004.

[3] Andrew T. Duchowski. Eye Tracking Methodology:
Theory and Practice 2nd Edition. Springer, London,
2007.

[4] Andrew T. Duchowski, Nathan Cournia, and Hunter
Murphy. Gaze-contingent displays: Review and cur-
rent trends. In Adaptive Displays Conference, 2004,
Los Angeles, 2004.

[5] Jr. Earl Hammon. Practical post-process depth of
field. In Hubert Nguyen, editor, GPU Gems 3.
NVIDIA Corporation, 2008.

[6] Ross Eldridge and Heiko Rudolph. Stereo vision for
unrestricted human-computer interaction. In Asim
Bhatti, editor, Stereo Vision. InTech, Vienna, 2008.

[7] James A. Ferwerda. Three varieties of realism in
computer graphics. In SPIE Human Vision and Elec-
tronic Imaging 2003, Bellingham, 2003. SPIE.

[8] Sebastien Hillaire, Anatole Lecuyer, Remi Cozot,
and Gery Casiez. Depth-of-field blur effects for first-
person navigation in virtual environments. In IEEE
Computer Graphics and Applications, pages 47–55.
IEEE, Los Alamitos, 2008.

[9] Sebastien Hillaire, Anatole Lecuyer, Remi Cozot,
and Gery Casiez. Using an eye-tracking system to
improve camera motions and depth-of-field blur ef-
fects in virtual environments. In IEEE Virtual Reality
Conference 2008, pages 47–51. IEEE, 2008.

[10] Erika Jönsson. If looks could kill – an evaluation
of eye tracking in computer games. Master’s thesis,
Royal Institute of Technology, Stockholm, 2005.

[11] Grzegorz Krawczyk, Karol Myszkowski, and Hans-
Peter Seidel. Perceptual effects in real-time tone
mapping. In Spring Conference on Computer Graph-
ics, 2005, 2005.

[12] Sungkil Lee, Gerard Jounghyun Kim, and Seung-
moon Choi. Real-time depth-of-field rendering us-
ing point splatting on per-pixel layers. In Computer
Graphics Forum, Vol. 27 Issue 7:1955–1962, 2008.

[13] J. Leyba and J. Malcolm. Eye tracking as an aiming
device in a computer game. Technical report, Clem-
son University, Clemson.

[14] Alex Poole and Linden J. Ball. Eye tracking in
human-computer interaction and usability research:
Current status and future prospects. In C. Ghaoui, ed-
itor, Encyclopedia of Human-Computer Interaction.
Idea Group, Inc., Pennsylvania, 2005.

[15] SensoMotoric Instruments GmbH. RED250 Techni-
cal Specification, 2009.

[16] Chris Stevens. Is Apple about to open
a can of eye-tracking?, January 2010.
http://recombu.com/news/a M11321.html.

[17] Tobii Technology AB. Tobii T/X series Eye Trackers.
Product Description, 2.0 edition, 2009.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
81

82

Real-Time Global Illumination in Point Clouds

Reinhold Preiner∗

Supervised by: Michael Wimmer†

Institute of Computer Graphics And Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

In this paper we present a real-time global illumination
approach for illuminating scenes containing huge point
clouds. Our GI approach is based upon the distribution of
Virtual Point Lights (VPLs) in the scene, which are then
used for the indirect illumination of the scene geometry,
using Imperfect Shadow Maps for visibility calculation of
the VPLs. We are able to render multiple indirect light
bounces at real-time rates, where each light bounce han-
dles the transport of both the diffuse and the specular frac-
tion of the reflected light.

Keywords: Global Illumination, Point Clouds, ISM, Im-
perfect Shadow Maps, VPL, Virtual Point Light

1 Introduction

Point clouds are a convenient type of geometry representa-
tion when huge amounts of geometrical data are to be dis-
played quickly, or when geometrical data is given in this
way (e.g. gathered from a 3D scanning device) and has to
be displayed immediately and without a time-consuming
triangulation preprocessing step. The Scanopy applica-
tion1 developed at the Vienna University Of Technology
and at Imagination2 in Vienna is able to show huge point
clouds in real-time and was originally developed to display
scanned objects.

There are various approaches for global illumination
(GI) in scenes containing conventional mesh geometry.
Virtual Point Lights (VPLs) were introduced by Keller in
1997 [4] for indirect illumination, and Ritschel et al [7]
proposed Imperfect Shadow Maps (ISMs) as an efficient
way for visibility calculation even for a high number of
VPLs. The methods and algorithms in our approach base
on the thesis of Knecht [6], who implemented GI using
VPLs for indirect illumination and ISMs for visibility.3

In order to render the ISMs, a number of sample points
covering the scene’s surfaces, are taken from the meshes,
and then are splatted onto the maps. Since we already deal

∗reinholdpreiner@gmx.at
†wimmer@cg.tuwien.ac.at
1www.cg.tuwien.ac.at/research/projects/Scanopy
2www.imagination.at
3Note: Knecht also applies temporal coherency, which we do not.

Figure 1: Point cloud scene containing over 5 million
points rendered with our global illumination algorithm

with point clouds describing our geometry, it is an obvi-
ous step to take advantage of this fact by applying this GI
method on point clouds.

Contribution. In this paper, we present our GI-
algorithm on point clouds and introduce our approach in
illumination computation over several light bounces. Our
approach combines the advantages of fast point render-
ing and efficient ISM rendering for visibility in GI. Fur-
ther, we advance the illumination method implemented by
Knecht by increasing the number of VPLs available for in-
direct illumination in multiple bounces by simultaneously
incorporating one direct- and one indirect bounce with one
VPL.

In Section 2 we give a short overview of related work
and the background in point rendering, Virtual Point
Lights and Imperfect Shadow Maps. In Section 3 and 4,
we introduce our approach and describe our algorithm in
detail, showing how the implementation of Knecht [6] was
advanced in our approach in order to implement real-time
GI for point clouds. Finally, in Sections 5 and 6, we
present the results of our work and subsequently discuss
its restrictions and future work to be done.

2 Related Work

Considering a correct simulation of global illumination in
a scene, the rendering equation, first introduced by Kajiya
[3] in 1986, represents an ideal and complete description
of the illumination process.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Lo(p,ωo) = Le(p,ωo)+
∫

Ω
ρ(p,ωi,ωo)Li(p,ωi)cosθdωi

(1)

Equation 1 shows a common notation of the rendering
equation. The energy radiating from a point p to a direc-
tion ωo equals the sum of energy emitted from p in that di-
rection (represented by emittance-term Le(p,ωo)), and the
energy from all light from the whole hemisphere above
p that is reflected in direction ωo. The latter is given by
the BRDF ρ(p,ωi,ωo), and the integrand of the incoming
light direction Li(p,ωi) incorporates all light incident from
the hemisphere Ω over p.4 θ is the angle between inci-
dent light direction and the surface normal at p, and cosθ
represents a geometry factor that influences the amount of
reflected light based on the incident light direction.

Several offline techniques exist, that simulate light prop-
agation as described by the rendering equation, but, since
too time-consuming, are inapplicable for real-time render-
ing. Real-time Global Illumination is a challenging task
and with current hardware can often only be achieved by
introducing speed-gaining approximations that result in
acceptable images.

Keller introduced Virtual Point Lights (VPLs) in his
Instant Radiosity approach in 1997 [4]. Those VPLs
are seeded over the scene geometry and act as ”virtual”
light sources for the overall illumination computation of a
screen pixel. They represent a sampled subset of all points
contributing incident energy on a given point p in the ren-
dering equation. The main issue with the use of many
VPLs is the visibility information for all possible outgo-
ing light directions of each single VPL.

In 2008, Ritschel et al [7] proposed so called Imperfect
Shadow Maps (ISMs) as a method for efficiently comput-
ing indirect illumination. The main idea behind ISMs is,
that it is sufficient to create fast and inaccurate (imperfect)
shadow maps, if used for a large number of Virtual Point
Lights. With growing number of VPLs used for indirect
illumination, visible errors or artifacts from the shadow
maps’ imperfectness get more and more obliterated.

We apply global illumination on point clouds, imple-
mented in a renderer that is able to render enormous point
clouds at interactive frame-rates. The technique bases on
Wimmer and Scheiblauer’s Instant Points approach [8], in-
troduced in 2006. They use a new out-of-core algorithm
that uses nested octrees for efficiently building a hierar-
chy on the point set, significantly reducing the memory-
overhead for the data-structure. Figure 2 shows a 3d-
scanned point cloud scene rendered in the Scanopy appli-
cation.

4Note: When rendering translucent objects, we have to extend to
BSDFs and integrate over the whole sphere around p

Figure 2: Point cloud scene of St. Stephan’s Cathedral in
Vienna, rendering over 20 million points (over 420 mil-
lion points in model) with the Instant Points approach in
Scanopy (no illumination computation).

3 Overview

Our scene is represented by a point cloud and illuminated
by a spot-lightsource. Illumination of the scene geome-
try mainly consists of two parts: direct and indirect illu-
mination. The direct illumination part is straightforward:
The geometry within the spotlight-cone is shaded, and
shadow-mapping is performed. Indirect illumination is the
more sophisticated part. The term indirect illumination
describes all illumination from light rays, which do not
come directly from the light source, but rather come from
some surface point where the ray was reflected (bounced).
Of course, light rays in real world can be bounced several
times until their energy is totally absorbed by the reflect-
ing surfaces. Therefore, a good GI implementation also
includes multiple light bounces (while maintaining an ac-
cordant high frame rate).

To perform indirect illumination, the bulk of light rays
from the light source that are reflected at different sur-
face points and from there are illuminating other parts of
a scene, is approximated by a number of Virtual Point
Lights (VPLs). Those VPLs are seeded over the directly
illuminated area in the scene, and from there on each one
acts as a point light illuminating the geometry within the
whole hemisphere over that point. In an own render pass,
those parts of the scene which are visible to the camera are
shaded with respect to the previously seeded VPLs. This
shading is performed in image space. We use a Camera G-
Buffer which stores necessary data of the scene per pixel
- i.e. only for those points of the scene which are visible
to the camera - and each consecutive shading is performed
per pixel on this G-Buffer.

When rendering multiple light bounces, those steps are
repeated, i.e. first the VPLs have to be redistributed (orig-
inating from the current VPL positions), and then the
G-Buffer is again shaded from the new VPL positions,
accumulating illumination in the G-Buffer over several
bounces.

In order to improve speed, we perform interleaved shad-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
84

ing on the accumulation buffer, as proposed by [5]. Only
a interleaved subset of pixels is shaded per VPL, resulting
in fewer computations, at costs of reduced quality. After
all indirect illumination computations - probably iterative
over multiple light bounces - are finished, the interleaved
accumulation buffer is merged to an image of original size.
This merged image can show local differences in the shad-
ing of the pixels (see Figure 7). Therefore, we apply an
geometry-aware filter kernel in order to smooth the re-
sult image [5]. Finally, direct illumination with shadow-
mapping is added, and the resulting HDR scene image
is tone-mapped in order to obtain an LDR image of the
scene.

Basically, the implementation of indirect illumination
in our approach represents an extension to the method de-
scribed by [6]. While [6] just follows an indirect light ray
over several bounces reducing its energy with each reflec-
tion, this implementation additionally takes a possible di-
rect illumination of each single reflecting point into ac-
count. A comparison of these approaches is given in fig-
ure 3.

Figure 3: Comparison between Indirect Illumination by
Knecht (left side) and our implementation (right side). At
multiple bounces, Knecht only reflects the light coming
from the last VPL at following VPLs in direction of the
surface point to be shaded. The new approach imple-
mented in Scanopy reflects both the light from the last
VPL and additionally the possibly incident light coming
directly from the light source.

Specular bounces. We are able to correctly render
multiple specular bounces. At each bounce, we incorpo-
rate both diffuse and specular components of light inci-
dent when shading specular reflections5, considering that
the color of specular reflected light deflects over several
bounces due to mixed diffuse light (see Figure 4). To ac-
complish this, for each VPL at each bounce, we cache the
incoming light from the previous VPL scaled by the cosine
of the light incident angle (geometry term) to lookup the
diffuse contribution of any incident light ray.

5Note that this is the same as for diffuse reflections

Figure 4: Illustration of our method for computing spec-
ular reflections. At each reflection point, N is the surface
normal, and R is the direction of max. specular reflection.
The incident light reflected at P is the sum of diffuse re-
flected light (green) and the specular reflected light (blue)
at a VPL, resulting in a slightly changed color of the inci-
dent light reflected at P.

4 Detailed Algorithm

To perform global illumination in point clouds, our algo-
rithm incorporates several rendering passes, which are il-
lustrated in Figure 5. This sections describes the several
steps of the algorithm in more detail. Figure 7 illustrates
the intermediate buffers (G-Buffers, ISMs, Accumulation
Buffer), and their place in the rendering chain.

4.1 Camera- and Light-G-Buffer

In the first step, the whole scene is rendered from the cam-
era’s point of view into a Camera G-Buffer. The G-Buffer
stores necessary information of the accordant geometry
or surface behind each pixel in image space. This infor-
mation is distributed over several textures, and consists of
the RGB color of the surface, its material properties (dif-
fuse intensity, specular intensity and shininess), the sur-
face normal and the linear depth of the geometry in view-
space.

In the second pass, the whole scene is rendered again,
but this time from the spot-light-source’s point of view.
The scene information rendered in this pass is stored into
the Light G-Buffer, which contains the same per-pixel in-
formation as the Camera G-Buffer, but further stores an
importance value. This value correlates with the intensity
of the surface color and the surface’s shininess (specular
power), and is needed for importance sampling of when
distributing VPLs in a following step.

4.2 Distribute VPLs

As mentioned before, indirect illumination is calculated
by shading scene geometry with respect to Virtual Point

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
85

Figure 5: algorithm overview of the global illumination
rendering chain

Lights (VPLs), which represent a number of surface points
that are directly (or already indirectly) illuminated from
some previous light source, and from there illuminate
other parts of the scene by reflecting their incident light.

The first set of VPLs is distributed on the surface area
illuminated directly by the spot light. The quality of the
resulting image increases with the number of VPLs used.
However, the number of VPLs significantly influences the
frame rate. Therefore, an importance sampling approach
is used in order to achieve good results even with fewer
VPLs. We start at a pseudo-random distribution of the
VPL positions over the spot-light-illuminated area stored
in the Light G-Buffer. A 2d-Halton distribution is used
in order to achieve a controlled homogeneous distribution,
since simple random distributions contain a higher level of
noise and locally inhomogeneous areas. Based upon this
distribution, hierarchical warping proposed by [2] is used
to relocate the VPL positions to obtain denser VPL distri-
butions where needed, and less VPLs where they do not
contribute much to the final scene illumination anyway.

When sampling of the VPL positions is done, all neces-
sary data of the VPLs is stored into a VPL-Buffer, which
is represented by several 1d-textures. This VPL data con-
sists of the VPL’s world space position, the surface normal
and material properties (color, reflection indicators) of the
surface point the VPL is located on, and two values indi-
cating (or related to) the illuminance of the VPL from both
its previous VPL (from a previous bounce) and directly
from the light source (see figure 3). The latter values are
needed later when calculating the VPL’s diffuse reflection
of light from both the previous VPL and the light source

itself. Since both the sampling of the VPL positions and
the hierarchical warping can be done in image space of the
light source, all other VPL data can simply be looked up
in the Light G-Buffer.

4.3 Setup Imperfect Shadow Maps

The main issue for indirect illuminating of scene points
is VPL-visibility. We have to know, whether a currently
shaded surface point is visible to a VPL or not. If the
point is occluded by some other object, light reflected at
the VPL doesn’t reach this point and no indirect illumina-
tion takes place. Such indirect shadows have a high con-
tribution to scene realism. Figure 6 shows a simple scene
setup demonstrating shadows cast from an indirectly illu-
minated object.

To store the necessary visibility information for each
VPL, simple shadow-mapping is insufficient, since the
area of the scene visible to a VPL covers the whole hemi-
sphere over the VPL’s surface point. Therefore, parabolic
maps introduced by Brabec et al [1] are used.

Figure 6: Indirect shadow realized by Imperfect Shadow
Maps. The white sphere and arrow indicate the position
and direction of the spot-lightsource. Only the wall on the
right side is directly illuminated, resulting in the centered
cube to cast a smooth indirect shadow.

For each VPL, we create an Imperfect Shadow Map
(ISM), as proposed by [7]. To create an ISM, the parabolic
projected points of the scene geometry are (box-)splatted
onto a map (e.g. by rendering point sprites). The size of
a box splat is thereby quadratic proportional to the depth
of the point. This imperfect approximation of a perfect
shadow map is sufficient for our needs and rendering is
much faster this way, especially when using many VPLs.
To support large numbers of VPLs, we use one huge ISM
buffer which contains all ISMs for each VPL in the scene.
Figure 7 illustrates a part of a huge ISM buffer (upper
right side of the figure).

To be able to create all ISMs for the whole set of VPLs
in the scene in one render pass, we do not render all points
of the scene into each single ISM. Rather the whole scene
is rendered once, and the points of the scene geometry
are distributed over the ISMs as they are passed through
the vertex shader. Therefore, each ISM contains only of
a subset of the total number of points within the scene,
and each point is rendered to only one ISM in fact. This

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
86

Figure 7: Overview of the GI image synthesis chain and its buffers involved.

further approximation is sufficient for the creation of an
ISM, as long as a point cloud of a model within the scene
doesn’t consist of too few points and the relative number
of VPLs is not too high. This point distribution approach
makes the time consumed by the ISM setup pass indepen-
dent of the number of VPLs, which allows for high image
quality (high number of VPLs) at real-time frame rates.
However, for models with a too low number of points,
this distribution approach could certainly yield to unus-
able, perforated mappings within the ISMs. This problem
could be addressed by e.g. rendering multiple passes on
the ISM creation stage (using different point-to-ISM as-
signment offsets per pass), or finding a convenient ISM
splat-size scaling factor per point cloud depending on the
number of points per ISM and the distance to the ISM’s
VPL-position.

Since ISMs are created by box-splatting a subset of the
points in the scene, the resulting parabolic image can con-
tain holes. To improve the quality of the ISMs, we per-
form a pull-push-operation on the ISM buffer in order to
fill those holes, as described by [6]. The quality of the
result depends on the number of pull-push-iterations, but
already a number 2-3 iterations can gain good improve-
ments (see Figure 8).

4.4 Shading Split-G-Buffer

Based upon the visibility information encoded for each
VPL in the ISM buffer, indirect illumination shading can
be performed. As already mentioned, shading of indirect
(and, also of direct) illumination is performed in image

Figure 8: Comparison between a raw ISM buffer (left) and
a improved ISM buffer after a pull-push-operation with 2
iterations (right).

space, i.e. only for the pixels in the camera G-buffer. In
general, for each pixel we would have to calculate the
transported energy from each single VPL to the surface
point corresponding with that pixel. Since this can be very
time consuming with a large number of VPLs, interleaved
sampling introduced by [5] is used.

4.5 Redistributing VPLs

When rendering multiple indirect light bounces, the VPLs
have to be redistributed after each indirect illumination
shading pass, in order to obtain a new set of VPLs repre-
senting surface reflection points for the next light bounce.

Similar to the method implemented by [6], we assign
one new VPL to each current VPL, so that the number
VPLs in the scene remains constant. All points of the
scene are passed through a shader which distributes all
points among the current VPLs and renders a VPL buffer
containing the new set of VPLs. To select the best candi-
date for a new VPL per existing VPL, our shader assigns

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
87

Figure 9: An object stack illuminated by a spot-light inside a Cornell Box, rendered with 256 VPLs and (from left to
right) with 1, 2, 3 and 4 light bounces. Considering a distortion by the tone-mapping operator, we can clearly see that the
biggest difference in the light situation is given between the first and the second bounce, while the third and fourth bounce
only contributes minimal additional brightness.

to each incoming point a z-value that corresponds with
the VPL quality of that point. This value is dependent on
whether the new point is visible to the current VPL at all,
and on how much luminance this new VPL can contribute
to the result in the next bounce. Using the right setup, for
each current VPL the GPU depth-test automatically leaves
those scene points in the buffer, which are best suited as
new VPLs. This buffer is then used as new VPL buffer for
the next light bounce.

5 Results

Our algorithm supports multiple indirect light bounces at
interactive frame-rates. However, in our test scenes, ren-
dering 2-3 bounces already covered the dominant part of
the global scene illumination (refer to Figures 9 and 12).

Figure 10: Frame-rate dependency from the number of
light-bounces and the number of VPLs in the scene shown
in Figure 9.

Figure 9 compares several light bounces in a small
Cornell-Box point cloud scene (4.7M points at 1 bounce
and 256 VPLs) containing a few boxes and an asian dragon
model. Figure 10 illustrates the dependency of the frame-
rate from the number of light bounces, the number of
VPLs and the size of the ISM-buffer used in this scene. At
128 and 64 VPLs, we used a smaller ISM buffer size (with
a different resolution per ISM). Note that with increasing
number of light bounces, the total number of points per
frame rendered increases too.

Figure 12 shows our GI render mode in the scene of
the scanned-dataset of St. Stephan’s Cathedral shown in
Figure 2, comparing 1, 2 and 3 light bounces at both 4x4
interleaved and non-interleaved VPL shading.6 The scene
was rendered using 256 VPLs. Performance is strongly
depending on the number of indirect light bounces, im-
age quality (number of interleaving sub-panes), number of
VPLs a.s.o. Figure 11 compares the frame-rates achieved
for the St. Stephan’s Cathedral scene in Figure 12, render-
ing 20.6 million points at one light bounce (increases with
additional bounces).

The frame-rates shown for both the Cornell-Box and the
Cathedral scene were achieved on a platform with a In-
tel Xeon X5550 2.67GHz CPU, with 72 GB RAM and a
GeForce GTX 285 GPU with 2.8 GB RAM.

Figure 11: Comparison of frame-rates with 1, 2 and 3 light
bounces using 1x1, 2x2 and 4x4 subdivisions for inter-
leaved sampling for the scene shown in Figure 12 (20.6M
points).

Due to the importance sampling of the VPL positions by
hierarchical warping (concentrating more VPLs on shiny
surfaces), we are also able to reproduce caustics from
curved surfaces (as shown in figure 13), without the use
of additional VPLs. Further, the method of hierarchi-
cally warping the VPLs works against a weakness of Vir-
tual Point Lights: the tendency to create sparkles when

6Note: The holes in the scene due to an imperfect/incomplete dataset,
which was acquired by 3D-scanning. We used an imperfect normal-
estimation algorithm, occasionally leading to wrong or missing normals
and thus to to local illumination errors.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
88

Figure 12: Comparison of different GI-parameters rendering the scanned inside of St. Stephan’s Cathedral in Vienna. In
the dark scene, we placed a big spotlight at the ceiling pointing at the floor. The upper row shows screens with 4x4 panes
interleaved indirect illumination shading. The series in the lower row is rendered without interleaving (consuming more
time), which leads to a higher overall-illumination, since each pixel is illuminated by each VPL. Note that with increasing
number of indirect light bounces, the higher areas of the walls get more and more illuminated (converging at 3-4 bounces).

placed on surfaces with a high specular component (see
figure 14). The appearance of those sparkles often due to
an undersampling of VPLs in highly shiny areas, which
can not be avoided in cases of too few VPLs in a scene
with balanced reflection behavior.

We support transport of specular reflected light over
several bounces, allowing for highly specular scenes.
However, those situations often require a higher VPL den-
sity to avoid the mentioned sparkle effects, while a proper
diffuse illumination suffices less VPLs.

Figure 13: Left: caustic created by a ring. Right: Illumina-
tion of a parabolic surface, causing a highlight at its focal
point at a nearby wall.

6 Conclusions and Future Work

We have shown a way to perform global illumination on
point cloud scenes at real-time frame-rates. It benefits

Figure 14: Scene rendered with global diffuse intensity
0.5, specular intensity 0.95 and shininess 1000. At the
highly glossy surfaces, the distribution of VPLs lead to
the appearance of sparkles.

from the efficiency of Imperfect Shadow Maps for visi-
bility calculation of Virtual Point Lights in our scenes. We
are able to calculate diffuse and specular reflections for
multiple indirect light bounces. Our approach works best
in scenes containing geometry with a high diffuse reflec-
tion component and lower specular intensity, since sur-
faces with too high specular intensity can result in unin-
tended sparkle artifacts.

Our implementation yet handles only one spot-light
source, since this eases the way of performing impor-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
89

tance sampling of VPLs over a limited area (in light view
space) for the first bounce. In fact, directional light sources
would work the same way using just orthogonal instead
of perspective projection. Point lights on the other hand
should be handled differently, since they would require
eight Light-G-Buffers using the same G-Buffer setup. For
this light source type, the use of two parabolic maps would
be more encouraged, each one storing one of its hemi-
spheres.

Extending to multiple lightsources, a linear relation be-
tween light source count and per-lightsource VPL density
is expected, when maintaining equal frame-rates. How-
ever, some kind of importance sampling over the different
light sources, which adjusts the number of VPLs seeded by
a single light source depending on its total scene contribu-
tion (light source intensity, distance to the viewer), could
be applied to speed up rendering.

All test scenes used in this paper, even those containing
plane surfaces like the Cornell Box, are fully represented
by point clouds. The implementation does not support
polygon models for Global Illumination rendering yet. But
since the integration of a polygon model support would re-
quire the sampling for surface points on this models any-
way (ISM splatting), it would be more expedient to create
a preprocessed point cloud representation of the model if
possible.

References

[1] Stefan Brabec, Thomas Annen, and Hans peter Seidel.
Shadow mapping for hemispherical and omnidirec-
tional light sources. In In Proc. of Computer Graphics
International, pages 397–408, 2002.

[2] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-
Möller, and Henrik Wann Jensen. Wavelet importance
sampling: Efficiently evaluating products of complex
functions. In Proceedings of ACM SIGGRAPH 2005,
2005.

[3] James T. Kajiya. The rendering equation. SIGGRAPH
Comput. Graph., 20(4):143–150, 1986.

[4] Alexander Keller. Instant radiosity. In SIGGRAPH
’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques,
pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[5] Alexander Keller and Wolfgang Heidrich. Interleaved
sampling. In Proceedings of the 12th Eurographics
Workshop on Rendering Techniques, pages 269–276,
London, UK, 2001. Springer-Verlag.

[6] Martin Knecht. Real-time global illumination using
temporal coherence. Master’s thesis, Vienna Univer-
sity of Technology, 2009.

[7] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel,
C. Dachsbacher, and J. Kautz. Imperfect shadow
maps for efficient computation of indirect illumina-
tion. ACM Trans. Graph., 27(5):1–8, 2008.

[8] Michael Wimmer and Claus Scheiblauer. Instant
points, July 2006.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
90

Interactive Ray Tracing of Distance Fields

Ondřej Jamriška∗

Supervised by: Vlastimil Havran†

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract

Distance field is a flexible surface representation used in
many applications. We study the algorithms for direct
rendering of distance field surfaces representation via ray
tracing in interactive frame rates. To accelerate the ray
tracing we represent the distance fields by sparse block
grid data structure. We compare the visual quality and
the computation time for different methods of ray-surface
intersection test and for surface normal estimation. We
present a technique to accelerate the computation for pri-
mary rays from camera by projection. We also describe
another technique for faster computation of shadow rays
via volumetric occlusion. We show the results on four
scenes of different complexities.

Keywords: Ray Tracing, Distance Field, Level Set

1 Introduction

Distance field is a versatile surface representation. Many
applications need to represent dynamic surface that
changes its shape over time in complex and unpredictable
ways. For example, in solid modeling application, user
may want to sculpt the shape of a surface by combination
of adding material to existing model and carving holes
into it. Another example is simulation of splashing wa-
ter, where the interface between water and air needs to be
tracked while it splits apart and merges together. In these
circumstances, distance field representation is often used,
due to its ability to handle operations that deform the sur-
face and change its topology.

In addition to geometric modeling [2, 14] and simula-
tion of liquids [8], applications utilizing distance fields in-
clude metamorphosis [3], geometric texturing [5], model-
ing of snow [10], and volume segmentation [16].

Image of a surface in distance field representation can
be rendered using methods based on rasterization or ray
tracing. Hardware acceleration makes rasterization an at-
tractive option, however, due to the implicit nature of dis-
tance field representation, the surface must be first con-
verted into set of rasterizable geometric primitives [12, 6].

∗jamriond@fel.cvut.cz
†havran@fel.cvut.cz

Figure 1: Distance field as a surface representation. Left:
continuous distance field and a surface represented by its
zero level set. Right: distance field sampled on grid.

Also, even though many sophisticated rendering tech-
niques exist [9], the level of realism achievable with ras-
terization is limited.

Ray tracing is an image synthesis algorithm that is able
to reproduce various optical phenomena. The algorithm
traces individual paths of light as it propagates through
scene. It relies on ability to compute the points where rays
hit the surface. Since rays can be directly intersected with
distance field, the costly conversion of surface into explicit
representation is avoided.

In this paper, we will describe our raytracer that is ca-
pable of rendering surfaces in distance field representation
at interactive frame rates. We designed it as a high quality
rendering front-end for the kind of applications mentioned
above. We thus assume that the surface is fully dynamic
and its distance field can change each frame.

2 Distance Field

Distance field maps point in space to its shortest distance
from nearest point on a surface. To measure the distance,
Euclidean metric is often used. Distance field represents
the surface in an implicit form, as a set of points that have
zero distance to the surface. Example surface and its dis-
tance field is illustrated in Figure 1.

Surface S is defined as the zero level set of function φ ,

S =
{

x ∈ R3 | φ(x) = 0
}

.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Function φ : R3 → R is a signed distance function. At
each point, |φ(x)| is the distance from x to nearest point
y lying on the surface. By convention, the sign of φ(x) is
negative when x is inside the surface, and positive when it
is outside:

φ(x) = sign(x) ·dist(x)

dist(x) = min
y∈S
||x−y||

sign(x) =
{
−1 if x is inside S
+1 if x is outside S,

where ||·|| is the Euclidean norm. Surface normal n corre-
sponds to the gradient of φ ,

n(x) = ∇φ(x), and ||∇φ ||= 1.

For simple shapes, φ can be expressed in analytic form.
However, for practical purposes φ is usually represented
using set of samples located at discrete points in subre-
gion of R3. Simple arrangement illustrated in Figure 1
puts samples on vertices of Cartesian grid. When value of
φ is needed at point x, it is reconstructed from nearby sam-
ples using interpolation. Trilinear interpolation calculates
φ(x) as a linear combination of eight samples located at
vertices of grid cell that contains x.

3 Data Structure

Most applications need actual values of φ only at points
that are close to surface, and just the sign of φ suffices
away from surface. This allows for sparse sampling of
φ , placing samples only inside narrow band around sur-
face. Several data structures for sparse representation of
distance field were proposed [4, 11, 13].

In our raytracer, we decided to use the sparse block grid
data structure [4] for input distance field representation.
Sparse block grid is easy to implement and allows random
access in O(1) time. Its memory consumption grows with
O

(
n2.25

)
, where n is the number of grid cells along one

axis [4]. Due to these properties, we assume it is likely
that practical applications may utilize sparse block grid as
their internal distance field representation.

Instead of storing samples on whole grid, sparse block
grid divides the grid into coarse blocks and stores only
samples on subgrids corresponding to blocks that are near
the surface. The data structure is illustrated in Figure 2.
Each block of coarse grid contains a flag and a pointer.
The flag indicates whether the block is inside, outside or
near the surface. If block is near the surface, its pointer
points to a fine subgrid that stores the samples of φ .

4 Ray-Surface Intersection

Given ray r(t) = o + td with origin o and direction d, we
are looking for its first intersection with the surface on
given interval [tmin, tmax]. Since surface is defined by the

Figure 2: Compact representation of distance field using
sparse block grid data structure.

zero level set of signed distance function φ , intersections
occur at roots of φ (r(t)). Thus, the task of finding the
intersection is a root-finding problem. Specifically, for
t ∈ [tmin, tmax], we want to detect if at least one root of
φ (r(t)) exists, and find the smallest t corresponding to
the first root.

4.1 Sparse Block Grid Traversal

The aim of traversal algorithm is to successively visit grid
cells along a ray, identifying cells that contain the surface.
For these cells, a test for an intersection needs to be per-
formed. Traversal terminates as soon as the intersection is
found or once the grid boundary is reached. The process
is illustrated in Figure 3.

The traversal of sparse block grid consists of two nested
loops. The outer loop iterates over blocks of coarse grid.
When a visited block is entirely inside or outside the sur-
face, the loop skips directly to the next block. Otherwise,
the inner loop is invoked. Inner loop iterates over cells
of a surface block and checks each cell if it contains the
surface.

The check is based on comparison of signs of samples
at cell vertices. Since the signed distance φ is negative
inside the surface and positive outside, a cell contains the
surface if the signs of samples differ. When such cell is
visited, a test for intersection is performed. If ray inter-
sects the surface inside the cell, the point of intersection is
calculated.

In order to avoid fetching eight samples and checking
their signs at each visited cell, we precompute a compact
bit mask for every surface block. Each bit of the mask cor-
responds to one cell of the surface block. If cell contains
the surface, its bit is set. Bit masks are recomputed every
frame using single sequential pass over the cells of sur-
face blocks. When the cell is visited during surface block
traversal, we only test the corresponding bit in the block’s
bit mask to check if the cell contains the surface.

Grid traversal is initiated by intersecting ray with the
grid’s bounding box. We compute the points where ray

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
92

Figure 3: The process of finding the ray-surface intersection. The ray is first intersected with the grid’s bounding box, and
traverses blocks of the coarse grid (left). When the ray enters a surface block, it starts traversing the cells of the surface
block’s subgrid (middle). When a surface containing cell is encountered, the ray’s intersection with the surface inside the
cell is computed (right).

enters and exits the box using a ray–box intersection algo-
rithm described in [17]. If ray has no intersection with the
bounding box then it misses the grid and cannot intersect
the surface. Otherwise, the grid traversal starts from the
block that contains the point where ray enters the grid’s
bounding box. In case that rays origin is inside the grid,
traversal starts from block containing the origin.

The algorithm for sparse block grid traversal is based on
3D–DDA algorithm [1]. At the beginning of sparse block
grid traversal, we precompute several constants that can
be reused during transitions between coarse and fine grid
traversal in order to reduce their overhead.

4.2 Surface Cell Intersection

When ray enters a cell that contains the surface, its inter-
section with the surface inside the cell needs to be exam-
ined. The simplest method is to assume that the ray always
hits the surface, and set the intersection point to the middle
of points where ray enters and exits the cell. This method
is fast, however, it produces artifacts that are visible espe-
cially on the contour of an object.

More accurate methods are based on finding the roots of
φ(r(t)). Since φ is discretely sampled on grid, a continu-
ous function needs to be reconstructed using interpolation.
To reconstruct the value of φ at any point inside the cell,
we use trilinear interpolation from eight samples at cell
vertices.

Simple root-finding method first interpolates two values
φin = φ(r(tin)) and φout = φ(r(tout)) at points where ray
enters and exits the cell. If signs of φin and φout differ, the
ray has hit the surface. The intersection point is calculated
by approximating the position of a root as the point where
line connecting values φin and φout crosses zero,

thit = tin +(tout − tin)
φin

φin−φout
.

Position of root can be further refined, as illustrated in

Figure 4. First, the value of φ is interpolated at thit . Next,
the interval [t1, t2] is selected from two subintervals [tin, thit]
and [thit , tout] such that φ(r(t1)) and φ(r(t2)) have different
signs. A new root is then approximated as the zero cross-
ing point of a line that connects values φt1 and φt2 . When
repeated several times, this process is equivalent to a root
finding technique called the false position method [15].

The convergence of false position method is only linear.
This is not an issue, since we perform only small number
of iterations anyway. We perform fixed number of 1-4 iter-
ations because it is faster than using adaptive termination
criterion, and visual results usually do not improve after
more than 4 iterations.

Figure 4: Locating the ray-surface intersection inside a
cell. Left: ray passing through cell that contains the sur-
face. Right: approximation of root position using first two
steps of false position method.

5 Surface Normal Estimation

At the intersection point, a surface normal n needs to be
evaluated for purposes of shading and spawning of sec-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
93

ondary rays. In distance field representation, the surface
normal corresponds to the gradient of the distance field.
Since distance field is sampled on grid, the gradient has
to be estimated using a combination of differentiation and
interpolation.

We consider three gradient estimation schemes result-
ing from different ordering in which differentiation and
interpolation is applied. The schemes vary in arithmetic
complexity and in the number of samples they use. They
also differ in the continuity of estimated normals, which
affects the perceived smoothness of surface shape.

The first method is to find analytic derivatives of the
interpolation filter. The filter is differentiated and analyt-
ical expressions of its partial derivatives are found. The
components of ∇φ are then obtained by convolving the
samples of φ with filter’s partial derivatives.

The second method is to first estimate partial derivatives
of φ at sample locations using finite differencing. This
yields values of ∇φ at cell vertices. The ∇φ(x) is then
evaluated at x by interpolating gradients from cell vertices.

In the third method, the value of φ is first interpolated
at number of points obtained by offsetting point x along
coordinate axes. Next, ∇φ(x) is computed by taking finite
differences of interpolated values.

6 Acceleration of Primary Rays

Casting of primary rays can be accelerated by skipping the
traversal of empty blocks that are outside the surface. This
is achieved by reducing the [tmin, tmax] interval so that the
ray starts and stops close to the points where it enters the
first surface block and leaves the last surface block.

To find reduced tmin and tmax for each primary ray, we
rasterize surface blocks into min/max-buffers. Instead of
rasterizing six faces of each surface block, we only ras-
terize a conservative bounding square of the block’s pro-
jection onto the image plane. The center of a bounding
square is computed by projecting the block’s center using
the camera matrix, and the width is determined based on
the blocks space diagonal and the depth of its center. Each
square has assigned value t that is equal to the distance
from block’s center to the camera.

Bounding square is computed for each surface block.
Squares that correspond to blocks that are behind the cam-
era are culled. Remaining squares are first sorted by their t
values. Next, they are rasterized in back-to-front and front-
to-back order into min-buffer and max-buffer respectively.

Since values tmin and tmax need not to be precise, the
resolution of min/max-buffers can be lower than the image
resolution. This can result in improved performance when
there is large overdraw of bounding squares.

method midpoint 1 iteration of
false position

4 iterations of
false position

#interpolations 2 2 5
time [ms] 8.0 8.4 11.2

Table 1: Surface cell intersection methods. Upper part
of the torus shows normal in pseudo-color, lower part is
shaded using Phong model.

method analytic
derivative

difference of
interpolations

interpolation
of differences

#samples 8 16 24
#interpolations 0 3 1

time [ms] 7.1 9.5 8.4

Table 2: Surface normal estimation methods. Upper part
of the torus shows normal in pseudo-color, lower part is
shaded using Phong model.

7 Acceleration of Shadow Rays

Shadow ray query only has to detect if the ray intersects
the surface, the actual point of intersection is not needed.
This fact can be used together with the information already
stored in sparse block grid to accelerate casting of shadow
rays. Whenever ray passes through block whose flag in-
dicates it is inside the surface, the ray must have also in-
tersected the surface. We use a modified grid traversal to
detect this situation and reduce the number surface cell in-
tersection tests. This approach is inspired by the volume-
tric occluders technique described in [7].

The modified grid traversal first iterates only over
blocks of the coarse grid. Traversal of a fine subgrid is not
invoked when a surface block is visited. Instead, when a
surface block is visited for the first time, the state of traver-
sal variables is stored for a chance of later traversal restart.
The traversal of coarse blocks then speculatively continues
in the hope of encountering block that is inside the surface.
The number of traversal steps elapsed from the first visited
surface block is counted.

When the traversal visits a block that is inside the sur-
face, the ray must have intersected the surface and traver-
sal terminates. When the grid boundary was reached and
no surface block was visited during traversal, the ray has
no intersection with the surface and traversal also termi-
nates. However, if a surface block was visited during the
previous traversal and either the number of elapsed steps
is greater than threshold n or the grid boundary is reached,

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
94

the normal grid traversal is restarted from the first visited
surface block using the stored state of traversal variables.

8 Results

Our raytracer is implemented in C++. The raytracer is par-
allelized using OpenMP. We employ a simple paralleliza-
tion strategy: we divide the whole image into square tiles
of N×N pixels and assign the rendering of individual tiles
to different threads.

Performance was measured on system with two Intel
Xeon E5440 2.83 GHz quad-core CPUs with 6 MB shared
L2 cache and 4× 32 kB L1 data caches. In all tests the
image resolution was 512× 512 pixels, and tile size was
set to N = 32 pixels. Rendering was parallelized using 4
threads.

The test scenes were prepared by converting triangle
meshes into distance field representation at several differ-
ent resolutions. We used models of Bunny, Dragon and
Happy Buddha from the Stanford 3D Scanning Reposi-
tory. The subgrid resolution of surface blocks was always
set to 43 samples.

Three methods for surface cell intersection are com-
pared in Table 1, with the number of trilinear interpola-
tions they use for intersection evaluation inside single sur-
face cell, and the total time to render the whole image. To
compare the visual output we used a low resolution dis-
tance field of a torus. Even though the midpoint method is
the fastest, it produces severe visual artifacts. These, how-
ever, tend to be less visible as the size of a surface cell pro-
jection approaches size of the pixel. Results of single and
four steps of the false position method are visually indis-
tinguishable. Thus, in all subsequent test we used single
step of false position method for surface cell intersections.

Surface normal estimation methods are compared in Ta-
ble 2. Normals calculated using the analytic derivatives of
trilinear filter are discontinuous across surface cell bound-
aries, which is pronounced at specular highlights. The in-
terpolation of differences is faster than the difference of
interpolations even though it uses more samples. In sub-
sequent tests we estimated surface normals using interpo-
lation of differences.

The effect of primary ray acceleration using min/max-
buffers is illustrated in Figure 6. The number of sparse
block grid traversal steps is visualized using pseudo-color.
The average number of traversal steps per pixel is clearly
reduced with min/max-buffers.

We compared the rendering performance without pri-
mary ray acceleration and with the acceleration using
min/max-buffers at three different resolutions. The results
are summarized in Table 3. In this test, single primary ray
is cast per pixel, and simple shading model is evaluated at
the intersection point. The use of min/max-buffer led to
improved performance in all cases.

In final test we evaluated the performance of shadow ray
acceleration using modified traversal. For this test, shadow

Figure 6: Comparison of the number of primary ray traver-
sal steps per pixel with no acceleration (left), and with the
acceleration using min/max-buffers (right).

Figure 7: Comparison of the number of traversal steps and
intersection tests for shadow rays using normal and mod-
ified sparse block grid traversal. Rendered image of the
test scene is shown topmost. Top row: normal traversal.
Bottom row: modified traversal. Left column: number of
traversal steps per pixel. Right column: number of inter-
section tests per pixel.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
95

Figure 5: Three test scenes Bunny, Dragon, and Happy Buddha.

without 256x256 128x128 64x64

min/max-buffers min/max-buffers min/max-buffers min/max-buffers

#trav. #trav. #trav. #trav.

model resolution steps time steps time speedup steps time speedup steps time speedup

[×103] [ms] [×103] [ms] [%] [×103] [ms] [%] [×103] [ms] [%]

Bunny 128×128×100 5733 35.0 2885 28.6 18 3009 27.7 21 3247 28.3 19

Bunny 256×256×200 8915 45.0 2982 33.1 27 3186 32.3 28 3502 32.2 29

Bunny 512×508×400 15538 69.9 3056 51.1 27 3330 47.2 33 4287 50.0 28

Dragon 128×92×60 4264 28.8 2444 24.7 14 2538 23.9 17 2699 24.2 16

Dragon 256×184×116 6265 35.2 2536 28.1 20 2674 27.3 22 2902 27.4 22

Dragon 512×364×232 10435 50.4 2411 38.3 24 2620 35.7 29 3260 37.5 26

Buddha 56×128×56 3089 23.8 2225 22.1 7 2301 21.4 10 2409 21.6 9

Buddha 108×256×108 4146 28.0 2467 25.8 8 2568 25.9 8 2740 25.3 10

Buddha 212×512×212 6028 34.2 2360 33.9 1 2552 31.7 7 2973 32.5 5

Table 3: Comparison of primary ray casting performance without acceleration and with the acceleration using min/max-
buffers.

rays are cast to five directional lights. Both the number of
traversal steps and the number of surface cell intersection
tests is recorded.

The effect of shadow ray acceleration is illustrated in
Figure 7. The reduction of number of intersection tests is
noticeable mainly inside large shadow areas on the ground
plane. The number of traversal steps is locally lowered at
some places and raised at other.

We compared the performance of the shadow ray cast-
ing with and without shadow ray acceleration. The re-
sults are summarized in Table 4. Tests were performed
for two values of threshold n used in modified traversal.
The threshold determines for how many steps the coarse
grid traversal continues after the first surface cell is visited
until it is restarted.

Although the number of intersection tests was always
reduced using the modified traversal, the number of traver-
sal steps increased in some cases due to traversal restart,
leading to worse performance than that achieved with nor-
mal traversal.

9 Conclusions and Future Work
In this paper we have presented the techniques behind our
interactive distance field raytracer. Basic methods for ray-
surface intersection and surface normal estimation were
described and compared. We have shown two simple ac-
celeration techniques for casting of primary and shadow
rays and analyzed their performance on three test scenes.
In all tests we achieved reasonable frame rates ranging
from 10∼ 50 fps.

In future work we would like to investigate means of ac-
celerating the search for intersection either by augmenting
the coarse grid with additional information encoding the
empty space, or by building a hierarchical spatial subdivi-
sion data structure on top of the sparse block grid.

Acknowledgement
This work has been partially supported by the Grant
Agency of the Czech Technical University in Prague, grant
No. SGS 13139/10/800890 and by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic under the re-
search program MSM 6840770014 and LC-06008 (Center
for Computer Graphics), the Aktion Kontakt OE/CZ grant
no. MEB 060906.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
96

no acceleration n=12 n=32

#trav. #isect. #trav. #isect. #trav. #isect.

model resolution steps tests time steps tests time speedup steps tests time speedup

[×103] [×103] [ms] [×103] [×103] [ms] [%] [×103] [×103] [ms] [%]

Bunny 128×128×100 7639 529 66.4 8259 348 59.4 10.5 8876 320 59.7 10.1

Bunny 256×256×200 11153 542 82.8 11663 345 72.8 12.2 12360 294 71.6 13.6

Bunny 512×508×400 18586 472 123.4 19137 292 108.9 11.7 20106 232 106.6 13.6

Dragon 128×92×60 6694 426 56.6 8145 365 56.7 -0.2 8548 342 56.7 -0.2

Dragon 256×184×116 9708 433 68.6 10791 333 64.7 5.7 11731 285 64.5 6.0

Dragon 512×364×232 15881 377 96.5 16693 264 87.0 9.9 17550 197 84.4 12.5

Buddha 56×128×56 734 104 16.6 1015 100 17.9 -7.9 1030 100 17.9 -8.3

Buddha 108×256×108 1110 116 19.7 1471 107 21.2 -7.6 1620 106 21.8 -10.4

Buddha 212×512×212 1581 96 24.6 1963 84 26.0 -5.9 2295 78 26.6 -8.2

Table 4: Comparison of shadow ray casting performance using normal and modified traversal.

References

[1] J. Amanatides and A. Woo. A fast voxel traversal
algorithm for ray tracing. In Proc. Eurographics
’87, pages 3–10. Elsevier Science Publishers, Am-
sterdam, North-Holland, August 1987.

[2] J.A. Bærentzen and N.J. Christensen. Volume sculpt-
ing using the level-set method. In International Con-
ference on Shape Modeling and Applications, pages
175–182, 2002.

[3] D.E. Breen and R.T. Whitaker. A Level-Set Ap-
proach for the Metamorphosis of Solid Models.
IEEE TVCG, 7(2):173–192, 2001.

[4] R. Bridson. Computational aspects of dynamic sur-
faces. PhD thesis, Stanford University, 2003.

[5] A. Brodersen, K. Museth, S. Porumbescu, and
B. Budge. Geometric texturing using level sets. IEEE
TVCG, 14(2):277–288, 2008.

[6] C.S. Co, B. Hamann, and K.I. Joy. Iso-splatting: A
Point-based Alternative to Isosurface Visualization.
In Proceedings of the 11th Pacific Conference on
Computer Graphics, pages 325–334, 2003.

[7] P. Djeu, S. Keely, and W. Hunt. Accelerating
Shadow Rays Using Volumetric Occluders and Mod-
ified kd-Tree Traversal. In Proceedings of Confer-
ence on High-Performance Graphics 2009, pages
69–76, 2009.

[8] D. Enright, S. Marschner, and R. Fedkiw. Animation
and Rendering of Complex Water Surfaces. ACM
Transactions on Graphics, 21(3):736–744, 2002.

[9] R. Fernando. GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics. Pearson
Higher Education, 2004.

[10] T. Hinks and K. Museth. Wind-driven snow buildup
using a level set approach. In Eurographics Ire-
land Workshop Series, pages 19–26, Dublin, Ireland,
2009.

[11] B. Houston, M.B. Nielsen, C. Batty, O. Nilsson,
and K. Museth. Hierarchical RLE level set: A
compact and versatile deformable surface represen-
tation. ACM Transactions on Graphics, 25(1):151–
175, 2006.

[12] W.E. Lorensen and H.E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm.
In SIGGRAPH ’87: Proceedings of the 14th annual
conference on Computer graphics and interactive
techniques, pages 163–169, New York, NY, USA,
1987. ACM.

[13] M.B. Nielsen and K. Museth. Dynamic Tubular
Grid: An efficient data structure and algorithms for
high resolution level sets. Journal of Scientific Com-
puting, 26(3):261–299, 2006.

[14] R.N. Perry and S.F. Frisken. Kizamu: A system for
sculpting digital characters. In Proceedings of the
28th annual conference on Computer graphics and
interactive techniques, page 56. ACM, 2001.

[15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and
B.P. Flannery. Numerical Recipes: The Art of Scien-
tific Computing. Cambridge University Press, 2007.

[16] R.T. Whitaker, D.E. Breen, K. Museth, and N. Soni.
A framework for level set segmentation of volume
datasets. In Proceedings of ACM International Work-
shop on Volume Graphics, pages 159–68, 2001.

[17] A. Williams, S. Barrus, R.K. Morley, and P. Shirley.
An Efficient and Robust Ray–Box Intersection Algo-
rithm. Journal of Graphics Tools, 10(1):49–54, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
97

98

Applications

Concept of Interactive Coloring book

Tomáš Pastorek∗

Supervised by Petr Felkel†

Faculty of Electrical Engineering
Czech Technical University in Prague

Czech Republic

Abstract

Coloring book programs are often simple and do not de-
velop anything but mouse-move-and-click skills. The only
task is to fill-in predefined regions by a selected color. This
research exploits the possibilities offered by a computer to
do more.

Based on discussions with a clinical psychologist, we
designed an interactive coloring book concept to help
preschool children in development of creative and logi-
cal thinking and basic computer operation skills. Children
are offered a simple scene for coloring where individual
objects can interact with their mouse input. The objects
behave exactly as the children know from their every day
life. The object reaction is physically simulated.

We present a pilot implementation of the interactive col-
oring book concept. The scene can be designed using
elementary objects, images, sounds, and logic, allowing
more complex entertainment. Scene description is stored
in XML files, being simply editable and manageable.

We have successfully validated our concept by a user
study involving 5 preschools and their parents. The good
experiences lead to continue the coloring book develop-
ment in cooperation with Faculty of Education, Charles
University in Prague.

Keywords: Coloring book, Physics, Physical Simula-
tions, Interactivity, Children, Games

1 Introduction

Coloring books are extremely popular among children, as
most every child loves coloring. This simple and fun ac-
tivity has also a positive effect on child development - it
improves their graphomotor skills – their hand-eye coor-
dination. These skills are later used for writing, drawing
and other manual tasks.

Children of age 4–5 like tangible images, preferably
with an already filled example, and basic colors. Undo
function or an eraser can confuse them. Preschools (5-
6 years) can handle more complex images, more color
tones, and should be able to orient themselves in space

∗pastoto1@fel.cvut.cz
†felkepet@fel.cvut.cz

(up, down, left, right). They have developed an abstract
thinking and do not need a colored example. Preschools
can solve simple puzzles and quizzes.

Software implementations of coloring books as they are
now available as web pages are only an imitation of paper
coloring where the mouse clicks simulate surface coloring
with a pencil. A complex movement with a pencil is re-
placed by simple clicking and the graphomotor learning
effect of precise coloring is nearly lost.

The computerized colorings should bring something
more, but the colorings available in the internet rarely
bring anything really new in comparison with the paper
ones. Based on discussion with a children psychologist,
we proposed a concept of improved interactive coloring
book including animation, physical simulation of moving
objects, and programmable scene logic.

Introducing animation and physical response to the cur-
rent coloring books brings an interesting combination
that can attract children and certainly can develop more
skills—from fantasy to logical thinking [1]. In addition,
soundtrack gives an additional element to which children
must respond. It is not a mere filling up of closed regions
we know from nowadays coloring books, but the overall
concept of a simply extendable multimedia software solu-
tion for the children entertainment.

2 Review of similar projects

Present coloring book applications are seldom download-
able as standalone programs. It is common now to present
them in the form of web applications. The criteria used for
evaluation of coloring book programs included the follow-
ing ones:

Interactivity - should give more than just coloring by
clicking.

Controllability – The user interface and usability for col-
oring must be in relation to the children age, for
young kids as simple as possible without text. It
should be understandable by the parents who help
with the rules.

Image for coloring – should not contain small areas hard
to target by the mouse cursor. Older children can have

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

more complex images. The child should have a pos-
sibility to choose image for coloring from the set of
images.

The color palette – should also respect the children age
and their ability to designate the colors. Small chil-
dren need basic colors and large color spots in the
palette, older children can use pastel colors and small
color spots.

Graphic design – should be eye-catching and attractive.

Programming grade - applied technology and amount of
bugs in the application.

We have tested 15 coloring programs, five of
them in greater detail (Interactive coloring book from
Keith Haring Foundation [2], Coloring books at Ap-
ples4theteacher.com [3], National Association of Home
Builders – coloring book [4], Fisher-price Click and Color
[6], and Coloring book at Alik.cz [7]). Rating according
to the criteria is in Figure 2 For additional details, see [16].

Interactive coloring book from Keith Haring Founda-
tion [2] is an artistic group project. This group is orga-
nizes charitative campains focused on AIDS and children.
Unfortunately, the main attention is fixed on the artistic
aspect leaving out the usability and amusement for small
children. Unfortunately, the control is too complex also
for the school children.

Figure 2: Interactive coloring book from Keith Haring
Foundation

Coloring books at Apples4theteacher.com [3] is a very
interesting project, outstanding in the number of images
offered for coloring. A large number of colors in the
palette could be a dissadvantage for small children, as they
cannot name all of the colors. On the other hand, the art-
works are simple with large regions, which is good for
small children.

Coloring book from National Association of Home
Builders [3] is a complement service of NAHB oriented
on construction, providing a small set of artwork for col-
oring. The way of coloring is distinct from others. It is a
drawing by mouse with a trespasing control, avoiding get-
ting across the region outline. The game offers a group
of tools, including eraser and the brush stroke size. These
features together with a large amount of colors fit to older
children. The different way of coloring is more entertain-
ing.

Figure 3: National Association of Home Builders coloring
book

Fisher-price Click and Color [6] serves as part of web
presentation of the company producing toys [5]. They
offer online games for children of different age groups.
Their colorings have very cute colors and real-looking
palette and brush-shaped cursor. These features nicely
adapt the user interface to the preschool children needs.

Coloring book at Alik.cz [7] is a Czech project of the
Mafra company. It suffers from several problems, like
wrong cursor shape (cross instead of pencil or brush) un-
suitable for small children and an error in the code—it is
impossible to recollor the region filled with a black color.

2.1 Conlusions from the review

Preschool children prefer large regions and images of real
things, they know from everyday life. Such themes help
them in selection of appropriate colors. Colored example
images also serve well for inspiration. Palette should con-
tain basic colors only, those the children can call by name.
More complex tools such as the rubber or undo confuse
the children and should be avoided.

Primary school children can cope with more complex
images; physical simulations can contain simple mecha-
nisms and logical quizzes. Palette can contain much more
colors. Colored example images are not necessary. School
children have enough fantasy and can improve their sense
for art.

The pilot program should contain predefined palettes for
different ages. The spots should be large to simplify the se-
lection of colors. School children should get a color name

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
102

Figure 1: Rating of five coloring programs based on different criteria (1-the worst, 5-the best)

hint when the cursor stops on the color spot. The cursor
must be large and recognizable to help selecting the col-
ored regions. The environment should be cute and intu-
itive. The style of the image surrounding should be mini-
malistic, to avoid disturbances. A set of predefined scenes
for different ages should be prepared.

3 Method

Based on the review of existing coloring applications we
have designed a concept of interactive coloring book.
The solution must allow a high level of configurability to
match the needs for a larger range of children ages - from
preschools to school children. The program should not
limit itself only to coloring. It should contain tools for sim-
ple programming, applicable for a simple game develop-
ment. Logical quizzes and different methods for coloring
should be easy to implement. To fulfill these requirements,
we have created a controller.

3.1 Controller

Controller is a dynamic library (assembly) loaded together
with the scene. It containes the control logic of the scene.
Controler can create objects, set their specific attributes,
play sounds, etc. Each object is addressed by its name,
defined in XML in the scene definition file. Coloring pro-
gram creates new instances of objects by reflection.

Comunication between the sceene and the objects is
accomplished by event handling. For this purpose,
the controler defines a fixed communication interface
IControler. Overview of the whole application archi-
tecture is in Figure 4.

The role of the controler can be demonstrated on the fol-
lowing an example situation: The scene contains a small
disc, which should turn to red color after the mouse click.

Relevant implementation of the controler would look as
follows. The handler of the Insertion of the object into the
scene event is created. While creating the disc object,
this event handler connects the mouse click event with it.
Body of the mouse click event handler would contain the
color-change command of the disc.

We can chose from the following events while defining
the scene:

• Scene events

– SceneLoaded - scene loading is finished

– ObjectLoaded - object loading is finished

– ObjectAdded – object has been added to the
scene collection

– ObjectLeftScene - object left the visible scene
(useful for object recycling)

– ObjectCollided - object collides with another
object

• Object events - can be registered for each individ-
ual object

– MouseDown - mouse click on the object

– MouseUp - mouse release on the object

– MouseMove - mouse move on the object

– BackgroundChanged - object was assigned a
new background color

• Palette event

– SelectedColor - notification of the color selec-
tion

The system of scene control as described here is very
important for the universality of the coloring application.
The scene logic is not fixed, but it can be different for each
scene.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
103

3.2 Scene definition

Visual appearance of the scene is defined in XML docu-
ment. XML was chosen as a simply human editable for-
mat as the scene editor was not part of this phase of the
project. XPath technology [17] was selected for reading
of XML files. It allows for fast access to particular ele-
ments in the document.

Every object in the scene has the properties defined in
the XML file: Visual properties (such as width, height,
position, rotation, color or image fill), physical properties
(weight, vector of weight distribution), and other proper-
ties (data type including its namespace, object name for
object identification in Controller).

The object definition contains only the name of data
type (class name with namespace). This allows for intro-
duction of new data types without a necessity to change
the XML document scheme. Based on the data type name,
new instance of object is created by reflection while read-
ing the scene description. Our concept of interactive col-
oring book contains the following predefined objects:

• ColoringBook.Objects.Rectangle

• ColoringBook.Objects.Ellipse

• ColoringBook.Objects.Polygon

• ColoringBook.Objects.Vehicle – simple
physical model of a truck

• ColoringBook.Objects.Tire – car wheel

4 Program architecture

The display layer (implemented by the Windows Pre-
sentation Foundation technology - WPF), receives the
list of objects (interface IObjectBase) and the list
of colors in the palette (PaletteColor class) via the
ObservableCollection. It is a specialized collec-
tion able to announce the changes for the display. The
changes are signaled to the display layer by means of
PropertyChanged event.

Newton Dynamics physical engine is connected with
the rest of the coloring application by the Proxy design pat-
tern (classes CWorld – the physical world – and CBody
– representing the object instance in the physical engine).
Scene object for logic processing uses only the known in-
terface IController – thanks to that, it is possible to
create different scene logics by means of different imple-
mentation of this interface. See Figure 4.

5 Results

We present a pilot implementation of the interactive col-
oring book concept for Windows platform. This operat-
ing system has been selected based on the world statistics
of operating system usage by the children target group.

Figure 4: Component diagram depicting of interactive
coloring book architecture. IControler describes the
logic of each scene

Development was done in C# language under the .NET
Framework 3.0.

The Windows Presentation Foundation (WPF) was se-
lected for rendering. It allows for direct rendering of vec-
tor graphics and for separation of application and presenta-
tion layers. By means of XML markup langue XAML, we
can define the application appearance independently of the
code, the styles for elements dynamically, and create rela-
tions to database sources. This working style is similar to
the working style of web designers. Another advantage is
a simple portability to Silverlight technology.

As a physical engine, we have selected the Newton Dy-
namics [14] with a .NET wrapper [15]. This Physical en-
gine is stable, fast, and well documented. With the .NET
wrapper the engine is usable in the selected technologies
(.NET, C#, . . .) and provides a good set of sorts of joins.
Integration of WPF with the Newton Physical Engine is
very simple. The physical engine returns the positions and
rotations of objects in matrix form. These matrices can be
assigned as transformation matrices to the objects in WPF.
We just have to use the same scales for both (see [13] for
details).

5.1 Implemented scenes

To demonstrate the abilities of our interactive coloring
book concept we created four example scenes. An Easter
Eggs scene, Path Coloring, Truck, and a Music scene.

Easter eggs scene The task of this scene is to fill in the
eggs ovals with an appropriate color. The steps the
eggs lay on can be colored anyhow. After filling in,

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
104

the eggs start rolling and falling down to the bunny.
The moment all the eggs fall down to the bunny the
fanfare is played and the game is over. The eggs scene
with newly assigned colors appears and a new game
startes. The video of this scene can be seen on [19],
the scene preview is in Figure 5.

Figure 5: Easter eggs scene

Path Coloring In this scene, the user must create the path
for the marble to get it into the house. The path is
built by coloring the rectangular steps. The marble
can roll on the filled steps only. Non-filled steps does
not support the ball and it falls down. The correct
filling order is: all the steps first, then the marble to
release it onto the path. Fall out of the scene and
reaching the house play a sound and the game starts
again. The video of this scene can be seen on [20],
the scene preview is in Figure 6.

Figure 6: Path scene

Figure 7: Truck scene

Figure 8: Music scene

Truck Scene This simple scene shows how to create and
control vehicles. After coloring the truck body and
wheels, the motor turns on and the truck drives down
the ramp. When it reaches the scene border, colors
are reset and game starts again. The video of this
scene can be seen on [21], the scene preview is in
Figure 7.

Music scene The task is again to create a path for a ve-
hicle. After coloring the path pieces and after filling
the holes by falen collored rectangles, the car can be
filled in and it starts moving down the ramp. Each
ramp piece sounds different tone, given by the ap-
plied color. If any noncolored path piece remains, the
car cannot start and honks. The video of this scene
can be seen on [22], the scene preview is in Figure 8.

5.2 Mini usability study

Usability of the product can be defined as the grade people
can use the product to fulfill given tasks [18]. We have
performed a very limited low cost low effort mini usability
study. By means of this mini usability study we wanted to
find out, how the users liked the user interface, how they
reacted on different scenes and what experience the scenes
left behind in their minds.

Interactive coloring book program was tested by five
users: two girls, 5 and 7 years old, with previous expe-
rience with a computer; two boys, 4 and 7 years old, with
no and very little experience with computer; one woman,
39 years old, with computer skills. The user study was
performed on the first three scenes.

We have used a full screen mode in the user study, en-
larging the regions for coloring and avoiding erroneous
clicking outside the coloring book program. The evalu-
ation included: a) Work without any help, where the user
should find out, what is the goal and how to reach it, b)
work after possible oral help, c) selection of appropriate
colors, d) coloring itself, and e) final oral evaluation.

Main problems arising from the user study included:

• At the beginning, it is not very clear what should be

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
105

done. Sometimes, oral help is necessary for under-
standing the goal, especially for the younger children.

• The pencil (cursor) does not change its color. Chil-
dren have problems to recognize which color is se-
lected.

• By color selection, they did not recognize, that the
point of the pencil (cursor) is the selection tool.

• Marking of the selected color in the palette by a white
border is not sufficient, as the children took time to
recognize, that the selected color is marked by a white
circle.

• Some color tones are very similar and therefore hard
to distinguish.

The children liked the scene with a truck the most be-
cause its coloring is simple and the finished task is re-
warded by an engine start followed by the truck move-
ment.

6 Discussion

The potential of the interactive coloring book concept can
be used for development of simple entertaining games for
healthy children. It can be employed for learning basic
computer skills through play, for logical thinking improve-
ment, and for phantasy development.

In cooperation with experts on special education, we
can create puzzles focused on children with light dissabil-
ity. Nowadays, we work on extension of interactive col-
oring book concept for visually impaired children in joint
project with Faculty of Education. There is lack of such
oriented software.

Simultaneously, we do not limit us to coloring books. It
is possible to create simple games exploiting the physical
engine.

It proved in practice, that the selected technologies were
chosen well and they exactly matched our assumptions.
Only if we decide to port the Interactive coloring book
to web platform Silverlight, we would have to change the
physical engine (e.g., to Farseer Physics [23]).

As the thorough reviewer correctly mentioned, “there
is a real danger that children will lose the ability to hand
write if they are constantly just using a mouse and key-
board”. A different method for coloring, e.g. such as sty-
lus or computer with a touch screen like TabletPC should
be designed and tested. Having no such specializad hard-
ware we have not addressed this in our study and imple-
mentation, leaving it for possible future work.

Usability tests did not reveal any serious problems re-
lated to the concept or implementation of this project. All
issues that appear can be solved by scene file modification
or by small changes in the program. Usability tests verified
that our introductory presumptions were correct. Children
accepted physical simulations well knowing such behavior

from everyday experience in the real world. Simple and in-
tuitive user interface is also important, mainly for the first
steps with the new program. Even though the mini user
study showed minor imperfections, the children accepted
the interactive coloring book very well.

7 Conclusions

We have presented a concept of interactive coloring book
and a pilot application based on this concept. They were
designed in cooperation with a clinical psychologist with
the main idea in mind – how to use computers in children
entertainment better. The classical paper-and-pencil col-
oring scheme cultivating imagination and sense for colors
was enriched by the physics simulations helping the chil-
dren to understand the interactions among objects in the
real life.

The capabilities of the interactive coloring book were
demonstrated on four scenes. The Easter egg scene pre-
pared for the smallest children was a simple coloring by
appropriate color. Next scene contained a ball and the path
split into parts. The parts had to be colored before releas-
ing the ball to get it to the end post. The last two scenes
contained a ramp and a vehicle. The truck in the former
scene started moving down the ramp after filling up the
ramp and the truck body. The latter scene with a car was
enriched by playing tones according to the color selected
for coloring.

In principle, it is not complicated to create a new scene
with any functionality, because the scene logic is stored
in an XML file and not fixed in the program. The pilot
application tested the concept of interactive coloring book
and proved its popularity among the children.

8 Future work

After the validation of interactive coloring book concept,
we concentrate on creation of the development environ-
ment for scene creation and scripting. Such a tool will
serve for fast creation of simple games with physics sim-
ulation. Simultaneously, in cooperation with the special
education department at the Faculty of Education, Charles
University in Prague, we work on the set of games and
research tools for visually impaired children.

Acknowledgements

The authors wish to thank the psychologist Naďa Kravin-
cová for professional consultancy of our ideas and focus-
ing on the children needs, and our usability testers Clara,
Jonas, Mathew, Betty, and Alice. This research has been
partially supported by the MSMT under the research pro-
gram MSM 6840770014.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
106

References

[1] Naďa Kravincová. Psychologist. Pesonal discussions
and consultations. 2009

[2] Keith Haring Interactive Coloring Book.
http://www.haringkids.com/
coloringbook/index.html

[3] Apple4teacher.com
http://www.apples4theteacher.com/
coloring-pages/

[4] National Association of Home Builders: Coloring
Book.
http://www.nahb.org/coloringbook/
book.aspx

[5] Fisher-Price. Online Game & Activities, 2008,
http://www.fisher-price.com/us/
playtime/

[6] Online Coloring,
http://www.fisher-price.com/us/
littlepeople/clubhouse/games.asp?
section=onlinecolor&gameID=LP_
OnlineColoring

[7] Colorings on Alı́k.cz, 2008,
http://www.alik.cz

[8] Crayon Physics, Kloonigames, 2008,
www.crayonphysics.com,www.
kloonigames.com/

[9] Microsoft Physics Illustrator for Tablet PC, 2004,
http://www.microsoft.com/windowsxp/
downloads/powertoys/tabletpc.mspx#
ETBAC

[10] Software Logopedy, multimedia ART, In Czech.
http://www.jablko.cz/.

[11] Software Reader, help withUFFF dyslexy, multime-
dia ART, In Czech.
http://www.jablko.cz/Citanka/
default.htm

[12] Software Mathematics 1–5, help with dyscalculia,
multimedia ART, In Czech.
http://www.jablko.cz/matematika/
default.htm

[13] Chris Cavanagh blog
http://chriscavanagh.wordpress.com/

[14] Newton Dynamics Physical Engine.
www.newtondynamics.com

[15] .NET wrapper
http://pagesperso-orange.fr/flylio/
Programmation/NewtonWrapper.zip.

[16] Pastorek, T. Interactive coloring book. Bachelor
thesis. CTU FEL, 2007, In Czech.

[17] Clark, J., SeRose, S. XML Path Language (XPath).
Version 1.0. W3C Recommendation 16 November
1999. http://www.w3.org/TR/xpath/

[18] Maly, I. Usability of (web) applications, 2006,
In Czech. http://webing.felk.cvut.cz/
old/output/pub/usability_web_app.
pdf

[19] Easter eggs scene video. http://www.
youtube.com/watch?v=NBhzxPU1mvU

[20] Path coloring video. http://www.youtube.
com/watch?v=OyoRTU0xf-g

[21] Truck scene video. http://www.youtube.
com/watch?v=oXRVD6Ka44I

[22] Music scene video. http://www.youtube.
com/watch?v=MfEc0HJBYww

[23] Farseer Physics Engine 3.0 http://www.
codeplex.com/FarseerPhysics

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
107

108

Obesity in Children - A Serious Game

Elmedin Selmanovic∗

Supervised by: Kurt Debattista†, Simon Scarle‡, Alan Chalmers§

International Digital Laboratory
University of Warwick

Coventry / United Kingdom

Abstract

Childhood obesity is a prevalent problem in most devel-
oped countries. It can have a significant negative impact on
a childs health including diabetes and cancer. Help in the
preventing and reducing obesity is required. One possible
method suggested in this paper is a serious game, which
would increase energy expenditure during play, educate
about nutrition and promote healthy eating and physical
activity. Methods and ideas, informed by the related re-
search, which were used for the implementation of such a
game, are presented in this paper. Although not a complete
solution in itself the game could help in the fight against
childhood obesity.

Keywords: Serious Games, Obesity, Edutainment, Ex-
ergaming

1 Introduction

The prevalence of childhood obesity in advanced countries
is an increasing problem. The number of obese children
varies from 17% in the UK [2] and 16% in the US [21] to
12% in Australia [35]. Obesity can have negative effects
on a child’s health (e.g. diabetes, cancer and cardiovas-
cular disease) and negative psychosocial impact including
low self esteem and stigma [6, 7]. Moreover, in 40% to
70% of the cases, obesity is likely to persist into adulthood
[24] with accompanying health risks and possible socioe-
conomic problems.

The causes of childhood obesity are complex and mul-
tifactorial including unhealthy eating patterns and an in-
active lifestyle, both of which can be linked to increase
in the time spent watching television and playing video
games [6, 23]. Given that an average US family keeps its
TV turned on 8 hours a day, the time a child spends in
front of the screen can reach up to 55 hours per week [37].
One response was reduce the amount of TV watching, but
different solutions were needed, as children did not relin-
quish screen time that easily [8, 11]. One possible answer

∗elmedin.selmanovic@warwick.ac.uk
†k.debattista@warwick.ac.uk
‡s.scarle@warwick.ac.uk
§a.g.chalmers@warwick.ac.uk

to this problem would be to convert this sedentary screen
time into a more active form and use it to promote physical
activity and healthy eating.

The aforementioned objective could be accomplished
using a game. This would fall into the domain of serious
games, games whose primary function is other than pure
entertainment. The aim of this paper is to show the cre-
ation process of the game that can help tackle and prevent
childhood obesity.

First, definition and brief history of serious games is dis-
cussed. Related work is provided in Section 3. In Sec-
tion 4, the game design and different considerations are
explained. Section 5 deals with the actual implementation
and examines a selection of various tools and techniques.
Feedback obtained from the first game testing is provided
in Section 6. The conclusion is presented in Section 7 and
future work is discussed in Section 8.

2 Serious Games Background

Clark Abt published a book entitled Serious Games in
1970 (Abt 1987). This was the first time the term was
used. Although, in this book, Abt was mostly concerned
with card and board games, the definition which he offered
is still relevant: “Games may be played seriously or casu-
ally. We are concerned with serious games in the sense
that these games have an explicit and carefully thought-
out educational purpose and are not intended to be played
primarily for amusement. This does not mean that serious
games are not, or should not be, entertaining.”

However, today, serious games do not have such a clear
scope, because the majority of researchers involved tend
to offer their own, somewhat, different definition. For
instance, not everyone agrees that factor of fan or enter-
tainment has to be included. While Zyda [39], Bergeron
[1] and Prensky [22] think it is necessary, Stoll [31] com-
pletely rejects the idea of putting fun into the learning pro-
cess. Michael and Chen [19] take a more moderate view
suggesting that fun although desirable is not essential. Ac-
cording to Zyda [39] an additional factor that has to be
considered is pedagogy, but this still needs to be subordi-
nate to entertainment. Bergeron [1] finds it crucial that a
scoring system and challenging goals are included. The

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Serious Games Initiative [14] focuses on the usage of se-
rious games for education, training, health and public pol-
icy. Still one common idea can be taken out and used as
the broad definition of serious games; those are the games
whose main purpose is other than pure entertainment.

With such a broad definition the history of serious
games is difficult to pin down. However, factors that af-
fected the development of this field can be identified and
include the evolution of industrial-military complex, a us-
age of digital technologies in medical education, expan-
sion of the computer industry and the popularity of com-
mercial games [1]. The first instance of serious gaming
can be traced back to Edwin Link who constructed the first
flight simulator in the late 1920s [16]. After this early start
sporadic examples of serious games followed mostly in the
military and medical fields. In the 1980s two promising
disciplines of virtual reality and edutainment, which used
games for non-entertainment purposes, started to expand
[32]. Unfortunately, this expansion did not last long and
both of these concepts failed to fulfil their early promise.
Virtual reality struggled with expensive hardware, the ab-
sence of case studies, lack of attention for end user’s re-
quirements and failures to provide meaningful and func-
tional intellectual property [32]. At the same time edutain-
ment, the idea of education through entertainment, pro-
duced boring games no one had interest in playing [36].
Serious games have to avoid these pitfalls to succeed, es-
pecially given that, today, edutainment is considered its
key part. The expansion of serious games started in 2002
with lunch of the Serious Games Initiative which tries to
form connections between game industry and health, edu-
cation, training and public policy projects that require its
services. Serious games have a large application area in-
cluding military, government, corporations, healthcare and
cultural heritage. The market size of serious games is not
easily determined (one of the reasons being the broad defi-
nition), but the U.S. military alone spends millions on their
development annually [1].

The advantages that serious games have to offer need to
be defined. What is clear is that a game’s simulated en-
vironments provide the user with the opportunity to expe-
rience situations which cannot be replicated in real world
due to time, cost and safety reasons [4, 30]. However, the
effect that they have on players is difficult to assess be-
cause complexity of the games requires variables that are
narrowly defined and conditions that are tightly controlled,
resulting in research with rather limited claims [36]. Nev-
ertheless, it has been shown that serious games can im-
prove analytical, spatial and strategic skills, learning and
recollection capabilities, psychomotor skills, visual selec-
tive attention, self-monitoring, problem recognition and
problem solving, decision making, short and long term
memory, social skills such as collaboration, negotiation
and shared decision making [20, 25]. It is important, in
this context, to recognize that not every serious game of-
fers all of these benefits and each one should be assessed
individually to determine success.

3 Related Work

There are a number of studies that support the idea of ex-
ergaming: using video games for exercises [13, 17, 27,
29]. Most of them test the amount of energy spent during
play and compare the result to both sedentary screen time
as well as sports activities. The active games significantly
improve energy expenditure, sometimes even doubling it
compared to the regular sedentary screen time, while in
most cases they are still not as good as doing regular
sports. A comparison which demonstrate how exergam-
ing can come close to the real sports, shows that playing
Wii Sports Tennis spends 750 kJ/hour while real bowling
spends 800 kJ/h [12].

In most cases of exergaming, specialist hardware is re-
quired. The idea of connecting exercise equipment to
video games is almost as old as games themselves [28].
An early commercial example is the project named Atari
Puffer where an exercise bike was interfaced with a game
console. After this, a series of companies started using
exercise bikes for the same purpose with today’s repre-
sentatives: Tacx Fortius Trainer, Fisher Price Smart Cycle
and Cateye GameBike Pro. Foot operated pads are an-
other type of devices used for exergaming. One of the es-
pecially successful games that used foot operated pad was
Konami’s Dance Dance Revolution with 6.5 million copies
sold. Successful instance of this device is Nintendo’s Wii
Balance Board [28]. Lastly, we have equipment that uses
motion sensors for input; popular examples are: Sony’s
EyeToy, Nintendo’s Wii Controller and Wii Nunchuk. In
addition to these commercial products efforts in creating
exergames have been done in academia as well [18, 38].
Sinclair et al. [28] describe considerations which need to
be taken into account during exergame creation. In addi-
tion to being fun the authors state that game have to have a
level of intensity corresponding to the fitness of the player.

Besides being a form of exercise themselves games
were also used to encourage both physical activities and
healthy eating. In order to promote physical activity,
games were used as a requirement for getting more desired
activities such as watching TV or playing games [10, 26].
Another strategy involved members of the group compet-
ing by using actual data from the pedometer which they
were wearing during the day [3, 9]. Examples of games
promoting healthy eating include commercial titles like
Hungry Red Planet and research ones [34] both of which
taught children nutrition skills. A framework for develop-
ing serious games can be based on four dimensions: con-
text, pedagogy, learner specifications and representation.
This framework can be extended by using output from an
analysis phase and checking if the serious game solution
satisfies a learning need [5].

GameFlow is a model for evaluating player enjoyment
in games [33]. Eight elements ensure a game is fun to play.
Concentration is the first one. A game should not distract
player from the action and should not burden him with the
unimportant tasks. The two elements which are closely

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
110

related are challenge and player skill, as they need to be
carefully balanced all the time. Next, the player should
always feel in control of their actions in the game. Clear
goals have to be provided and appropriate feedback should
be sent to the player. Element of immersion states that
players should be deeply, but effortlessly involved in the
game. Social interaction is the last suggested element.

The game described in this paper attempts to combine
all the above mentioned concepts, using specialist hard-
ware to exercise, while at the same time promoting healthy
eating and physical activity.

4 Game design

Making the game successful required fulfilment of many
different, and occasionally opposing, conditions. The
game had to be physically engaging, informative and,
above all, fun. In order to ensure that the game design
is properly executed, guidelines from papers mentioned in
previous section were followed [12, 5, 33]. In addition,
the fact that the game was non-gender specific and aimed
at children aged 8 to 12 years had to be considered. Also,
the time available for producing this game was 10 months
with a development team including one full time program-
mer and three part-time members.

The targeted age group governed the choice of the art
style, shown in Figure 1, which can be described as car-
toony. Characters, environment and even animation are
exaggerated with a simple yet vivid colour scheme full of
contrast. All edges are accentuated by hard black lines.
This style is not only appealing to children but it also ac-
celerates development by reducing time required for mod-
elling, texturing and animation, as less precision and real-
ism is needed. In addition, it should help keep children’s
concentration as no distraction is created by unnecessary
details.

Figure 1: The Game’s Art Style

In order to conform to idea of boosting physical activity,
the main game input and most of the interaction is carried
only through movement. The devices chosen to capture
motion were the Wii Controller and Wii Balancing Board,

as they are relatively cheap, easily obtainable, provide sat-
isfactory supporting software and given their popularity,
a user might already own one. They are used to control
both the character and the graphical user interface. The
expected player’s movement should be bold, thereby, in-
creasing energy expenditure and also making itself easier
to capture. This in turn should reduce user errors which
should then ameliorate concentration, feeling of control
and immersion. Although physical activity is increased
in this manner it is acknowledged that the game is not a
substitute for real exercise.

The player’s character is a young sorcerer (Figure 2).
This choice was conditioned by the pedagogical decision
of no violence and highly abstracting any notion of com-
bat. The wizard’s wand appeared to be a good option for a
non-violent tool/weapon. Furthermore, movements made
by a wand corresponds well to movements of a Wii Con-
troller making control natural and helping increase immer-
sion. Magic is also convenient way to explain some curi-
ous phenomena that happens in a game as will be shown
later. In order to preserve gender and ethnic neutrality cus-
tomization of the character should be allowed.

Figure 2: The Main Characters

Level design was guided by the idea of small, indepen-
dent entities with a number of different yet familiar mini-
games. The advantages of this approach are numerous.
Firstly, a small, independent level is easily and quickly
tested and, in case it does not function, it can be simply
discarded. Secondly, the player is not required to com-
plete levels in a predefined order which should increase
the impression of control. Likewise, hard levels can be
skipped and played afterwards when the player’s skill has
improved and matched the level’s challenge. Lastly, mini-
games should increase variety making the game more in-
teresting and keeping the children’s attention longer. Still,
each mini-game has to have similar gameplay so that the
player’s learned skill is transferable.

One relatively straightforward solution, which encom-
passes the suggested type of level design, is to use islands
as separate levels. Although, freedom of level selection
should be allowed, it would not make sense if player could
access the last stage in the beginning of the game. To

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
111

overcome this problem and balance challenge and control,
the decision was made to have a number of lakes, each
containing multiple islands (Figure 3). An island could
be freely chosen but transition to the next lake would be
locked (Figure 4) until completion of all the levels or scor-
ing a certain number of points. The lakes could have dif-
ferent art themes (e.g. winter, desert, and volcano). In
this setting, assets could be reused requiring only slight
changes (e.g. textures). This would reduce development
time while preserving variety.

Figure 3: One of the Lakes

Figure 4: A Dam Blocking the Exit

The primary vehicle for moving the character is a cora-
cle. This means of transport fits well into the lake environ-
ment and interfaces smoothly with Wii Balance Board and
Wii Controller. The controller is used for rowing action
which propels the coracle forward, while direction is al-
tered by leaning left and right on the Wii Board. This rou-
tine, which increases physical activity, has also been used
in its own right for a mini-game when the player travels
between lakes. To go from one lake to another a player
is required to sail down the river full of obstacles (stones,
logs, whirlpools) and try to collect bonuses which can later
be used on the islands, or increase score (Figure 5).

Figure 5: The River Minigame

Healthy eating messages had to be incorporated subtly,
so as not to distract from the main gameplay. The first,
simple idea is to place short and relevant text tips onto
the loading screen. The second idea, actually, defined the
story of the game. As a young sorcerer, the player is re-
quired to deliver food packages to the famine struck is-
landers, while two villain characters (Figure 6), for nefari-
ous reasons, are slipping in unhealthy food in an attempt to
make islanders overweight. The player needs to eliminate
these unwanted packages. Two pedagogical issues had to
be taken into account. Firstly, the main character cannot
be modified to look overweight. Secondly, the player is
not allowed to fight the villains directly.

Figure 6: The Villains

Taking above considerations into account the gameplay
was defined. Upon approaching an island in a lake view
the player is transferred onto it. The character still stays in
the coracle which now floats above ground (due to magic)
but player does not have to row anymore and only uses the
leaning motion to move. An island is inhabited by the fam-
ished people and animals which add background interest.
In the centre of the island is a challenge made from food
packages. The ”good” food package is moved into the is-
landers’ barn when the player collects it, while ”bad” ones
are dispatched into a skip. The opposite happens in case of
the villains (bad goes to the barn and good to the skip). In
this manner direct conflict is avoided. A screenshot pre-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
112

senting the gameplay on one of the islands is shown in
Figure 7.

Figure 7: An Island Level

In general, packages are separated into six categories
according to food group division (e.g. dairy products,
fruit, and vegetables) with one category being unhealthy
food (Figure 8). Packages of each group are colour coded,
reducing confusion. One of five food group members is
represented on a package (e.g. fruit package would be
green and could have cherries depicted on it) giving the
total of 30 distinct packages.

Figure 8: Blocks Used in a Level

The goal of each level is to provide islanders with
enough food packages while achieving good balance of
food groups. Preserving this balance during play is im-
portant as well, because due to large amount of unhealthy
food character starts to turn into stone and his movement
becomes slow and lethargic. This also affects islanders
and island animals that walk in the background highlight-
ing the consequence. On the other hand, dispatching un-
healthy food slows villains down. User interface always
provides clear representation of current food balance and
time left.

Each island is going to have a different challenge. Cen-
tral idea behind challenges is the concept of “Physically
Enhanced Puzzles”. In such puzzles speed and direction
of input motion affect the gameplay keeping the player

active. Re-interpretations of classic games like Columns,
Brake Out, Space Invaders and Tetris are used as a founda-
tion of the puzzle design. They are then modified to accept
motion input, collection of food packages and actions of
villains. To increase variation, each of these major puzzles
is then slightly altered and used on a different island.

5 Game Implementation

The minimal hardware requirements were set low, mak-
ing the game accessible to more potential users. Also, the
low requirements should help deploy the game into the
schools with relatively old equipment. The game should
run smoothly on a machine with 1GHz processor, 1GB of
RAM and 256MB DirectX9 graphics card. In addition,
a Bluetooth connection, which is easily obtained using a
cheap USB dongle, is required for Wii Controller and Wii
Balance Board. Choice for the last two Wii devices is ex-
plained in the previous section.

The time frame available for game development ruled
out the possibility of creating our own game engine, while
budget did not provide funds for purchasing commercially
available solution. The only feasible option was usage of a
freely available product. Choice was to use Ogre 3D: “the
most powerful open source real-time 3D rendering library
currently available” [15]. It is important to note that Ogre
3D is not a full game engine. It is, instead, a graphics
engine used for rendering. However, it is easily scalable
with a number of plug-ins provided. Another advantage
of Ogre is the large user community which offers solid
support and resources. For managing players input from
Wii Controller and Wii Board open source libraries were
used. Object movement and interaction was implemented
using Nvidias PhysX technology.

Game assets and character animation were created in
Autodesks Maya 2009 software. Texture production was
done in Adobes Photoshop CS2. Both of these packages
are industry standards and were available prior to game
implementation. Exporting content from Maya to Ogre
was done using OgreMax, a freely available Maya plug-
in.

6 Feedback

An early version of the game was tested in a local school.
Seventeen children aged 7 to 11 played the game. They
were of the mixed gender (8 boys and 9 girls), ethnicity
and body size. Children were divided into the four focus
groups depending on a Year group. A questionnaire was
given before playing the game which tested if the children
knew they should eat 5 portions of fruit and vegetables a
day and also asked them how many portions they ate. The
results shown in Table 1 imply that although most of the
children knew how many portions they need to eat major-
ity of them did not eat this amount. Children were also

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
113

Answer

How many
portions of Fruit &
Veg should
children eat in a
day?

How many
portions of Fruit &
Veg do you eat
each day (on
average)?

0 0 1
1 0 0
2 1 1
3 1 4
4 1 5
5 12 5

6 or more 2 1

Table 1: Questionnaire Results

asked which computer games they were playing at that
moment and 15 of the 17 gave specific names while two
participants left this field blank.

16 of the 17 participants were positive about the game
with comments like: “funny”, “loved it” and “addicted to
it”. They would like to play the game again. They said
they liked the graphics and would be happy to have the
game in the school to learn about healthy eating. Some
wanted to take a copy home. One girl did not like the game
and found it too difficult. She said that it was “annoying”.

Children offered other feedback and gave a number of
useful suggestions that could be implemented in later ver-
sions. X-Box like controller, which was offered during the
testing, was preferred over the balance board. As the board
was challenging to use children suggested to change its
sensitivity. They also said they learned about food. They
learned not to eat fat/junk food and connected this with
getting fat. Also they showed understanding of different
food groups, but sometimes what they said was outside the
game’s scope (e.g. “different vitamins”). Although there
was some mention of physical activity, knowledge which
they obtained from the game was limited. The request for
customising characters (e.g. clothes, facial features, gen-
der, name and hair) was also expressed. One child sug-
gested tackling the bad guys with swords to which other
child responded “that would be violence”, although the lat-
ter child stated previously he was playing the GTA: Vice
City, a rather violent game.

Other suggestions were also brought to researchers’ at-
tention and included:

• menu options

• multiplayer option (two players helping each other)

• new levels

• save option

• changing the look of the water in the lakes

• making pictures of food clearer

• clear goals for each level

• option for inputting real-life fruit and vegetable con-
sumption

• option for swimming around the lake

• using the labels of “good food” and “bad food”.

In addition to children, four parents/carers participated
in the trial. There were 3 mothers and one father, although
the mothers gave most of the comments. Parents liked the
game and supported the idea of using it in the school to
teach children healthy diet. They stated that many can-
not afford Wii Balance Board and suggested the usage of
the regular controller. They also recommended making
the images and text more prominent and clearer. Finally,
they said that levels need more feedback, possibly speech,
telling children what to do next and giving them useful
messages. Parents were keen to see the game going to the
next stage of its development.

7 Conclusion

Action to help fight and prevent childhood obesity is re-
quired swiftly. It could come in the form of a serious game
which increases physical activity and promotes healthy
eating and sports. Understanding the background of se-
rious games was important for appreciating the large num-
ber of considerations required during development, distin-
guishing them from regular video games and presenting
their advantages. Related work used to govern the design
phase was carefully explored. Design was possible only by
balancing all different constrains and making sound deci-
sions informed by research. After finishing the design it
was possible to start implementation which required new
choices in terms of hardware and software. Although the
development is still not complete the first trail with a focus
group showed that children did enjoy playing the game.
However, the true measure of the game’s success can only
be obtained after the game has been distributed and data,
gathered during prolonged use, has been analysed.

8 Future Work

The game is still in the development phase with three
months left before the end of the project. Majority of the
gameplay logic has been implemented. One instance of
fully functional lake with three islands is available. Mo-
tion input requires more improvement as there are the oc-
casional problems recognizing gestures. The logic for run-
ning cut-scenes is in the late phase of development. The
stage for character customization, tutorial levels and nice
GUI still need to be created. A strategy for promoting
physical activity is also required. There is a present need
for generating more content and assets. It is planned to test
the game with focus groups once more. After the game is
developed it should be deployed and the data to prove its

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
114

effectiveness should be gathered, but that goes beyond the
scope of this project.

References

[1] BP Bergeron. Developing serious games. Charles
River Media, 2006.

[2] NHS Information Centre. National child measure-
ment programme: England, 2008/09 school year
ONLINE. http://www.ic.nhs.uk/, February 2010.

[3] S. Consolvo, K. Everitt, I. Smith, and J.A. Landay.
Design requirements for technologies that encour-
age physical activity. In Proceedings of the SIGCHI
conference on Human Factors in computing systems,
page 466. ACM, 2006.

[4] K. Corti. Games-based Learning; a serious business
application. Informe de PixelLearning, 2006.

[5] S. de Freitas and S. Jarvis. A Framework for devel-
oping serious games to meet learner needs. In The
Interservice/Industry Training, Simulation & Edu-
cation Conference (I/ITSEC), volume 2006. NTSA,
2006.

[6] WH Dietz, LG Bandini, JA Morelli, KF Peers, and
PL Ching. Effect of sedentary activities on resting
metabolic rate. American journal of clinical nutri-
tion, 59(3):556, 1994.

[7] C.B. Ebbeling, D.B. Pawlak, and D.S. Ludwig.
Childhood obesity: public-health crisis, common
sense cure. The Lancet, 360(9331):473–482, 2002.

[8] M.S. Faith, N. Berman, M. Heo, A. Pietrobelli,
D. Gallagher, L.H. Epstein, M.T. Eiden, and D.B.
Allison. Effects of contingent television on physi-
cal activity and television viewing in obese children.
Pediatrics, 107(5):1043, 2001.

[9] Y. Fujiki, K. Kazakos, C. Puri, I. Pavlidis, J. Starren,
and J. Levine. NEAT-o-games: ubiquitous activity-
based gaming. In CHI’07 extended abstracts on Hu-
man factors in computing systems, page 2374. ACM,
2007.

[10] GS Goldfield, LE Kalakanis, MM Ernst, and LH Ep-
stein. Open-loop feedback to increase physical activ-
ity in obese children. International journal of obe-
sity, 24(7):888–892, 2000.

[11] S.L. Gortmaker. Innovations to reduce television and
computertime and obesity in childhood. Archives
of Pediatrics & Adolescent Medicine, 162(3):283,
2008.

[12] L. Graves, G. Stratton, ND Ridgers, and NT Ca-
ble. Comparison of energy expenditure in adoles-
cents when playing new generation and sedentary
computer games: cross sectional study. British Med-
ical Journal, 335(7633):1282, 2007.

[13] L. Graves, G. Stratton, ND Ridgers, and NT Cable.
Energy expenditure in adolescents playing new gen-
eration computer games. British Journal of Sports
Medicine, 42(7):592, 2008.

[14] Serious Games Initiative. Serious games ONLINE.
http://www.seriousgames.org/, February 2010.

[15] G. Junker. Pro OGRE 3D programming. Apress,
2006.

[16] L.L. Kelly and R.B. Parke. The pilot maker. Grosset
& Dunlap, 1970.

[17] L. Lanningham-Foster, T.B. Jensen, R.C. Foster,
A.B. Redmond, B.A. Walker, D. Heinz, and J.A.
Levine. Energy expenditure of sedentary screen time
compared with active screen time for children. Pedi-
atrics, 118(6):e1831, 2006.

[18] H.H. Lund, T. Klitbo, and C. Jessen. Playware tech-
nology for physically activating play. Artificial life
and Robotics, 9(4):165–174, 2005.

[19] D.R. Michael and S.L. Chen. Serious games:
Games that educate, train, and inform. Muska &
Lipman/Premier-Trade, 2005.

[20] A. Mitchell and C. Savill-Smith. The use of com-
puter and video games for learning: A review of the
literature. Learning and Skills Development Agency
London, 2004.

[21] C.L. Ogden, M.D. Carroll, L.R. Curtin, M.A. Mc-
Dowell, C.J. Tabak, and K.M. Flegal. Prevalence of
overweight and obesity in the United States, 1999-
2004. Jama, 295(13):1549, 2006.

[22] M. Prensky. Digital natives, digital immigrants. On
the horizon, 9(5):1–6, 2001.

[23] JJ Reilly. Obesity in childhood and adolescence: ev-
idence based clinical and public health perspectives.
Postgraduate medical journal, 82(969):429, 2006.

[24] JJ Reilly, E. Methven, ZC McDowell, B. Hacking,
D. Alexander, L. Stewart, and CJH Kelnar. Health
consequences of obesity. British Medical Journal,
88(9):748, 2003.

[25] L.P. Rieber. Seriously considering play: Design-
ing interactive learning environments based on the
blending of microworlds, simulations, and games.
Educational technology research and development,
44(2):43–58, 1996.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
115

[26] BE Saelens and LH Epstein. Behavioral engineering
of activity choice in obese children. International
journal of obesity and related metabolic disorders:
journal of the International Association for the Study
of Obesity (USA), 1998.

[27] K.R. Segal and W.H. Dietz. Physiologic responses
to playing a video game. Archives of Pediatrics &
Adolescent Medicine, 145(9):1034, 1991.

[28] J. Sinclair, P. Hingston, and M. Masek. Consid-
erations for the design of exergames. In Proceed-
ings of the 5th international conference on Computer
graphics and interactive techniques in Australia and
Southeast Asia, page 295. ACM, 2007.

[29] B.K. Smith. Physical fitness in virtual worlds. Com-
puter, pages 101–103, 2005.

[30] K. Squire and H. Jenkins. Harnessing the power of
games in education. Insight, 3(1):5–33, 2003.

[31] C. Stoll. High-tech heretic. Doubleday, 1999.

[32] R. Stone. Serious games: virtual realitys second
coming? Virtual Reality, 13(1):1–2, 2009.

[33] P. Sweetser and P. Wyeth. GameFlow: a model for
evaluating player enjoyment in games. Computers in
Entertainment (CIE), 3(3):3, 2005.

[34] MC Turnin, MT Tauber, O. Couvaras, B. Jouret,
C. Bolzonella, O. Bourgeois, JC Buisson, D. Fabre,
A. Cance-Rouzaud, JP Tauber, et al. Evaluation
of microcomputer nutritional teaching games in 1,
876 children at school. Diabetes & metabolism,
27(4):459–464, 2001.

[35] L. Valenti, J. Charles, and H. Britt. BMI of Aus-
tralian general practice patients. Australian family
physician, 35(8):570–571, 2006.

[36] R. Van Eck. Digital game-based learning: It’s not
just the digital natives who are restless. Educause
Review, 41(2):16, 2006.

[37] E.A. Vandewater, D.S. Bickham, and J.H. Lee. Time
well spent? Relating television use to children’s free-
time activities. Pediatrics, 117(2):e181, 2006.

[38] G.N. Yannakakis, J. Hallam, and H.H. Lund. Com-
parative fun analysis in the innovative playware
game platform. In Proceedings of the 1st World Con-
ference for Funn Games, pages 64–70, 2006.

[39] M. Zyda. From visual simulation to virtual reality to
games. Computer, pages 25–32, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
116

Methods of simplification for process of 3D animation
production

Edin Pašović1

Supervised by: Jasminka Hasić 2
Sarajevo School of Science and Technology

Bosnia and Herzegovina

Abstract

In the modern world, mass-produced computer graphics
can be seen almost everywhere, ranging from TV
commercials, movies, series, computer games,
architecture, archeology, science, history, educational
materials, medical research and countless other fields.

Digital animation studios like Pixar and Dreamworks
employ thousands of artists and build large render farms
and computer clusters for the purposes of rendering CGI
(Computer Generated Graphics). Yet, there are
thousands of small studios all over the world, producing
all sorts of 3D graphics for small-production
environments, and they mostly have up to 10 employees
and no budget for rendering farms or other expensive
computing solutions. They have to focus on using
heurestics, shortcuts and alternative rendering methods
to achieve results which, despite the low hardware
resources for rendering, still keep the look of a high-
quality production.

CR Categories: I .3.8 [Computer Graphics]:
Applications
Keywords: visual perception, selective attention,
GPGPU, parallel processing

1! Visual Language
The way 3D artists create and visualize the scenes
themselves can have a great impact on the rendering
speed and quality of animations.

A visual language is a set of practices by which
images (such as diagrams, professional photos or even
motion 3D movies) can be used to communicate
concepts and stories. Whether it’s a diagram, a
professional photograph or a map, they all represent the
use of visual language. The structural units of visual
language are: shape, line, texture, pattern, color, motion,
direction, orientation, scale, space, angle and
proportion.3

Most known texts on subject of visual language in
movies and motion pictures were written by Rudolf

Arnheim, a German-born author, art and film theorist
and perceptual psychologist. In my project “Greyworld”,
several of those techniques were used to demonstrate
examples of how an efficient usage of visual language
can significantly reduce workflow and rendering times.

2! Efficiency in visual language
Recent studies in human perception [Koch, C. and
Ullman, 1985; Niebur, E. and Koch, C. 1996; Cater, K.,
Chalmers, A. and Ward, G. 2003] show increasing
success in prediction of eye movements and focus of
subjects watching motion pictures and give us further
insights into the concepts Rudolf Arnheim first
mentioned in his book “Art and Visual Perception: A
Psychology of the Creative Eye” in 1954 and later
explored in “Visual Thinking” in 1969 and “New Essays
on the Psychology of Art” in 1986.

Among many insights into the way the common
viewer percieves motion pictures, there is a number of
those which, when used in right places, could help us
decrease scene complexity or time invested into the
creation of the scene in a 3D animation.

Next several examples are used in everyday work in
modern animation workflows, and they were not quoted
from any particular book, but were acquired by the
author of this paper as a result of insight after several
years of working in the graphic design and animation
industry and listening to the experiences of seniors in
that industry. Most of them are also explained in some of
the professional DVD tutorial courses [HCWVEFD
2009; HCWMCHEBS 2004].

2.1 Foreground and Background

A large percentage of actual action in motion pictures
happens in foreground, thus drawing the focus of the
viewer much more on the foreground than on the
background.

If there is nothing of importance happening in the
background during the scene, the viewer will be

1 edinpasovic@gmail.com

2 jh@ssst.edu.ba

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics

gradually less and less focused on the background. This
should basically allow us to render the background
details with far less detail once we’re several seconds
into the scene, because by then the viewer will lose
interest in analysing the background (like he did for the
first few seconds), and he will shift it towards the action
in the foreground, not noticing the decline in rendering
quality in the background, as long as nothing drastically
changes. [HCWMCHEBS 2004]

2.2 Depth of Field

The Depth of Field (DOF) effect, when used inside the
3D software in scenes with high complexity, can
increase rendering process up to five times4.

There is a new method of visualisation, which
consists of dividing the scene into several layers,
depending on the distance of objects, rendering them
without DOF effect, and bringing them together later in
compositing software, where DOF simulation will be
applied on layers instead of actual objects. While the
results are very similar in appearance, the rendering
times are significantly decreased3. Today this method is
mostly being used in the latest generation of game-
consoles, such as X-Box 360 and Playstation 3, to
simulate DOF in games while maintaining constant
frame-rate. [HCWVEFD 2009]

2.3 Moving and static objects

Moving objects tend to draw more attention on
themselves than the static objects. Objects that move
towards us tend to draw more attention on themselves
than the objects that move away from us.

In anthropology this is explained as an old human
instinct still left from times when humans used to hunt
animals in oder to survive. This behavior can be
exploited in order to decide which objects should be
modeled and rendered more carefully and which ones
require less polygons and simpler rendering procedures,
based on their movement. [Glencross M., Chalmers
A.G., Lin M.C., Otaduy M.A., Gutierrez D. 2006]

2.4 Color

Human eye is capable of color vision thanks to
photosensitive Retinal Ganglion Cells. However, these
cells don’t percieve all the colors with equal sensitivity.5
We are most sensitive to red color, less sensitive to green
color and even less sensitive to blue color. This is why
red and yellow objects (yellow color in RGB color
model is combination of red and green) in the scene will
draw more attention than the others.

This information can be used to classify which parts
of the scene, based on their color, should be given more

or less importance in modeling and rendering. [R.
Arnheim 1974]

2.5 Composition

Most people in Europe, North and South America,
Australia and northern parts of Asia use alphabets
written from left to right. This affects their perception so
that they observe and analyze static and motion pictures
in similar manner - from left to right.

This can be seen in many traditional movie scenes,
where camera is following one or more characters from
the side during the walking scene - they mostly tend to
go from left to right. Video games follow the same
analogy, starting from the first “Super Mario” side-
scrolling game to the most modern side-scrolling game -
characters start at point A on the left side and have to
fight their way to the point B which is in most cases
located on the right side.

A common viewer tends to focus on what’s in front
of the character and where the character is going - so in
those cases he is mostly focusing on the right side, while
the parts of the scene which stay behind recieve much
less focus once they are behind characters back. This,
again, can be used to gradually reduce the rendering
quality of those parts of the scene which are moving
towards the left side of the screen. [HCWMCHEBS
2004]

3! Case Study: “Greyworld”
The short 3D animation “Greyworld” was built using
both layered 2D and 3D techniques of animation. Since
this was a project one single animator was working on,
in a limited amount of time (three-and-a-half months),
using only one non-workstation computer (Apple iMac,
Duo Core 2,6 Ghz, 2 GB RAM, ATI 2660 HD GPU), the
goal was to produce an animation while focusing only
on important visual details, and invest time and work on
areas in regard of how visible and how important they
will be to the final audience.

The whole final animation consists of 46 shots
distributed through 10 scenes, with a duration of 5
minutes and 40 seconds. During the various production
stages, six candidates, with no background or actual
involvement in animation or production, were shown
segments of the animation and asked if they see any
mistakes or details that need additional refining and
notices were taken about what they focused on and what
they felt was important in the animation.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics

4 Actual number depends on the complexity of the scene

5 human eye - ganglion cells." Encyclopædia Britannica. 2010. Encyclopædia Britannica Online. 02 Mar. 2010 <http://
www.britannica.com/EBchecked/topic/199272/eye

118

4! Experiment methodology
Members of the audience were shown single scenes
from the animation during the production stage and
asked what they find important in the scene and if there
are any corrections needed. I always showed them the
more complex animation first and the simplified version
second.

Questionnaire had the following form:

SCENE A1
Which scene seemed more complex
a) first,
b) second
c) both were equally complex

SCENE A2
Did you notice any difference in fog between the two
scenes?
a)yes, clearly
b) yes, but nothing significant
c) not at all

SCENE B
Which model seemed more complex
a) first one
b) second one
c) both were equally complex

SCENE C
Which model seemed more complex
a) first one
b) second one
c) both were equally complex

Studying their answers, I realized that they mostly
focus on the foreground, paying almost no attention to
the background.

They noticed the difference between scenes where I
eliminated the background and the scenes where I added
it, but they were so focused on the main characters and
their actions that they didn’t notice the difference
between scenes with detailed background and the same
scenes with the same background in much lower detail.

Therefore we decided to put a 360 image sphere of
an industrial town as a background and skip all the time
and work which would be spent into making 3D models

of background buildings, distributing and rendering
them, effectively eliminating several days of work. In
order to make this simplification of the background less
noticeable, a depth-of-field effect was used to add a
slight blur to the background.

There are two main characters, the boy and the robot.
Since the boy bears much more similarity with human
beings than the robot, audience members were noticing
even the smallest mistakes and asked for more details on
the model of the boy, when compared to the robot. This
is due to the natural human instinct to pay much more
attention to detail when watching a human-like being
than when observing an animal, robot or a shape.
Therefore, the final version of the boy was modeled in
11.000 polygons while the robot didn’t take more than
700 polygons.

Also regarding the physical features of the boy’s
model, viewers paid much more attention to the head
and the face than to the other parts and limbs. So in the
final model, more than 4.000 of 11.000 polygons were
used just to model the face region.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics

Figure 1: Example frames from the animation
“Greyworld”

Answer a) b) c)

SCENE A1 2 (33%) 0 4 (66%)

SCENE A2 0 3 (50%) 3 (50%)

SCENE B 2 (33%) 0 4 (66%)

SCENE C 0 0 6 (100%)

119

Weather effects and particle effects, such as fog and
smoke coming from the chimneys were noticed by the
viewers, however they couldn’t see any significant
difference between 3D volumetric fog and 2D fog made
using noise maps in After Effects (a significantly faster
method) except in cases where we told them to pay more
attention to the fog. The same results came up in the case
of smoke from the chimneys in the intro scene. Without
being previously warned about the difference between
two types of smoke, observers wouldn’t notice the
difference between the scene where the smoke was
simulated through volumetric 3D particles, and the scene
where it was just applied as a simple 2D particle effect
in post-production stage.

5! Results
Simplification of less important elements of animation
led to a noticeable decrease in rendering times.

5.1 Scene A1.

An example scene with 360º image in the
background was rendered in 9 minutes, while the same
scene with 3D modeled buildings in the background
took 25 minutes to render. (only 36% of the original time
required). Four of six candidates (66%) noticed no
difference before they were told about it.

5.2 Scene A2

In the same example scene, we used volumetric fog,
generated in Cinema 4D software, to enhance the mood,
and it took over 190 minutes to render, but when we

rendering time in min.

0

7.5

15.0

22.5

30.0

3D background 360º image

rendered the scene without fog (9 minutes) and exported
it to After Effects (in FBX format with 3D cameras and
lights), where we added 2D fog with the particle
simulation system, it just took another 5,5 minutes for it
to render, so the final processing time was 14,5 minutes,
compared to 190 minutes with volumetric fog. (7,63% of
the original time required).

Three of the candidates (50%) didn’t notice the
change in the quality of fog before they were told about
it, while another three (50%) noticed it but labeled it as
not significant in magnitude. But even after noticing the
difference in two fog rendering methods, their focus
drifted off the fog and to the other elements of the scene.
30 seconds after the fog was introduced into the scene, it
was still there and all six of the participants (100%)
could confirm its presence, but they were not noticing
any details or quality changes regarding the fog
anymore, it was just background information now. This
led me to conclude that fog could be rendered in full
quality and volumetric for the first several seconds of its
introduction as an element of the scene, and then
lowered in quality and complexity in order to decrease
rendering times.

5.3 Scene A3

In this example scene boy is walking across the lawn
and then comes to a halt. Two polygonal meshes for the
model of the boy were used in two different version of
the scene. The complex one consists of 34.000 polygons,
the simpler one counts less than 11000 polygons,

3D rendering
export + 2D rendering

0

50

100

150

200

volumetric fog 2D particle fog

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
120

optimized so that the most complexity is in the face of
the boy.

Six of participants (100%) didn’t notice any
difference between two versions of the scene while the
boy was walking (being in motion). However, two of
them (33%) noticed this difference after he came to a
halt (stopped moving), but only during the second
viewing, after they have been told of the difference. This
led me to conclude that simpler versions of the models
can be used in moving sequences, while the more
detailed (and processor-hungry) models may be left only
for still scenes if required.
SCENE C

The same example scene was used as in “SCENE B”,
however this time I used the 9000 polygon and the 700
polygon model of the robot.

Six of the participants (100%) didn’t notice any
difference between models in the scenes, and even after
being told about it, and after watching still frames from
the scene, they couldn’t find any considerable difference.
This led me to conclude that people pay less attention to
detail when watching a non-human creature or robot,
than when watching a human or human-like creature.

6! Conclusions and feature
! work
Using methods such as visual language or experiments
with a live audience helps to decide which elements of
the scene require a specific level of quality, effectively
reducing work and processing times for a significant
amount. Further insight in this field could result in
classifications, such as a detailed table of specific scene
elements showing their relative level of importance and
thus saving time and money when working on small and
medium-sized 3D animation projects, especially if the
animators are less experienced.

While this approach might seem very subjective,
with no clear formulas or algorithms, there are still
visible patterns in perception of most viewers, which can
be statistically measured and compared. Further research
could give us answers on how much we have to go into
detail with other animation tasks that are heavy on
processing requirements, such as fluid animation, cloth
dynamics, hair dynamics and other particle dynamics,
when working on small-to-medium budget projects,
resulting in a clearly defined table of priorities.

Acknowledgements
We would like to thank Andrei Ferko for his professional
support during the production stage, Muhamed Kafedzic
and Matej Srepfler for sharing their experience on
compositing and special effects simplification, and Dino
Karadza, Albin Brkic, Dijana Brkic, Elma Selman, Matej
Srepfler and Mirza Coric for reviews during the
animation production stage.

References
[1] Isaac V. Kerlow. The Art of 3D Computer

Animation and Effects (Third Edition). Wiley
Publishing Inc. 2005.

[2] Rudolf Arnheim. Art and Visual Perception: A
Psychology of the Creative Eye (Second Edition).
University of California Press, 1974.

[3] Glencross M., Chalmers A.G., Lin M.C., Otaduy
M.A., Gutierrez D. Exploiting Perception in High-
Fidelity Virtual Environments. ACM SIGGRAPH,
July 2006.

[4] Andrea Di Blas, Tim Kaldewey. Data Monster -
Why graphics processors will transform database
processing. Article on ieee.spectrum website,
September 2009.

[5] Rolf Herken. The Future of Rendering.
NVISION08 presentation, 2008

[6] Rui Wang, Kun Zhou, Minghao Pan, Hu-Jun Bao.
An Efficient GPU-based Approach for Interactive
Global Illumination. Siggraph presentation, 2009

[7] Koch, C. and Ullman, S. Shifts in selective visual
attention: towards the underlying neural circuitry.
Human Neurobiology, 1985.

[8] Niebur, E. and Koch, C. Control of Selective Visual
Attention: Modeling the `Where' Pathway. Neural
Information Processing Systems, 1996.

[9] Cater, K., Chalmers, A. and Ward, G. Detail to
attention: Exploiting visual tasks for selective
rendering. Proceedings of the Eurographics
Symposium on Rendering, 2003.

[10] Hasic, J., and Chalmers, A. Visual attention for
influencing the perception of virtual environment.
Spring Conference on Computer Graphics, ACM
SIGGRAPH, April 2006.

[11] Hasic, J., and Chalmers, A. Visual attention for
significantly influencing the perception of virtual
environments. Winter School of Computer Graphics
WSCG2007 Proceedings, 2007.

[12] NVIDIA Corporation. Fermi Compute Architecture
Whitepaper. Article on www.nvidia.com

[13] HCWVEFD 2009 - Hollywood Camera Work.
Visual effects for Directors DVD edition, 2009

[14] HCWMCHEBS 2004 - Hollywood Camera Work.
The Master Course in High-End Blocking &
Staging. DVD edition, 2009

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics
121

122

Parallel Distances
Analyzing Multi-Level Relationships in Networks

Stephan Pajer
Supervised by: Harald Piringer

VRVis Research Center
Vienna / Austria

Abstract

This paper introduces a new type of visualization that sup-
ports the study of queries concerning relationships be-
tween different groups of nodes in a network. It allows
a user performing a search for a multi-leveled relationship
within a graph to see how each part of the query affects
the resulting set of nodes. This view can be efficiently
utilized in a linked-view environment to supplement well-
established visualizations. The paper finishes off with a
case study that exemplifies how to apply the parallel dis-
tance view to perform a query on a dataset.

Keywords: Information Visualization, Graph Visualiza-
tion, Linked Views

1 Introduction

With the recent boom in the popularity of social net-
works, the importance of extracting information from
those networks has undergone a similarly staggering in-
crease. These networks differ from normal network in
the distribution of their connections. The maximum dis-
tance between nodes is quite small [Wat04] even though
most nodes only have a small number of connections
[JHGH08]. Additionally, these networks are generally
multivariate, which means that there is a multitude of data
available for each node of the networks, e.g. age, income,
location, etc.

When investigating a social network, one common task
users want to accomplish is to search the network for a
specific relation between different nodes, each character-
ized by certain attributes. The nodes can then be grouped
together by such attributes as age or income. The user
can then create a query to find out how many persons of
a group know someone from another group. Such a query
might search for persons with a low income that directly
know politicians. The query could also be expanded to in-
clude more than just two groups. This paper presents ‘Par-

allel Distances’, a view that is tailored to assist the user in
studying the effects of each part of such a complex relation
between groups of nodes in a network.

After briefly presenting related work, this paper will ex-
plain this new visualization. We will then go on to explain
the interactions we have implemented for this view before
describing the necessary computations. The paper contin-
ues by giving a usage example of our new visualization
before finishing with a discussion and propositions for fu-
ture work that could be done to improve this view.

2 Related Work

The most widely known visualization of a network is the
node-link view. To cope with the size of some networks,
several systems that cluster multiple nodes together have
been proposed, e.g. [AvHK06] and [AMA08]. This way,
node-link views have been successfully utilized in ana-
lyzing social networks in [ACJM03] and [PS06]. Others
have decided to combine matrix representations [FK46]
with node-link diagrams [HF07], [HFM07]. These two vi-
sualizations have also been used together in a multi-view
environment in [HF06].

Some approaches that also use a node-link diagram
to visualize the network but bin the nodes in groups
[BMGK08] and [SA06]. Such a binning of multivariate
data has also been utilized several times in the recent years
to allow the inspection of connections between groups,
e.g. [PW06], [PvW08] and [Wat06].

In addition to more traditional network visualization ap-
proaches, the Parallel Distance view is also heavily based
on Parallel Sets [BKH05] which visualize connections be-
tween sets.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

3 Parallel Distances

3.1 Visualization

Figure 1: The network visualized in this section.

It should be noted that all figures in this subsection
are created from the network pictured in Figure 1. Even
though nodes can be members of multiple groups, this ex-
ample only uses disjunct groups. While all figures are
explained in the text, the reader might find it helpful to
compare the resulting visualization to the network they are
made of.

Figure 2: A single axis

First, we will explain how the view looks when just a
single group of nodes has been added to the view. An ex-
ample image of this can be found in Figure 2. A single
axis representing the group can be seen. This axis is di-
vided into two parts. The upper part, displayed in green,
represents the nodes that are in the group. The lower black
part represents the nodes that are not selected. Both parts
are scaled according to the number of nodes they repre-
sent.

Now we will explain what happens when a second
group is added to the view. Figure 3 displays the look
of the view with two axes. Two axes is the minimum size
for a query to be performed on the groups. Each axis is
now divided into 3 parts. While the black part at the bot-

Figure 3: Two axes

tom has remained unchanged, the top green part has now
been divided into two. The red part at the very top shows
how many nodes in the group fulfill all requirements of the
query. The remaining green part in the middle represents
the nodes that are selected in the group but do not meet all
requirements of the query.

The query is performed from left to right, with a tex-
tual representation of the parameters displayed between
the axes. Between the axes on the top of the view we dis-
play how many connections are required for a node on the
left. A node from the group of the left axis that is con-
nected to at least this many nodes of the right axis’ group
is a valid result of this query. Below the number of re-
quired connections, on the bottom of the view, we display
how large the distance between a node from the left group
and a node from the right group has to be. This can be
very useful for networks in which each node has a spe-
cific weight that represents a value like physical distance
between nodes. If, for example, each node represents a
city, this value can represent the distance a person has to
travel from one city to reach the other one. This way, only
cities within a certain distance would be considered for the
query.

If the user has selected a node as described in subsec-
tion 3.2, the space between the axes is used to show how
the connection requirement filters out the nodes that do not
fulfill these requirements. See Figure 4 for reference. This
is in accordance to the visual information seeking mantra
of only offering details on demand [Shn96]. Between the
axes are now two connecting segments that represent the
nodes in the selected group. Next to the selected axis, both
connections are at the top. On the opposite side, one seg-
ment stays at the top while another segment points toward
the bottom. The segment that stays at the top represents
the nodes that fulfill the requirements of the query while
the segment that points toward the bottom represents those
that do not fulfill the query. Thus, the height of each seg-
ment is equal to the respective height on the axis.

Figure 5 shows how the view looks after a third group
has been added. To fulfill the query, a node from the left
group now has to be connected to the specified amount

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
124

(a) Left axis selected

(b) Right axis selected

Figure 4: Two axes with one selected

of nodes from the middle group that in turn have to be
connected to the specified amount of nodes from the right
group. Let us now assume that the user has selected ei-
ther the left or the right axis. The connecting segments
adjacent to the selected axis act as if only the selected axis
and the middle axis existed. The connecting segments be-
tween the other two axes show the number of nodes that
fulfill the whole query staying at the top with the nodes
that fulfill the first part of the query but fail the second part
point toward the bottom. The size of the segment pointing
toward the bottom thus equals the difference between the
two segments staying at the top. This allows the user to
see which part of the selected group fails the requirements
at each part of the query.

The connections look somewhat different if the user se-
lects the group in the middle. This change is shown in Fig-
ure 6. Each connecting segment has been further split into
two. The red segment at the very top represents the amount
of nodes that fulfill the complete query. The black segment
pointing to the top represents nodes that fulfill this con-
nections requirements but fail the requirements between
the middle axis and the opposite axis. The black segment
pointing toward the bottom stands for nodes that fulfill nei-
ther this requirement nor the one from the other side. The
second red segment, between the first red segment and the
black segment pointing to the top, that points toward the
bottom represents the nodes that fail the requirements be-
tween these axes but fulfill the requirements between the
other two axes. Thus the red segments represent the nodes
that fulfill the requirements of the other direction while the
black segments fail the other direction.

(a) No axis selected

(b) Leftmost axis selected

(c) Rightmost axis selected

Figure 5: Three axes

3.2 Interaction

Since this system is designed to assist the user in explor-
ing the dataset, interaction is very important. First, we will
explain how a user can interact with our view, then explain
the offered interactions of our view with a linked-view sys-
tem.

The user may select an axis by clicking on or in the
close proximity of it. Selecting an axis updates all con-
necting segments to reflect the amount of filtered and non-
filtered nodes of the newly selected group as described in
subsection 3.1.

Besides the main window, an additional control window
allows the user to adjust the currently set groups (shown
in Figure 7) and also allows the selection of an axis. It
also enables to change the order of the axes as well to re-
move an axis. A dialog to adjust the constraints from the
currently selected axis to the next one can also be opened
from this control window.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
125

Figure 6: Three axes with the middle axis selected

(a) Control window (b) Connection settings

Figure 7: Additional windows and dialogs.

Our view allows the user to zoom into any region he
is interested in. Zooming is depicted in Figure 8. This
is implemented as a bar to the far left of the window. To
zoom, the user simply has to click the widget and drag his
mouse. Zoom also affects the displayed connections that
originate from this axis. Such a zoom operation is not reset
after the user selects a new axis.

There is also interaction between this view and the
linked-view system. The user can select any subset of
nodes (passes the query, does not pass but is in group, not
in group) from any axis. Such a selection affects the whole
system and can be utilized in almost any view. Selection
also enables the user to transfer the results of a query from
this view to other linked views. It is performed by press-
ing the left mouse button over an axis and highlights the
subset of graph nodes that is visually represented below
the cursor in all linked views. The framework this view
was implemented in supports composite queries based on
set operations. This way, selecting the results of the query
from all groups is as simple as choosing the unison op-
eration and selecting the desired subset of each distance
separately.

(a)

(b)

Figure 8: The same visualization with (b) and without
zoom (a).

4 Involved Query Computations

(a) (b)

Figure 9: Example markings of the algorithm with 2+ con-
nections to the left and 1+ connections to the right.

This section explains the algorithm required to calcu-
late the displayed values of our approach. For this pur-
pose, this algorithm solves the presented query. In ad-
dition to the main query, it is also necessary to calculate
reduced queries to display the connecting segments for
longer (more than 2 axes) queries to display the fraction
of nodes that fail the requirements at each axis. These
queries differ from the main query in the fact that they ig-
nore axes from one or both sides. For each combination
of groups removed from the left and/or right that still has
at least two groups left, the algorithm has to run once to
solve it. To obtain the number of nodes of a group that
fails at a particular distance, the results from the queries
with adjacent cutoffs are compared. These results are the
same results as the ones that would be obtained from the
queries just before and after adding the group. Thus, they

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
126

Listing 1 Query Calculation
//backward pass
mark all nodes of rightmost axis that are in the group as backward selected
for each segment between axes starting from right

for each selected node in the left axis
evaluate connection with backward selected nodes of the right axis
if the requirements are fulfilled

mark backward selected

//forward pass
mark all nodes of leftmost axis that are backward selected as forward selected
for each segment between axes starting from left

for each forward selected node in the left axis
for each connected and backward selected node of the right axis

mark forward selected

represent the difference in nodes that pass the query this
group causes.

The developed algorithm works by performing two
passes over every segment between axes. Pseudocode for
the algorithm is presented in Listing 1 with an additional
illustration showing an example marking in Figure 9. The
first pass is a backward pass marking valid nodes starting
on the rightmost axis. The second pass starts at the left-
most axis and marks the nodes that pass all requirements
and thus fulfill the complete query. For calculations that
do not involve all groups in the view, the backward pass
information only has to be calculated once per first group
on the right and can be reused otherwise.

In the following evaluation, V stands for the number of
nodes while S stands for the number of segments between
groups (the number of groups minus one). The algorithm
has a complexity of O(V 2) for each segment, resulting in
a complexity of O(SV 2) for the query and a complexity
of O(S2V 2) for all calculations that have to be performed.
In the backward pass, for each segment each selected node
on the left side has to be checked against all selected nodes
on the right side, resulting in the complexity of V 2. Since
S is generally quite small, the major factor influencing the
experienced performance of our approach is the size of the
groups.

5 Usage Example

This section demonstrates how Parallel Distances can be
utilized to analyze a dataset. We utilize our view to
perform the search for structure A from the 2nd mini-
challenge of the VAST challenge 20091. This challenge

1http://hcil.cs.umd.edu/localphp/hcil/vast/
index.php/taskdesc/index/mini_challenge_2

asks the user to search the given dataset for an employee
at an embassy who communicates with exactly three ‘han-
dlers’ who pass on his information to a common middle
man who then forwards it to the mastermind of a crimi-
nal organization. It is further known that the employee has
about 40 contacts, each handler has 30–40 contacts, the
middle man has 4–5 contacts and the mastermind ‘Fearless
Leader’ has more then 100 contacts including international
ones. The handlers are also not allowed to communicate
with each other.

Figure 10: Groups created and added to view.

After loading the data into the system, we start off by
defining the groups. We define the employee group as
users with 38–42 contacts to incorporate the expressed un-
certainty. The handler group is defined as users with 30–
40 contacts. It can be seen that these groups overlap. We
define the middle man group as persons with 4–5 contacts
and add all users with at least 100 contacts to the master-
mind group.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
127

Next, we open up an instance of our view and add each
of those groups in the order employee–handler–middle
man–mastermind. A picture of the system at this stage
can be found in Figure 10. Now we set the parameters of
the connections between the groups. Since a direct con-
nection is the default setting and just the employee needs
more than one connected node, we simply set the number
of connections between the first two axes (employees and
handlers) to three.

Figure 11: Views and settings needed to solve the problem.

The only requirement we have not yet incorporated is
that all three handlers need to be connected to a single
middle man. To specify this requirement, we add a second
instance of our view to the system. This instance also con-
tains all groups, but in reverse order: mastermind—middle
man—handler—employee. We set the required number
of required connections between the second and third axis
(middle man and handler) to three. This is shown in Fig-
ure 11.

Figure 12: Visualization of the result.

An intersection between the same groups from the two
views now yields the nodes that fulfill the requirements
of both views. Since there could still be nodes that fulfill
the requirements of the two views with different neighbor
nodes, we add a node-link view to the system and visual-
ize the results. Such nodes can be easily identified in such
a view, since such neighbor nodes are already filtered out
and the resulting structure does not match the requested
one. In fact, such nodes will most probably have no neigh-
bors or just a single neighbor with no further connections
after such filtering. Finally, we still have to verify that the
handlers do not communicate among themselves. Thank-
fully, there are only six nodes not filtered out, and they
match the requested layout, so those steps can be skipped.
The final state of the system can be seen in Figure 12.

6 Discussion and Future Work

While the presented view succeeds in offering the user the
intended information, there are still a number of points that
could be improved. As described in section 5, it is cur-
rently not possible to specify that a node needs to be con-
nected to multiple nodes that are further all connected to
the same node (i.e. a person in group A knows two persons
in group B that both know the same person in group C). In
the current version, this would require two views where the
second instance contains the same groups as the first one
but in reverse order. It would further require the user to
check the result for fragments of solutions where one part
managed to fulfill all requirements while the nodes used
to fulfill them did not pass. However, it is easily possible
to imagine a constellation that can not be answered with
two instances of this view by requesting such a constel-
lation multiple times in the same query. A possibility to
exactly specify the required layout would be a significant
improvement for this visualization.

Another extension concerns the support of fuzzy
groups. If the given group values would be treated as a
percentage of group membership instead of a binary value,
the user could dynamically adjust the threshold and thus
alter the group membership (i.e. for a group defined by
age, the user could see if reducing the threshold by a sin-
gle year would cause a significant change in the result of
the query). This would reduce the time required to modify
groups significant. It would further be possible to change
the binary group membership to show one or more colored
sections that reflect how close these sections are to fulfill-
ing the group requirements. This would enable the user to
assess the impact of changes to the group membership.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
128

7 Conclusions

This paper presented a novel view for systems that utilize
multiple linked views with the goal of giving users that
are interested in searching for complex relations within
a multivariate network using a multiple linked view en-
vironment. Our approach supports the study of queries
concerning relationships between groups in a network. To
further investigate the results of such queries, this view has
been integrated into a system containing views that can be
used to further investigate the results. A useful combina-
tion with our view that is available in this system is in the
form of an already existing node-link view. This combi-
nation has proven to be effective for both small networks
and cases where the user already has at least a basic idea
of the kind of relations he is interested in investigating.

8 Acknowledgments

This work was done at the VRVis Research Center in Vi-
enna, Austria. Special thanks go to my supervisor Harald
Piringer as well as Wolfgang Berger for the discussions we
had while planning the view.

References

[ACJM03] AUBER D., CHIRICOTA Y., JOURDAN F.,
MELANÇON G.: Multiscale visualization of
small world networks. In INFOVIS (2003),
pp. 75–81.

[AMA08] ARCHAMBAULT D., MUNZNER T., AUBER
D.: Grouseflocks: Steerable exploration of
graph hierarchy space. IEEE Transactions on
Visualization and Computer Graphics 14, 4
(2008), 900–913.

[AvHK06] ABELLO J., VAN HAM F., KRISHNAN N.:
Ask-graphview: A large scale graph visual-
ization system. IEEE Transactions on Visu-
alization and Computer Graphics 12 (2006),
669–676.

[BKH05] BENDIX F., KOSARA R., HAUSER H.: Par-
allel sets: Visual analysis of categorical data.
In INFOVIS ’05: Proceedings of the 2005
IEEE Symposium on Information Visualiza-
tion (Washington, DC, USA, 2005), IEEE
Computer Society, pp. 133–140.

[BMGK08] BARSKY A., MUNZNER T., GARDY J.,
KINCAID R.: Cerebral: Visualizing multiple

experimental conditions on a graph with bio-
logical context. IEEE Transactions on Visu-
alization and Computer Graphics 14 (2008),
1253–1260.

[FK46] FORSYTH E., KATZ L.: A matrix approach
to the analysis of sociometric data. Sociome-
try 9, 4 (1946), 340–347.

[HF06] HENRY N., FEKETE J.-D.: Matrixexplorer:
a dual-representation system to explore so-
cial networks. IEEE Transactions on Visual-
ization and Computer Graphics 12, 5 (2006),
677–684.

[HF07] HENRY N., FEKETE J.-D.: Matlink: En-
hanced matrix visualization for analyzing so-
cial networks. In Proceedings of the Interna-
tional Conference Interact (2007), pp. 288–
302.

[HFM07] HENRY N., FEKETE J.-D., MCGUFFIN M.:
Nodetrix: Hybrid representation for analyz-
ing social networks, 2007.

[JHGH08] JIA Y., HOBEROCK J., GARLAND M.,
HART J.: On the visualization of social and
other scale-free networks. IEEE Transactions
on Visualization and Computer Graphics 14,
6 (2008), 1285–1292.

[PS06] PERER A., SHNEIDERMAN B.: Balancing
systematic and flexible exploration of social
networks. IEEE Transactions on Visualiza-
tion and Computer Graphics 12, 5 (2006),
693–700.

[PTMB09] PIRINGER H., TOMINSKI C., MUIGG P.,
BERGER W.: A multi-threading archi-
tecture to support interactive visual explo-
ration. IEEE Transactions on Visualization
and Computer Graphics 15, 6 (2009), 1113–
1120.

[PvW08] PRETORIUS A. J., VAN WIJK J. J.: Visual
inspection of multivariate graphs. Comput.
Graph. Forum 27, 3 (2008), 967–974.

[PW06] PRETORIUS A. J., WIJK J. J. V.: Vi-
sual analysis of multivariate state transition
graphs. IEEE Transactions on Visualization
and Computer Graphics 12, 5 (2006), 685–
692.

[SA06] SHNEIDERMAN B., ARIS A.: Network vi-
sualization by semantic substrates. IEEE
Transactions on Visualization and Computer
Graphics 12, 5 (2006), 733–740.

[Shn94] SHNEIDERMAN B.: Dynamic queries for vi-
sual information seeking. IEEE Softw. 11, 6
(1994), 70–77.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
129

[Shn96] SHNEIDERMAN B.: The eyes have it: A
task by data type taxonomy for information
visualizations. In VL ’96: Proceedings of the
1996 IEEE Symposium on Visual Languages
(1996), IEEE Computer Society, p. 336.

[Shn97] SHNEIDERMAN B.: Designing the User
Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[Wat04] WATTS D. J.: Six Degrees: The Science of a
Connected Age. W. W. Norton & Company,
February 2004.

[Wat06] WATTENBERG M.: Visual exploration of
multivariate graphs. In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors
in computing systems (New York, NY, USA,
2006), ACM, pp. 811–819.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
130

Modeling
and

Natural Phenomena

Extraction of skinning data by mesh contraction with Collada 1.5
support

Martin Madaras∗

Supervised by: Tomáš Ágošton†

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

The most common approach to animate models and deter-
mine their shape attributes in computer graphics is using
skeletons. The skeleton and skinning weights can be either
assigned manually or computed from an input mesh. This
paper proposes the extraction of a skeleton and skinning
weights from a mesh, describes how to store computed
data in Collada 1.5 and use it for an animation. Firstly, the
mesh is contracted using constrained Laplacian smoothing
in a few iterations. Then the most important vertices from
the contracted mesh are chosen as control points. Mul-
tiple edges are removed and vertices that are very close
to each other are merged. We select and collapse a ver-
tex pair with the minimum cost in every iteration using a
greedy algorithm. The greedy selection is applied repeat-
ably until we have the requested number of bones. In the
next step the skinning weights are computed, according to
if we want rigid or soft skinning. In the postprocessing
stage the user can inspect the skeleton by previewing skin-
ning deformations, make desired changes and export the
skeleton to Collada 1.5. Transformation matrices used in
a hierarchical skeleton tree are not transformed to joint’s
local transformation frame, so they are immediately com-
patible with majority of animation software and libraries.
After the Collada file with the mesh, the skeleton and skin-
ning data is exported, data can be imported in animation
software such as 3D Studio Max, Blender or Maya and a
skinning animation can be rendered.

Keywords: skeleton extraction, mesh contraction, Col-
lada 1.5, skinning

1 Introduction

A frequently used approach for animation and modifica-
tion of 3D models is based on creating articulated hier-
archical structures - skeletons. Skinning data as a skele-
ton tree and weights can be either assigned manually or
computed from an input mesh. The first option is most

∗martin.madaras@gmail.com
†tomas.agoston@abyss-studios.sk

often chosen by artists, although sometimes it is unneces-
sary and time consuming. The skeleton has to be created
(or imported from templates), rigged into the mesh and in-
fluence weights have to be set. Skilled artists are able to
create and rig the skeleton in a short time, but sometimes
they have to make a lot of rigging adjustments during the
skinning process. In this paper we present how to auto-
matically compute the hierarchical skeleton and skinning
weights from an input mesh and use them in a skinning
animation using Collada 1.5 as export format between our
application and a graphic animation software such as 3D
Studio Max, Blender or Maya. Our application also pro-
vides a way how to examine the computed skeleton be-
fore exporting. The skeleton can be inspected by applying
skinning deformations using direct kinematics. The inter-
face also allows to dynamically add or remove a bone or a
branching if the user thinks some changes are needed.

2 Related work

2.1 Skeleton extraction

Numbers of algorithms have been proposed to compute
a skeleton from the mesh geometry. There are three
main groups of algorithms: volumetric methods, exam-
ple based methods and geometric methods. In this paper
we focus on geometric methods, they are the most suit-
able for meshes, because there is no conversion needed.
The geometric methods work directly on polygon meshes.
The most widely used geometric methods are Reeb graph
based methods [2], Voronoi diagram based [7] and Lapla-
cian smoothing based methods [1].

Reeb graph based methods need a suitable real-value
function, defined on the model surface, for a successful
extraction of a skeleton. Using this function, nodes of 1D
graph can be computed. This graph encodes topology of
the mesh and after resampling it is used as a base for the
skeleton. The method based on a harmonic function pro-
posed by [2] captures after resampling all the features of
the model well, but requires the user to specify the bound-
ary condition explicitly.

Laplacian smoothing based methods work directly on

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

the mesh geometry. The main idea of this approach is to
apply a well defined filter on mesh vertices. These meth-
ods solve the Laplacian system with different weights to
constrain the global smoothness and the volume preserva-
tion.

A few more approaches to the skeleton extraction prob-
lem are worth to mention. [13] extract skeleton by simpli-
fying the Voronoi skeleton with a small amount of user as-
sistance. [11] use repulsive force fields to find a skeleton.
The problem has received a lot of attention in recent years
and yet the design of a simple and robust method for ex-
tracting curve-skeletons remains a research challenge [5].

2.2 Skinning

Many types of mesh deformations can be performed by
a skeleton-driven deformation. However, there are types
of mesh deformations such as wrinkles, skin folds and
another non-bone-driven deformations, where skeleton-
driven deformation is not a sufficient option. Examples of
non-bone-driven deformation methods are surface based
methods [10, 15] and volume based methods [16]. Un-
fortunately, these methods are not suitable for a real time
animation of high resolution meshes in present. Because
of its efficiency and simple GPU implementation the most
popular skeleton-driven method still remains linear blend
skinning (LBS), also known as skeleton subspace defor-
mation. Some real time skinning works have focused on
improving the LBS by inferring the character articulation
from multiple meshes.

A few solutions to the problem of finding skinning
weights were proposed [3], but the methods are either res-
olution dependent [9] or the weights do not vary smoothly
along the mesh [14], causing artifacts with high resolution
models.

3 Graph conversion

For running our graph algorithms, we need to have the in-
put mesh as one connected object. The object needs to be
converted into a 3D graph, defined by an edge matrix E.
It is quite common that models are composed of more ob-
jects. These objects appear to be connected visually, but
edges in the model structure between these objects are not
defined - Figure 1. Also the opposite problem has to be
considered. There can be edges defined in an input mesh
which connect parts that should not be connected - Figure
2. These edges are remains of the work of graphic design-
ers or artifacts after format conversion and therefore have
to be excluded.

3.1 Joining and splitting of objects

Using a simple depth-first search suitable joining distances
can be found to connect or disconnect all graph compo-
nents. The algorithm works in two phases. First, we con-

Figure 1: Joining of the mesh graph is needed.

Figure 2: Splitting of the mesh graph is needed.

struct a mesh graph from an input mesh. This mesh graph
is constructed in a straight-forward way from the original
model structure and may consist of components. In the
next step, we compute distance between each pair of com-
ponents. For each component, the joining distance is com-
puted as a minimum of distances to each other component.
In the second phase, we construct the mesh graph again,
using joining distance tolerance computed in first phase.
This means that each vertex is joined with vertices which
lie in the joining distance radius. This condition joins the
closest vertices in neighbouring components which cre-
ates a one-component graph. An opposite approach can
be used when we want to avoid cycles in the final skeleton.
We can either compute or manually set splitting distance
tolerance. All the edges with a distance smaller than this
tolerance, will be removed.

4 Mesh contraction

For contraction of the generated mesh graph we use the
contraction algorithm using Laplacian smoothing pro-
posed by [1]. The algorithm does not alter geometry con-
nectivity (final skeleton curve is homotopic to the original
mesh), is noise sensitive and works directly on the mesh
geometry (the model does not have to be resampled). Ge-
ometry contraction removes details from the surface by ap-
plying Laplacian smoothing.

4.1 Laplacian smoothing

Vertex positions are smoothly contracted along their nor-
mals by solving the equation (2). The Laplacian smooth-
ing operator (1) was introduced by [6] for surface smooth-
ing. Laplacian smoothing operator L is the n× n square
matrix. This operator is applied on n vertices in vector V
as a filter. Term LV approximates curvature flow normals,

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
134

so solving LV
′
= 0 removes normal components of ver-

tices and contracts the geometry, resulting into a new set
of vertices V

′
.

Li j =





wi j = cotαi j + cotβ i j if (i, j) ∈ E
∑k

(i,k)∈E −wik if i = j
0 otherwise

(1)

where:
E – is the set of edges defined in the previous section

during a graph conversion process
αi j,β i j – are the opposite angles corresponding to the

edge (i, j) [6]

4.1.1 Linear equation

Unconstrained solving of this equation contracts the mesh
graph into a single point, so the equation is solved in more
iterations with carefully chosen weights which control the
contractions. WL and WH are diagonal weighting matrices
which control the contraction process. Weighting matrices
have to be updated after each iteration to drive the iteration
process into a desired state. By increasing WL,i we can in-
crease the collapsing speed for vertex i and by increasing
WH,i we increase the attraction weight to attract vertex i to
its current position. All the WL,i are in the next step multi-
plied by a predefined constant (sL) and WH,i are updated in
such a way, that the attraction weight is multiplied by a ra-
tio of the change of the area of faces adjacent to the vertex
i. If the area of adjacent faces is smaller, the multiplicative
term is higher, vertices are more attracted into their cur-
rent positions and in the next iteration the geometry is less
contracted in these vertices.

[
WLL
WH

]
V
′
=

[
0

WHV

]
(2)

Each step of the iterative contraction process works as
follows (t denotes the iteration number):

1. Solve
[

Wt
LLt

Wt
H

]
V t+1 =

[
0

Wt
HV t

]

2. Update W t+1
L = sLW t

L and W t+1
H,i = W 0

H,i

√
A0

i /At
i ,

where A0
i and At

i are the original and current areas
of adjacent faces for the vertex i, respectively.

3. Compute the new Laplacian operator Lt+1 with the
vertex positions computed from the previous iteration
V t+1 using equation (1).

The iterations converge when the volume is close to
zero. After each iteration, the volume approximation has
to be computed. In our implementation we used an ap-
proximation algorithm which subdivides the bounding box
of the model into an octree structure.

Figure 3: The half-edge collapse (ṽ2 → ṽ1).

5 Skeleton construction

The contracted mesh graph from the last iteration is sim-
plified, very close vertices are merged and a greedy algo-
rithm is used to select the most important control points. In
this section we are going to work with already contracted
vertices from previous section, they will be denoted as ṽi.
In our implementation the user can choose, how many con-
trol points he wants. We used 24 control points by default
which worked well for almost all GPUs and also it is a suf-
ficient number to control the skinning process of complex
high resolution models. During the collapsing process, for
each control point, the collapsed vertices into this control
point are stored in a hash map. Vertices are merged into
control points and every control point is shifted into the
center of its local mesh area which can be computed from
the stored hash map. For each control point, the volume of
the mesh region the control point represents in the original
mesh is computed. The control point which represents the
largest volume is chosen as the skeleton root.

5.1 Mesh graph simplification

The first step in the mesh graph simplification is to col-
lapse all edges, whose vertex distance is smaller than a
predefined threshold. Vertices in such pairs can be inter-
preted as the same control point, because the distance be-
tween them is very small and the influence over the mesh
vertices is almost the same. The second step is to col-
lapse edges which are the least important. For every edge
the cost value is computed and edges with minimum cost
are collapsed. For simplicity we apply half-edge collapse.
The half-edge collapse (i → j) merges vertex i to vertex j
and removes all the faces that are incident to the collapsed
edge. The half-edge collapse (ṽ2 → ṽ1) is shown in Figure
3. This step is repeated so many times that in the end we
will have the desired number of control points. The cost
value is computed as a weighted sum of a sampling cost
term and a shape cost term.

The sampling cost term (3) penalizes collapsing which
generates long edges, because in that way we will loose
the good mapping between the skeleton and the surface.
The term is computed as a weighted sum of distance of
adjacent vertices to the collapsed vertex.

SCTa(i, j) = ∥ṽi− ṽ j∥ ∑
(i,k)∈Ẽ

∥ṽi− ṽk∥ (3)

where:

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
135

Ẽ – is the current simplified edge set

The shape cost term (4) works in almost the same way as
in QEM simplification method [8] with one change. The
error matrices are computed over the edges, because the
contracted mesh has zero area faces, so the original vol-
ume based approach cannot be used. A symmetric 4× 4
matrix Q is associated with every vertex. Q is defined in
a such way, that term Fi(p) = pT Qi p is a squared distance
between point p and the edge (i, j). The initial error ma-
trix for vertex i is the sum of all squared distances to its
adjacent edges. For more detailed description of these ma-
trices, their initialization and their use in calculation of the
shape cost term we refer to [1]. For a given contraction
(ṽi, ṽ j) a new matrix Q needs to be derived to approximate
the error at ṽ j. Error matrices from previous iterations are
stored, so each cost update involves only matrix addition.
The shape cost term guarantees to keep the shape of the
contracted mesh graph as undisturbed as possible during
the simplification. The idea to assign these cost terms to
each edge after the iterative contraction converges success-
fully origins from [1].

SCTb(i, j) = Fi(ṽ j)+Fj(ṽ j) (4)

6 Binding skin vertices

Once we get the skeleton, we bind the mesh vertices to
its joints. If we attach a rigid model, the skin is supposed
to be inflexible. Therefore we only anchor a mesh vertex
to one nearest control point. In other way, when we want
to animate a character, we want the vertices to transform
smoothly. In this case, mesh vertices have to be anchored
to more control points with corresponding weights.

6.1 Skinning weights

Skinning indices are computed by finding a set of clos-
est control points to each vertex. The geodesic distance
is used as a distance measure. A distance between each
pair of vertices on the mesh graph from 0th iteration (after
conversion from an input mesh) is calculated and stored
in matrix D. It is calculated using Floyd-Warshall algo-
rithm [4], before the mesh graph is contracted. For each
control point Ck, the closest mesh graph vertex is found,
for instance v j. Then, the resulting geodesic distance (5)
between the control point Ck and the mesh vertex vi is
computed as a sum of distance between v j and vi on the
mesh graph calculated by Floyd-Warshall algorithm and
the euclidean distance between Ck and v j. The illustration
is shown in Figure 4.

gd(i,k) = D[i, j]+d(Ck,v j) (5)

where:
d(Ci,vk) – is euclidean distance between the mesh ver-

tex v j and kth control point Ck

Figure 4: This figure shows computation of the geodesic
distance between the control point marked with red cross
and the mesh vertex (1) on the bottom right. The red
path is the shortest path on the mesh calculated by Floyd-
Warshall algorithm and the blue line is the euclidean dis-
tance between the selected control point and the closest
vertex (2) to this control point on the mesh.

Weights (6) are assigned in a way that weight sum for
each vertex is equal to 1.0. Fractions are constructed in a
way that weights are indirectly dependent on the geodesic
distance. This construction guarantees that the closer con-
trol points will have greater influence over mesh vertices
than the further ones. The geodesic distance is a real-value
function defined on the mesh surface. Because the func-
tion varies smoothly along the mesh, the resulting weights
are fluently distributed over the mesh regions.

weight(i,k) =

1
gd(i,k)

∑
k′∈S

(
1

gd(i,k′)

) (6)

where:
gd(i,k) – is geodesic distance between the mesh vertex

vi and kth control point Ck

S – is the set of control point indices controlling the
vertex vi

Floyd-Warshall algorithm has time complexity O(n3),
so it takes quite a long time on models with higher number
of vertices. To optimize that time, we can use a downsam-
pled mesh for this computation. For downsampling, we
used previously mentioned QEM simplification method
[8]. The downsampled mesh preserves the mesh branch-
ing, tunnels and important vertices.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
136

6.2 Joint matrices

Bind pose matrices and current transformation matrices
for all the nodes are stored in the global (root local) space.
They are not transformed into node’s local space. The dis-
advantage is that during the skinning preview the matrices
have to be transformed into node’s local space. On the
other hand, the main advantage is that the skeleton struc-
ture is compatible with the majority of animation software.

6.3 Skinning on GPU

Our framework provides linear blend skinning imple-
mented on GPU for real-time examination of computed
skeletons. It is the most suitable method how to inspect
the skeleton structure and data, because of its efficiency
and simple GPU implementation. After the skeleton is
computed, the ”bind pose” world-space snapshot of all
transformation matrices of the skeleton nodes is taken, de-
noted as Bi, for each skeleton node. During the real-time
deformation process, transformation matrices are com-
puted. Each transformation matrix, storing the current
affine transformation, denoted as Pi, is computed each time
the user manually changes skeleton nodes. In each frame,
the resulting transformation Mi is computed as Mi = PiB−1

i
on CPU and uploaded into GPU. New deformed vertices
are computed using GLSL shader as :

v
′
=

n

∑
i=0

wiMivi (7)

where:
Mi – is the resulting transformation matrix, computed

on the CPU as Mi = PiB−1
i

wi – is the associated weight
vi – is the original vertex position in the Mi coordinates

system

6.4 Robustness

The mesh contraction and the skeleton extraction phases
are pose independent. It enables extraction of compat-
ible skeletons from different poses of the same model.
By compatible, we mean compatible in the sense of the
same branching, tunnels and the homotopy with an in-
put mesh. Also, the length of preserved edges will be the
same, because edges are collapsed in the same order. In the
end of the skeleton construction process, all corresponding
skeleton bones will have the same lengths. The geometry
meshes in different poses have corresponding edges of the
same length as well, so the skinning weights and indices
will result into identical values.

7 Collada 1.5 support

Model data and all important skinning data is saved in a
compatible way into the Collada .dae XML file. Collada

is a Collaborative Design Activity for establishing an in-
terchange file format for interactive 3D applications. Col-
lada supports storing of the mesh geometry, the hierarchi-
cal skeleton structure, indices, weights and inverse bind
pose matrices. With version 1.5 comes the possibility to
store kinematics as well. To use the full support of a kine-
matics model in Collada 1.5, computation of approxima-
tion of the minimum, the maximum and the current angle
for each joint is needed. Angles can be computed using
the inverse kinematics approach or assigned manually by
the user. In our implementation we use the latest version
of Collada DOM 2.2 with Collada 1.5 [12] support.

8 Results

Figure 5: The contraction and the extraction of the skele-
ton from low resolution geometry. (Top-left) The con-
verted mesh graph. (Top-right) The mesh graph after 2
iterations. (Bottom-left) The mesh graph after the last iter-
ation, the volume approximation is close to zero. (Bottom-
right) The extracted skeleton.

We have tested the framework on a wide range of differ-
ent models. We have achieved good results with both high
resolution and also with low resolution models. The more

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
137

Figure 6: The contraction and the extraction of the skele-
ton in few iterations from higher resolution geometry and
its comparison to manually rigged skeleton by an artist.
(Top-left) An input model. (Top-right) The converted
mesh graph. (Middle-left) The mesh graph after 2 itera-
tions. (Middle-right) The mesh graph after the last itera-
tion. (Bottom-left) The extracted skeleton. (Bottom-right)
The skeleton rigged by an artist.

vertices the model has, the better skeleton can be com-
puted, but the algorithm takes more time. Also the low
resolution models (less than 5000 polygons) can be con-
tracted in a good way, but it is harder to set good contrac-
tion weights. Setting the right contraction weights is the
most problematic part of this approach. Low resolution
models are more sensitive for high curvature differences
and can be easily over-contracted. Weights often have to
be set manually and the user needs some experience. Con-
traction of high resolution models is more deterministic
and good weights can be set automatically. Contraction
of geometry with lower number of vertices can be seen in
Figure 5 and contraction of geometry with more vertices
can be seen in Figure 6 and 7. The model of a worm in
Figure 6 was published with a manually rigged skeleton
(Bottom-right image). After the comparison we can con-
clude that the extracted skeleton is very close to the manu-

Figure 7: Another example of higher resolution geometry.
The extracted skeleton has sparser nodes at the core parts.
This feature can be observed, because many faces at core
parts are contracted into the same region. The points are
also moved towards the mesh boundary of the limbs, be-
cause of the shifting of the control points to the center of
its local mesh.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
138

ally rigged one. It can be used as a sufficient supplicant for
a manually created and rigged skeleton. The major differ-
ence can be observed on the both ends of the worm and in
the largest bend. Nodes of the skeleton tree were pushed
into their centers of local mesh areas and that is why they
were pushed inside, away from the mesh boundary.

9 Conclusion

In this paper we propose a framework for extracting a
skeleton and skinning data from the geometry mesh using
an iterative mesh contraction. The approach begins with
converting the geometry into a mesh graph. This graph is
iteratively contracted and a greedy algorithm is applied to
choose the most important subset of vertices. In the next
step, these vertices are converted into a hierarchical skele-
ton. Important skinning data such as indices and weights
which are controlling the influence of the skinning process
over vertices are computed as well. When the data is com-
puted, our framework also provides a way to inspect the
skeleton, simulate the skinning deformation process with
full GPU support and allow the user to change the skeleton
branching, if it is needed. After all, geometry and skinning
data can be exported into Collada 1.5 .dae file and trans-
ferred into an external application to create animations.

The extracted skeletons have sparser nodes at the core
parts of the model. This feature can be observed, because
many faces at core parts are contracted into the same re-
gion. Computed skeletons are independent of the size and
resolution of the models. The approach is insensitive to
noise, but works only for closed mesh models with 2D
manifold connectivity.

References

[1] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo
Chu, Daniel Cohen-Or, and Tong-Yee Lee. Skeleton
extraction by mesh contraction. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers, pages 1–10, 2008.

[2] Grégoire Aujay, Franck Hétroy, Francis Lazarus, and
Christine Depraz. Harmonic skeleton for realistic
character animation. In Symposium on Computer An-
imation, pages 151–160, 2007.

[3] Ilya Baran and Jovan Popović. Automatic rigging
and animation of 3d characters. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 papers, page 72, 2007.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algo-
rithms, pages 558–565. MIT Press and McGraw-
Hill, first edition, 1990.

[5] Nicu D. Cornea, Deborah Silver, and Patrick Min.
Curve-skeleton properties, applications, and algo-

rithms. IEEE Transactions on Visualization and
Computer Graphics, 13(3):530–548, 2007.

[6] Mathieu Desbrun, Mark Meyer, Peter Schröder, and
Alan H. Barr. Implicit fairing of irregular meshes
using diffusion and curvature flow. In Proceedings
of ACM SIGGRAPH 99, pages 317–324, 1999.

[7] Tamal K. Dey and Jian Sun. Defining and comput-
ing curve-skeletons with medial geodesic function.
In SGP ’06: Proceedings of the fourth Eurographics
symposium on Geometry processing, pages 143–152,
2006.

[8] Michael Garland and Paul S. Heckbert. Surface
simplification using quadric error metrics. In SIG-
GRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive tech-
niques, pages 209–216, 1997.

[9] Sagi Katz and Ayellet Tal. Hierarchical mesh de-
composition using fuzzy clustering and cuts. In SIG-
GRAPH ’03: ACM SIGGRAPH 2003 Papers, pages
954–961, 2003.

[10] Yaron Lipman, Olga Sorkine, David Levin, and
Daniel Cohen-Or. Linear rotation-invariant coordi-
nates for meshes. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Papers, pages 479–487, 2005.

[11] Pin-Chou Liu, Fu-Che Wu, Wan-Chun Ma, Rung-
Huei Liang, and Ming Ouhyoung. Automatic anima-
tion skeleton construction using repulsive force field.
In PG ’03: Proceedings of the 11th Pacific Confer-
ence on Computer Graphics and Applications, page
409, 2003.

[12] Sony Computer Entertainment Inc. COLLADA Dig-
ital Asset Schema Release 1.5.0, apr 2008.

[13] Marek Teichmann and Seth Teller. Assisted articu-
lation of closed polygonal models. In SIGGRAPH
’98: ACM SIGGRAPH 98 Conference abstracts and
applications, page 254, 1998.

[14] Lawson Wade and Richard E. Parent. Fast, fully-
automated generation of control skeletons for use in
animation. In CA ’00: Proceedings of the Computer
Animation, page 164, 2000.

[15] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hu-
jun Bao, Baining Guo, and Heung-Yeung Shum.
Mesh editing with poisson-based gradient field ma-
nipulation. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, pages 644–651, 2004.

[16] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu,
Hujun Bao, Baining Guo, and Heung-Yeung Shum.
Large mesh deformation using the volumetric graph
laplacian. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers, pages 496–503, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
139

140

Terrain Rendering with the Combination of Mesh Simplification
and Displacement Mapping

Zsolt Fehér∗

Supervised by: Zoltán Prohászka†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

Today’s graphics hardware is not capable of displaying ar-
bitrarily detailed terrains in real–time. Above a certain
number of triangles rendering becomes too slow, frame
rate drops below 30. Known methods – such as Level
of Detail (LOD) or Realtime Optimally-Adapting Meshes
(ROAM) – simplify the triangle meshes to maintain speed.
With fewer triangles real–time speeds are possible, but it
decreases the visual quality. This paper presents a fast,
real-time method that combines triangle mesh simplifica-
tion with pixel shader displacement mapping. This method
first builds up an approximate low resolution triangle mesh
and applies displacement mapping on that. In the pixel
shader it computes the intersection of rays and the terrain.
For the best result, it combines linear search with secant
search. The result is independent from the resolution of
the heightmap and is capable of displaying terrains with-
out decreasing detail.

Keywords: Terrain rendering, Real-time, Displacement
mapping, Ray tracing, Linear search, Secant method

1 Introduction

Usually height values of terrains are stored in heightmaps,
i.e. two dimensional grayscale textures. Above a certain
resolution of the heightmap, too many polygons need to be
displayed if we draw triangles between each height point.
The result will not be real-time. For example, a heightmap
with 2049 x 2049 points would mean more than 8 million
triangles. At present, an average GPU could display it only
below 30 fps. There are known methods, which simplify
the triangle mesh. Most popular are Level of Detail (LOD)
and Realtime Optimally-Adapting Meshes (ROAM). As
they display fewer triangles, frame rate is higher and ac-
ceptable, but visual quality is reduced. It is also possi-
ble to display the land with displacement mapping. This
could be faster and independent of the resolution of the
heightmap, but also could be inaccurate.

∗zsolt.feher.88@gmail.com
†prohaszka@iit.bme.hu

This paper presents a method that combines triangle
mesh simplification with displacement mapping. It com-
bines the advantages of both methods. With reduced num-
ber of triangles, high frame rate is possible. With displace-
ment mapping there is no loss in detail. The triangle mesh
helps displacement mapping to be faster and much more
accurate. The algorithm first builds up an approximate low
resolution triangle mesh above the real relief, then it uses
displacement mapping on that. The pixel shader of the
GPU determines the ray, and on a segment of the ray, it
searches for the intersection with the real terrain. Mini-
mizing inaccuracy, first it uses linear search, and finally
refines the result with secant search. The result is fast, in-
dependent of the resolution of the heightmap, and there is
no degradation in detail.

2 Related Work

Graphics hardware is only able to display a limited number
of triangles in real-time. For acceptable frame rate and vi-
sual quality several algorithms have been developed in the
last decades. These algorithms reduce the number of tri-
angles without significantly decreasing the visual quality.
An often used method is LOD [4] [15]. Simplest version
divides the surface to quads. In the quad where the camera
is, the resolution of terrain is not changed. In distant quads
the resolution is highly reduced. The border between two
quads is noticeable and could be annoying. Due to the dif-
ferent resolutions, gaps could appear.

Another solution is the ROAM [5]. This algorithm splits
triangles into two smaller triangles if the difference be-
tween the original and the new triangles is too big, and
merges neighboring triangles if the difference is small.
This algorithm considers the variety of surfaces. Flat part
of the terrain would only consist of few triangles. It also
considers what is visible from the camera. Far parts are
displayed with fewer triangles than near parts. Both al-
gorithms have an annoying problem. When the resolution
of the triangle mesh changes somewhere, this change is in-
stant. The surface pops between two frames, which is easy
to notice.

I developed a method that simplifies the triangle mesh.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

First the terrain consists of a few big triangles. The algo-
rithm recursively examines every triangle if it is necessary
to split it into two equal triangles. A triangle won’t be split
if the difference between the original and the new one is
small. The algorithm handles the variety of surfaces and
the triangle mesh doesn’t change during running. How-
ever gaps could appear on the surface, due to the different
size of triangles. Figure 1 shows a simplified terrain with
gaps produced by this algorithm. There exist methods to
fill these gaps, but they require additional computation and
still create difference from the original terrain.

Figure 1: Simplified terrain with gaps

It is also possible to display a terrain without using trian-
gle mesh. Using displacement mapping on a quad is capa-
ble of visualizing 3D surfaces. There are several methods
that calculate the surface in the pixel shader [1], including
parallax mapping, linear – binary search, secant method,
cone stepping, sphere tracing etc. Displacement mapping
could be really fast, due to the minimal polygon number.
Unfortunately it could be also inaccurate.

The widely used per-vertex displacement mapping
method (see [1]) differs from our approach, since it uses
the vertex shader only, while our method uses both vertex
and pixel shaders for displacement mapping.

There also exist a few approaches that combine triangle
mesh with displacement mapping [2] [3]. In [2] a sim-
ilar approach is used for vegetation visualization on or-
thographic landscape. Our approach is addressed for dis-
placement mapping in general, for example to be used by
visualizing reliefs. By our approach, the input is a homo-
geneous, high resolution height map, while [2] uses dif-
ferent datasets as the input of the visualizing algorithm.
In [2], the determination of the height offset is not de-
tailed, in our method it is calculated correctly and based
on the height map.

3 Approximate Low Resolution Tri-
angle Mesh

With basic displacement mapping we encountered a seri-
ous problem. Displacement mapping is usually used to in-
crease the detail of a surface without using more polygons.
Displacement mapping algorithms usually assume that the
camera doesn’t go below the original surface, and doesn’t
fly between bumps. In our application we would like to fly
among the hills. If we draw the displaced terrain below the
polygons, the terrain disappears when camera move below
them. A better solution is to create the terrain above the
polygons. Then the camera can fly between hills, but for
horizontal and above horizon rays the terrain doesn’t ap-
pear. When a ray doesn’t intersect the original polygons,
the pixel shader algorithm doesn’t start calculating the in-
tersection with terrain (see Figures 2and 3).

Figure 2: Ray doesn’t intersect polygons

Figure 3: Terrain is not displayed above the base triangles
(without using bounding box)

A known solution to this problem is the application of
a bounding box. It builds up a box around the displaced
surface, therefore every ray would intersect a polygon, and
the pixel shader could determine the intersection with the
terrain.

In the project we developed a faster method for this
problem. It builds up an approximate low resolution tri-
angle mesh above the real terrain in three steps. On this
mesh it applies displacement mapping. Since the real ter-
rain is very close to the mesh, the searches in pixel shader
will be much faster.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
142

3.1 First Step: Low Resolution Triangle
Mesh

First the algorithm creates a low resolution triangle mesh.
It uses height values from the height map. It doesn’t use
all pixels from height map, but skips a certain number of
pixels. The resolution of the new mesh can be 16× 16,
32×32, 64×64 or 128×128 quads. The optimal choice
depends on the graphic card. On an Nvidia Geforce 8400
M the best result was observed at 32×32, but on an 8800
GT we got better outcome with 128× 128. For arbi-
trary resolution, it is important that the resolution of the
heightmap is 2n +1.

3.2 Second Step: Push Up the Quads

For each quad1, the algorithm examines the height values
covered by a quad. It computes if a point is above the
quad, then stores the highest among them. After the high-
est point above the quad is determined, the whole quad
is being pushed upward to the maximum point. To do
this, it is necessary to calculate the distance between the
proper triangle’s plane and the point. A simple method is
to compute intersection between the plane and a vertical
line. Place vector r0 of the line is at 0 height.

t =
(p− r0) ·n

v ·n (1)

where p is a point of the plane2, r0 is a point of the line,
n is the normal vector of the plane and v is the direction
vector of the line. It is easy to compute the plane’s normal
vector from the vertices of the triangle.

n = (b−a)× (c−a) (2)

where a and b are vertices of the triangle. Since the point
of the line is at 0 height, parameter t is the exact height
of the intersection. The difference between t and the real
height value shows how far the quad should be raised.
The algorithm stores in an array how each quad has been
pushed up. This is used in step three.

3.3 Third Step: Fill Gaps

Each quad rose differently, scales of pushes are different
at neighbors, therefore gaps appear between quads. These
gaps should be removed. For every quad at every vertex,
the algorithm examines the other (maximum three) ver-
tices at that point and determines which one is the highest.
The vertex (not the entire quad) should be pushed to the
height of the highest vertex at that point. After every ver-
tex raised to the proper height, there will be no gaps.

With these three steps, we got a low resolution terrain.
The original terrain is never above the new surface but is
very close to it.

1A quad consists of two triangles.
2In this case any vertex of the triangle

4 Displacement Mapping on Approx-
imate Triangle Mesh

If we apply displacement mapping on the approximate tri-
angle mesh, we get better results than using it with bound-
ing box, because the triangle mesh is very near to the real
surface. The relevant part of the ray is shorter, and with
linear search the intersection could be found mostly within
a few steps.

The heightmap texture stores height values between 0
and 255. These will be normalized to the range 0 and 1
on the GPU. In the rest of the article we assume that both
[U W H] coordinates are normalized to 0 and 1.

During basic displacement mapping in the pixel shader
we calculate which segment of the ray falls between 0 and
1. On this segment we search for the intersection with the
terrain. For this new method, the segment of the ray that
enters below the triangle mesh usually starts far below 1.
Therefore the segment is shorter, and the terrain is very
near to the entry point. An example can be seen in Fig-
ure 4.

Figure 4: On approximate triangle mesh the segments of
the rays are shorter and the terrain is nearer

The binary search or the secant method improved only
slightly due to the shorter segment, but linear search be-
came significantly faster. The search begins close to the
intersection, generally the intersection is found within a
few steps. Using 4 linear search steps, and 1 secant search
step, the displayed terrain looks good (Figure 5).

Figure 5: Terrain with 4 linear and 1 secant search steps.

For steep rays, the result is satisfactory, but when the
camera is at low height, the upper part of the terrain

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
143

doesn’t appear correctly. For near horizontal rays, the re-
sult is wrong. The triangles above the horizon show upside
down, far away repeated terrain. Figure 6 shows the terrain
rendered with basic linear search.

Figure 6: The problems of basic linear search.

4.1 Upward Rays

Basic displacement mapping assumes that the ray enters at
H = 1 and exits at H = 0. The intersection will be found
between these points. The ray never reaches H = 0 if it
starts somewhere between 0 and 1, and is going upwards.
The basic algorithm takes steps towards 0. On upward
rays, it would also step towards 0. In this case these steps
go behind the camera, because 0 can be reached only there.
This is the reason for the appearance of the upside down
terrain above the horizon. To solve this problem we should
handle upward rays differently. It is sufficient to examine
the ray’s direction vector’s H (3rd , vertical) coordinate. It
is positive for upward rays. The determination of the ray’s
endpoints needs to be changed. The endpoint of an upward
ray is at H = 1 instead of H = 0. Results show that the
above problem is solved by this change. Upward rays also
find intersection (shown in Figure 7), but there are still
problems with pixels (rays) close to the horizon.

Figure 7: The problem of near horizontal rays.

4.2 Near Horizontal Rays

The original algorithm steps vertically the same ranges be-
tween the in and out points for linear search. When a ray
is flat, a small vertical step could result in huge step for-
ward on the ray. Figure 8 shows an example. It is possible
that one step skips the whole terrain. In this case the inter-
section cannot be found. This is the reason why a part of
the terrain doesn’t appear in Figure 7. We found two dif-
ferent solutions for this problem: Exponential Search and
Equidistant Linear Steps.

Figure 8: The problem of flat (near horizontal) rays.

4.3 Exponential Search

Standard linear search has the problem that for flat rays it
uses too large steps and it steps over the whole terrain. A
better solution is that the algorithm steps rather exponen-
tially than linearly. At first the steps are very small, but
increase exponentially. However, it reaches the end of the
ray with finite steps, similarly to standard linear search.
The range of the steps are:

H = 1−1/2Niter−1−i (3)

where Niter is the number of the iterations and i is iteration
variable. H is the height of the steps on the ray segment.
The steps go from the enter point – the H is 1 there, and
go forward to the end of it – where H is 0. The current
position is calculated by linear interpolation between the
two tips by the following code:

uv = uv_in * H + uv_out * (1-H);

where uv_in the enter point and uv_out is the end
point. Table 1 shows an example for exponential steps at
10 iterations.

The result is much better than for linear search (shown
in Figure 9). Most of the horizontal rays find proper in-
tersections, however not all of them. In a few pixel width
strip there is still no intersection. The horizontal and al-
most horizontal rays are flat, they can have nearly infi-
nite length. On these rays even a very small step skips
the whole terrain (see Figure 8).

4.4 Equidistant Linear Steps

The main problem with the standard algorithm is that it
steps vertically the same ranges to ensure it always reaches
the end of the segment, but it does not consider the ray’s

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
144

Iteration Height of step
0 0.998046875
1 0.99609375
2 0.9921875
3 0.984375
4 0.96875
5 0.9375
6 0.875
7 0.75
8 0.5
9 0

Table 1: Exponential Search with 10 iterations

Figure 9: Terrain with Exponential Search, 10 iterations.

length. Therefore the lengths of the steps are not equal for
rays of different declination angles.

Instead of stepping vertically, the algorithm should step
equal distances. Thus, for every ray the length of the steps
would be the same. At flat rays, the algorithm does not
skip the terrain. Figure 10 shows the same example, but
with the new linear search. It is observable that this time it
does not step too much, and the intersection can be found.
However a new problem appears. The former algorithms
always can reach the end of the segment, but this algo-
rithm can not. For example, if the iteration number is 5,
than the upper ray in Figure 10 is unable to reach the real
intersection.

Figure 10: Improved linear search with fix step ranges.

To determine the step’s range, at first the length of the
ray’s segment should be computed. Then a constant is di-
vided by this length. At each step this value is subtracted

from H3.

tview =
Mterrrain ∗peye−pterrain

‖Mterrrain ∗peye−pterrain‖
(4)

step = c
tviewz

(hend−pterrainz)
(5)

where Mterrrain is the UWH matrix, peye is the position of
the camera and pterrain is the UWH position of the pixel.
hend is 0 when the ray goes downward, 1 otherwise.

The constant depends on the resolution of the triangle
mesh. If the resolution is high, then the real terrain is
nearer, thus smaller steps give better results, so the con-
stant is smaller. At lower resolution the distance between
the triangle mesh and the real terrain could be larger, thus
greater constant is better. E. g. at 32×32 resolution a good
constant was 0.025, and 5 steps were enough.

For a small part of the pixels, this linear search could
not reach the real terrain, thus the intersection cannot be
found. Mostly this problem occurs for those rays which
enter below the triangle mesh, but they are above the real
terrain. To solve this problem, the algorithm handles these
rays separately. If the intersection was not found, the
search continues with more iteration. In the new iterations
the steps could be large, e.g. twice as big as originally.
As these rays are in minority, the algorithm would not be
significantly slower. If the increased number of steps still
cannot find an intersection (it is possible that they never
would), then neither the pixel will be colored, nor the Z-
buffer will be written.

Using standard linear search, the terrain will be striped.
Therefore, the search continues after an intersection is
found, but using secant search. The two start points of the
secant search are the last two points of the linear search.
With the penultimate linear step, the algorithm determines
a point where the terrain is still below the ray. The last
step shows that the terrain is above the last point. The sur-
face of the real terrain intersects the ray between these two
points. The secant method finds an accurate intersection
quickly, thus the strips are eliminated.

As Equidistant Linear Steps perform much better than
the Exponential Search, the Exponential Search is not used
in the final version.

5 Results

It is hard to determine the optimal constant values in the
algorithm such us triangle mesh resolution, first linear
search’s iteration number, second linear search’s iteration
number, step ranges, secant search’s iteration number etc.
The performance of the described algorithm is highly af-
fected by the length of the ray sections which fall between
the course triangle mesh and the real terrain. Average
of these lengths depend on the local roughness and lo-
cal curvature of the real terrain, but is nearly independent

3At beginning H is 1.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
145

of the local steepness.Rendering speed also highly depend
on graphics hardware. The algorithm was developed and
tested on an Nvidia R© Geforce R© 8400M4. The viewport
resolution was 640× 480 pixels. The frame rate dropped
at 64× 64 quads, thus 32× 32 quads was a better choice.
With 5 linear steps most of the intersection was found. For
pixels, where the search could not reach the intersection,
10 further linear steps followed. If the search was still in-
efficient, the pixel became transparent, thus other part of
the terrain or the skybox could appear. However if the lin-
ear search entered below the real terrain, 2 secant search
steps refined the result. Figure 11 shows the terrain with
these values. The frame rate was between 55-100 fps5.

Figure 11: Final terrain.

As seen in Figure 11 the terrain appeared correctly. The
algorithm finds the proper intersection for almost every
pixel. However, at some pixels the algorithm makes mis-
takes. These mistaken pixels mostly appeared at the edge
of hills.

Using the same paremeters, the frame rate on a desktop
PC with Nvidia R© Geforce R© 8800 GT was much higher,
over thousand fps. After changing parameter values, the
algorithm was more accurate, pixel errors barely appeared.
The triangle mesh resolution was set to 256× 256, step
ranges was the quarter of original, linear step numbers
doubled. The result was still over hundreds of fps and
with unnoticeable errors. Figure 12 shows an example,
where the heightmap’s and the texture’s resolution was
2049×2049. Table 2 shows results on different GPUs and
settings. As the rendering time was highly dependent of
camera position, four points of view has been selected. It
was intentional to use fundamentally different views (see
Figure 13). Frame rate tests for different configurations
were tested on these fixed views. Refresh times show min-
ima and maxima of the four measured values.

4Notebook version
5Depends on percentage of terrain on screen

Figure 12: Final, 2049× 2049 resolution terrain on 8800
GT with 256×256 quads.

GPU Heightmap Mesh Speed[ms]
8400 M 257×257 32×32 9.52–18.87
8400 M 2049×2049 32×32 9.62–20
8400 M 2049×2049 256×256 22.22–41.67
8800 GT 257×257 32×32 0.55–0.8
8800 GT 2049×2049 32×32 0.55–0.83
8800 GT 2049×2049 256×256 3.7–3.82

Table 2: Rendering times

6 Conclusion and Future Work

There are several known algorithms that use only the pixel
shader or only the vertex shader for displaying terrains.
We developed a new technique that combines the pixel
shader and vertex shader techniques. It resulted in a faster
and more accurate algorithm than widely used ones. The
main advantage of this new method is that it is indepen-
dent of the heightmap’s resolution. The approximate tri-
angle mesh’s resolution is constant, does not consider the
heightmap’s resolution and the displacement mapping is
also independent of the heightmap’s size. The frame rate
is similar e.g. at 257×257 and at 2049×2049 resolution
heightmaps.

However it is hard to determine the balance between
speed and accuracy. If the decision is to be more accu-
rate, the frame rate decreases. The method is also capable
of reaching high frame rate on slower GPUs, but then ac-
curacy has to be decreased.

In the future we shall make the algorithm better. E.g.
improve the displacement mapping searches or make the
triangle mesh dynamically changeable. A new method
could be also promising: using height mipmaps the algo-
rithm would not make mistakes, the proper intersection al-
ways could be found rapidly. Our research is going on by
utilizing maps for local height minima and maxima. In-
stead of [2], the resolutions of these extremum maps are
decreased in our research, similarly to the Mip-Map ap-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
146

Figure 13: These four viewpoints were selected to be used
during frame rate test of the algorithm on different plat-
forms with different options. Shown frame rates were
achieved on Geforce 8800 GT, 2049× 2049 height map,
256×256 quads.

proach.
After a fast, accurate, detailed terrain displaying algo-

rithm is developed, it could be improved by adding new
elements, such as new detailed textures close to camera,
dynamic light and shadows, vegetation, water etc.

Acknowledgement

This work has been supported by the Teratomo project
of the National Office for Research and Technology, and
OTKA K-719922 (Hungary).

References

[1] László Szirmay-Kalos, Tamás Umenhoffer. Dis-
placement Mapping on the GPU – State of the Art.
Computer Graphics Forum, 2008.

[2] Stephan Mantler, Stefan Jeschke. Interactive land-
scape visualization using GPU ray casting. Graphite,
2006.

[3] Christian Dick, Jens Krüger, Rüdiger Westermann.
GPU Ray-Casting for Scalable Terrain Rendering.
Eurographics, 2009.

[4] Renato Pajarola, Enrico Gobbetti. Survey of semi–
regular multiresolution models for interactive ter-
rain rendering. The Visual Computer 8: Interna-
tional Journay of Computer Graphics, pp. 583–605,
2007.

[5] Mark Duchaineau, Murray Wolinsky, David E.
Sigeti, Mark C. Miller, Charles Aldrich, Mark B.
Mineev-Weinstein. ROAMing Terrain: Real-time

Optimally Adapting Meshes. IEEE Visualization,
1997.

[6] Jonathan Dummer. Cone Step Mapping: An
Iterative Ray–Heightfield Intersection Algorithm.
http://www.lonesock.net/files/ConeStepMapping.pdf,
2006.

[7] Barry Minor, Gordon Fossum, Van To. Cell Broad-
band Engine Optimized Real–time Ray–caster. 2005.

[8] Brian Smits, Peter Shirley, Michael M. Stark. Di-
rect Ray Tracing of Displacement Mapped Trian-
gles. Rendering Techniques 2000: 11th Eurographics
Workshop on Rendering, 2000.

[9] Arul Asirvatham, Hugues Hoppe. Terrain Rendering
Using GPU-Based Geometry Clipmaps. GPU Gems
2, pp. 27–46, 2005.

[10] Alex A. Pomeranz. ROAM Using Surface Trian-
gle Clusters (RUSTiC). Department of Computer Sci-
ence, University of California, 2000.

[11] Jonathan Blow. Terrain Rendering Research for
Games. SIGGRAPH 2000 Course 39, 2000.

[12] Peter Lindstrom, David Koller, William Ribarsky,
Larry F. Hodges, Nick Faust, Gregory A. Turner.
Real–Time, Continuous Level of Detail Rendering of
Height Fields. Proceedings of SIGGRAPH 96, pp.
109-118, 1996.

[13] Stefan Rottger, Wolfgang Heidrich, Philipp
Slusallek, Hans-Peter Seidel. Real–Time Gen-
eration of Continuous Levels of Detail for Height
Fields. WSCG Proceedings 98, pp. 315-322, 1998.

[14] Jens Schneider, Rudiger Westermann. GPU–
Friendly High–Quality Terrain Rendering. Journal of
WSCG, 2006.

[15] Wikipedia. Level of Detail.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
147

148

GPU-supported bubble and foam rendering

Tamás Huszár ∗

Supervised by: László Szécsi†

Department of Control Engineering and Information Technology,
Budapest University of Technology and Economics,

Budapest, Hungary

Abstract

Several types of foam can be found both in nature and arti-
ficial environments; yet it is rare in computer graphics due
to its complexity. Modelling foam structure and dynamics
by simulating the underlying bubble structure has a high
computational cost. To model such a complex phenomena
we need to use serious simplifications while maintaining
realism and detail.
In this paper we propose a method for rendering dense
soap foam in real time. We first build a foam blob — from
realistic soap bubbles — which has a solid inner structure.
We use a hybrid method based on ray tracing and 2D bill-
boards to render dense foam constructed from hundreds
of these blobs. To model foam behaviour and interaction,
we present a simple particle based physics simulation ap-
proach. While our method is capable of rendering foam
featuring a large number of bubbles, it has certain limita-
tions we also discuss in this paper.

Keywords: Bubble rendering, foam rendering, impostors

1 Introduction

Presenting natural phenomena like smoke, fire or fluids in
a realistic way is a tough challenge in computer graphics.
Even though the equations describing the physics of these
phenomena are known, the exact calculations are too com-
plex to perform in real time. Today’s graphics hardware
requires some intuitive simplifications or artistic input to
efficiently present these phenomena in real-time applica-
tions like computer games.

Bubble and foam simulation falls into the above cate-
gory. The structure of dense foam built of soap bubbles
exhibits large complexity. While modelling a physically
correct soap bubble is an easy task, building complex foam
structures from individual bubbles cannot be done in real
time on current hardware.

In this paper, we propose a method to render and sim-
ulate dense soap bubble foam. We give an intuitive sim-
plification of foam structure which enables us to simulate
realistic foam with the speed, detail and quality necessary

∗hthomas92@gmail.com
†szecsi@iit.bme.hu

for real-time applications. After the introduction and pre-
vious work, we give a short overview of bubble simula-
tion, discussing the actual techniques used in our method
in section 3, including our solution for efficiently model-
ing multiple connected bubbles. Section 4 introduces the
idea of building foam from blobs of soap bubbles. We dis-
cuss the structure of these blobs and provide two different
methods of storing and rendering blob structure. In section
5, the technique of building actual foam of the blobs is dis-
cussed, including a basic physics simulation described in
section 6. In the next section we present our result, and
provide possible enhancements and future work in further
sections, including the conclusion of this paper.

2 Previous Work

Interference phenomena required to understand bubble
physics were described by Dias [1]. Later, Glassner gave
a thorough overview on several aspects of soap bubble
physics, including soap film interference and geometric
structure of multiple soap bubbles [3, 4]. Most attempts
to model bubble and foam structures are offline meth-
ods based on ray tracing [7], and even these offline ap-
proaches [6] use simplified reflection model to render the
inner dense parts of the foam to maintain reasonable ren-
dering times.

Recent articles present real-time approaches and use the
GPU to simulate bubble formations. Sunkel simulates a
magnitude of hundreds soap bubbles in real time using
simplified reflection and lighting model [8].

3 Realistic rendering of soap bub-
bles

3.1 Soap film interference

In order to simulate foam, we must first understand the
physics of soap bubbles, and provide an efficient way to
render soap films and bubble structures. Basically soap
bubbles are gas trapped in a thin fluid layer. Because of
surface tension and the inside pressure of the contained
gas, the surface of a bubble tends to be minimal. This
means soap bubbles can be easily modelled as spheres;

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

this is a common simplification used by most approaches.
The interference phenomenon on bubble surfaces can be
understood by examining soap film reflection — light in-
terference caused by reflection on two parallel surfaces.
Usual soap films are 1–2000 nm wide and have a refrac-
tion index of 1.4. Given these values, the intensity change
of the reflected light can be calculated by the following
equations [4, 5].

ps =
4π
λ

nd cosϑi

R f = 1− cosϑi

Ir = Ii4R f sin2 ps

The intensity change Ir depends on the incoming inten-
sity Ii, the reflection factor R f and the phase shift ps. The
phase shift can be calculated using the wavelength λ and
the incident angle of the light ϑi, the index of refraction
n and the film width d. The refraction index is calcu-
lated using a Fresnel approximation, the film width and
the refraction index are constant (we can perturb the film
width with random noise to make the bubble more realis-
tic, simulating film thickness changes caused by air pres-
sure variation). By using these simplifications, the inten-
sity change is only dependent on the incident angle and the
wavelength, so it can be easily computed or stored in a tex-
ture. We used the representative wavelengths of the RGB
components, as the achieved quality is acceptable and it is
more efficient than calculating the values over a continu-
ous spectrum. Using these equations and simplifications,
a soap film shader can be easily constructed.

3.2 Soap bubble geometry

As we saw earlier, a single soap bubble can be approxi-
mated by a sphere. However, for modelling bubble struc-
tures, we must compute the shared wall film between the
bubbles. Based on Glassner’s observations, three soap
films always meet at 120◦ angle and the mutual wall is
spherical itself [4]. First, considering two intersecting bub-
bles, we must determine this auxiliary sphere’s centre and
radius. The easiest approximation would be a simple pla-
nar soap film between the two bubbles. This is an accept-
able approximation for distant bubble formations but un-
realistic when examined closely. In his article, Glassner
gives a formula, in which he exploits the aforementioned
120◦ property. In a general situation without proper phys-
ical simulation, when bubbles are spheres of random radii,
this rule does not hold. To overcome this we provide a sim-
ple but intuitive and visually convincing approximation.

Figure 1 shows the geometry in a 2D slice. We used
a simple observation: the tangent Tc is the angle bisector
of the angle determined by the intersection of the spheres
and the centres (AMC ̸). If we extend the bubble model by
keeping this rule, but omitting the 120◦ restriction, we still
get acceptable results with reasonable calculation com-
plexity.

Figure 1: Geometry of bubble walls. Point C is the centre,
rc is the radius of the sphere which forms the common wall
of sphere A and B.

First, using the observation above, we realize that the
triangles AMC and BDC are similar. This means that
DC = rcrB/rA. As MC = MD + DC, we get the follow-
ing equation (assuming rA > rB):

rc =
rAMD
rA − rB

The length of MD can be calculated using the cosine rule
two times in triangles AMB and MBD.

AB2 = r2
A + r2

B −2rArBcosδ

MD =
√

rB + rB −2r2
B cosδ = rB

√

2−2
r2

A + r2
B +AB2

2rArB

Finally, we can calculate the centre using the law of
cosines the third time, in triangle AMC.

AC =

√
r2

A + r2
C −2rArC cos

d +π
2

4 Modeling foam using soap bub-
bles

4.1 Foam structure

While soap foam consists of several soap bubbles, the
inner structure of the foam is so complex, that simply
modelling it as individual bubbles is not a working so-
lution. Today’s real-time methods are capable of render-
ing hundreds of bubbles, but this is far from the complex-
ity of dense foam. To overcome this, we examined the
macrostructure of soap foam. On a large enough scale, be-
low the surface bubbles of dense foams, we see a nearly
diffuse and opaque whitish body, hiding the deeper mi-
crostructure of the foam. Our idea was to model a foam
blob possessing this property. The surface of this blob is
built of realistic soap bubbles, and the inside is approxi-
mated by an artist-drawn bubble texture representing the
inner structure of the foam. This creates the impression of
a dense interior with individual transparent bubbles pro-
truding from the blob.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
150

R o

x

r

p

p'

l R'

R

Figure 2: Using the distance impostor technique to model
foam blobs. The curve inside the bounding sphere visu-
alizes the distance values stored in the cube map. R′ is
the view ray and l is the intersection point provided by the
algorithm.

The outer bubbles are spheres drawn using the soap film
shader, including the walls between neighbouring bubbles.
Due to the complex nature of the blobs, classic polygon-
based rendering is not a feasible solution. On the other
hand, classic ray tracing is too slow, as complex foam can
contain thousands of bubbles. We needed a data structure
to store bubble data that makes fast and efficient intersec-
tion of the blob and view rays possible.

4.2 Blob intersection using a distance im-
postor

Our first proposed method is based on the distance impos-
tor technique [9]. The original technique is used for cal-
culating position dependent reflections using environment
maps. It stores environment geometry in a cube map, and
uses it to iteratively calculate surface points intersected by
reflection rays. We imagine the foam blob as an entity
trapped in a cube, represented by a cube map storing the
distance between the blob surface and the centre in every
texel. Now finding the intersection of the ray and the blob
is the same problem as the one stated above, with one mi-
nor difference: our rays come from outside of the cube
map, not from the inside.

As seen in Figure 2, R′ is the original ray. We reverse
the direction of this ray to get R⃗, and place its origin x⃗ at
the second intersection of the original ray and the blob’s
bounding sphere. As the new ray points towards the near
side of the blob (closer to the origin of R′), the iterative
search algorithm will find an intersection l⃗ on this side.
Reading a distance value from the side closer to x⃗ would
give a wrong intersection point. Therefore, running the

p
0 p

1

p
2

p
3 p

4

r

Figure 3: Illustration of the bubble ID technique. The view
ray r⃗ is sampled in points P⃗0 - P⃗4. The dotted lines show
the bubble id stored in the cube map in the designated di-
rection.

original algorithm with the reversed ray will give the right
result.

The required cube map resolution and iteration count
depend on the blob geometry. For a common blob con-
sisting of 64 bubbles, which we used for testing, a resolu-
tion of 64× 64 and a maximal iteration count of 20 were
adequate. When using smaller values, visible artifacts ap-
peared near the intersection of the bubbles.

The cube map itself is generated by rendering the bub-
bles from the centre of the blob. Using a geometry shader
and a render target array, only one rendering pass is re-
quired. We render a full screen quad, and calculate the
world coordinates of the quad’s vertices at the near clip-
ping plane for each render target, using different view ma-
trices (a total 6 cameras covering both directions in all 3
axes). In the fragment shader, we compute the farthest in-
tersection point with each of the bubbles, getting the out-
side surface geometry of the blob. While the intersection
calculation is done by checking all the bubbles in the blob,
this is not a performance bottleneck as the cube map has
to be generated only once during the program startup.

The disadvantage of the method is that we lose the in-
ner structure of the blob as only the outer shell is stored
in the texture. As a side effect, this allows the shape of
the outer bubbles to be other than spheres. However, when
rendering soap bubbles, this does not grant us an advan-
tage, but makes further calculations — like intersection
with the inter-bubble wall — impossible. This recognition
motivated our second method. Instead of storing distances
of the surface, we store the original bubble data, but we
heavily reduce the number of necessary intersection cal-
culations.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
151

4.3 Blob intersection by storing bubble
identifiers

Once again, we use a cube map to store blob geometry. But
instead of distances, we store an ID of the bubble visible
from the outside in the given direction. We also have to
store the bubble radii and centres in a separate texture or
buffer.

First we calculate the intersection of the ray and the
bounding sphere, and then we have to find the bubble it in-
tersects first. This would allow us to use an iterative search
similar to the one used in the distance impostor technique,
but we found that a simple linear search is adequate. This
is because finding any texel that contains the ID of the first
intersected sphere is sufficient to get an accurate result.
As seen in Figure 3, we divide the section of the ray in-
side the sphere to a fixed number of segments, and then
start reading the values from the cube map in the given di-
rections and calculate the intersection of the ray and the
corresponding bubble. The first intersection is the one we
are looking for.

The advantage of this method is that in most cases, es-
pecially if the bubbles are nearly the same size, we will get
the result in the first few iterations. Usually the loop ends
in the first iteration when the incident angle is high (the ray
goes through the middle of the sphere) and the required it-
eration count increases as the ray gets further from the cen-
tre. Also nothing guarantees that we find the right intersec-
tion; in theory we can easily skip the right bubble during
the linear search. However experiments showed that when
using reasonably sized and evenly distributed bubbles, the
results are acceptable. A 128× 128 cube texture with 10
iterations produced minor artifacts comparable to the dis-
tance impostor technique, and it was also slightly faster.

The actual implementation including the cube map gen-
eration is similar to the distance impostor technique. The
identifiers are stored in the cube map using the same ren-
dering technique, but instead of the distance, the bubble’s
id is stored. The bubble identifiers and the correspondent
radius and centre values are stored in a buffer located in
the video memory.

Storing bubble IDs has another advantage over the dis-
tance impostor method: not only the first intersection, but
also the intersection with interior walls between bubbles
can be computed. When using distance impostors, we only
preserve surface geometry, which makes the representa-
tion of the precise sub-surface structure impossible. When
using the bubble ID technique, we have the exact bubble
geometry stored in a buffer. We can use this geometry
to calculate inner bubble walls. The linear search algo-
rithm will yield a list of bubble IDs along the ray, if we do
not stop it after finding the first intersection. Consecutive
bubbles in this list are most likely to form a mutual wall,
which can be computed as described in Section 3.2 and
intersected with the ray. This is also an approximate solu-
tion, as internal bubbles not stored in the ID map are not
considered and small bubbles can be skipped by the linear

Figure 4: Illustration of the blob normals. The green ar-
rows are light rays. Vector v1 and v2 are sampling direc-
tions using different calculation methods presented in the
paper.

Figure 5: Different foam textures. The texture on the left
was used in the final renderings.

search algorithm. However, with similarly sized bubbles
of a soap foam blob this rarely happens, and it does not
influence visual quality.

4.4 Inner structure and other details

Using any of the techniques presented above, the rendering
of the blob is quite straightforward using ray tracing. We
calculate the intersection of the blob and the ray coming
from the camera. Then we compute the incident angle of
the ray and the surface normal in the previously calculated
intersection point. We use these values and an environ-
ment map to calculate bubble reflections using the soap
film shader. We can also calculate the internal walls for
neighbouring bubbles.

Finally we have to draw the inner structure using the
bubble texture. It can be an artist-drawn image of small
bubbles (5), representing the inner structure of the foam,
or a computer generated foam image using a complex non
real-time simulation. The foam texture can be stored in
another cube map. The sampling direction can be adjusted
several ways as it is depending on the given blob and foam
type. We used a weighted sum of two vectors (4). The
first vector (v1) is the direction of the second intersection

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
152

Figure 6: A single foam blob rendered using the bubble id
method

of the first intersected bubble (P1) relative to the centre of
the blob (P1). This spherically projects the texture onto
the interior surface of the blob, which is what we get if
we remove the outer bubbles. The second vector is the in-
verse normal of the bubble (v2) at the first intersection (P2).
Combining these two vectors slightly distorts the original
mapping based on the outer bubble geometry.

As stated before, the middle of the blob is opaque, while
the outer bubbles are nearly transparent. To achieve this
effect, the transparency of the inner texture is set accord-
ing to the second intersection point’s distance from the in-
ner and outer bounding sphere. In the middle of the blob,
the second intersection of the current bubble is closer to
the centre as the ray is almost perpendicular to the blob’s
bounding sphere. Near the outer region, the intersection
point is farther from the centre, so the blob will be more
transparent there.

The last issue is the surface normal of the blob used for
lighting equations. The nearly diffuse inner surface should
slightly follow the wrapping surface of the outer bubbles.
Therefore we used a weighted average of the bubble’s nor-
mal and the blob’s bounding sphere’s normal. The normal
and the other aforementioned parameters should be fine-
tuned and set according to the actual blob structure and
the desired foam type. A typical foam blob used in our
renderings can be seen on Figure 6.

5 Rendering foam using foam blobs

Realistic dense foam needs to be constructed from many
blobs, so we need a fast technique to render them. While
ray tracing the blobs could be straightforward, it would be
too slow for large foam. We propose a method based on
particle systems, that is capable of rendering hundreds of

Figure 7: Dense soap foam rendered using the proposed
technique

blobs real time. Blobs are rendered as 2D billboards. The
ray from the eye position is calculated for all pixels of the
billboard, and it is used to render the corresponding blob
as described in the previous section. This means we do
not have to do the intersection calculations for all blobs,
but also means we cannot calculate inter-blob reflections
(which would be too slow to use in real time anyway).

The data associated with the blobs are stored on the
graphics card in a vertex buffer. The billboards are gen-
erated by the geometry shader using this data. The vertex
positions in world space are also calculated in the shader,
and used in the pixel shader to get the view rays for every
pixel. Besides the colour, the depth of the blob is also com-
puted for every pixel to address problems of overlapping
particles.

Since the blobs are transparent, we need to sort the parti-
cles according depth, in order to use alpha-blending. How-
ever, depth is different in the pixels of the billboards, so we
have to do the sorting at pixel level. Depth peeling [2] is
a technique rendering translucent objects. It basically ac-
complishes pixel level sorting by using multiple rendering
passes to store multiple depth levels for every pixel. We
use two buffers to store depth data. First we render the
scene depth into the first buffer, and then render it again
into the second buffer, but only those pixels that are fur-
ther than the stored depth in the first buffer. Then we flip
the two buffers and repeat. We store the blob identifiers
in a third buffer, in a different colour channel for each it-
eration. In the end, the n closest bubble identifiers will be
in the final buffer. In the final rendering pass we render
the blobs in order with proper transparency. While this
method uses multiple rendering passes and it is generally
slow, it provides a real-time alternative to ray tracing.

This method has one serious shortcoming in cases
where multiple blobs overlap each other. Let’s assume that
we use three rendering passes (and store 3 layers of blob
depths). Now imagine that the first three blobs are rather
transparent, but there is a fourth, solid blob behind them.
In this scenario, the resulting foam would be transparent,

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
153

resulting a transparent hole in the foam. To overcome this
limitation, we use an extra rendering pass to calculate the
maximal opaqueness for all visible blobs (not just the 3
closest to the viewer). When we draw the diffuse foam
texture, we use this value to plug the unwanted holes in
the foam. The main disadvantage of this method is the re-
source consumption, as we have to calculate intersection
points for all blobs (however we do not calculate surface
interference, reflections or wall geometry for these blobs).
Figure 7 shows dense foam rendered using this technique.
All the free parameters were set to grant visually appealing
result.

It was not stated explicitly before, but blob rendering
techniques require the blob structure to be static. The blob
texture is prerendered once and then used for all blobs.
This means that all the blobs are the same (it is possible
to use several blob textures to construct a fixed number
of different blobs). To counteract this limitation, we used
transformations to change the size and orientation of indi-
vidual blobs. This can be easily done real time in the pixel
shader during the intersection calculations and grants us
more diverse foam. To store these transformations, only
one additional float vector is required in the vertex buffer.
We can represent the orientation as a quaternion and store
it in a four-dimensional vector. The blob size can be the
fourth, previously unused coordinate of the position vec-
tor. We can also use a transformation matrix to store more
general affine transformations, but in our implementation
it was unnecessary to do so.

6 Foam physics

To provide even the most basic physical simulation, we
must render solid objects beside the foam. As we used
environment mapping for reflections and refractions, solid
objects must be rendered using a blending technique. We
first render these objects, and then blend the foam over
them without clearing the depth buffer. This is efficient but
this does not handle reflections of solid object on bubbles,
or the rendering of transparent objects like smoke or glass.

Figure 8: Foam formations sliding down on a slope

To simulate foam dynamics and present the characteris-
tics of this rendering technique we created a basic but fast
physical simulation based on particle dynamics. The simu-
lation is able to handle inter-particle forces and outside ob-
jects. In the technical demonstration we presented a foam

mass sliding down on a slope (see Figure 8). Each blob
has a position, mass, and velocity, with forces acting be-
tween blobs and other objects. The blobs are represented
by their bounding spheres. If two blobs get too close, two
types of force can affect them: if they are far enough an
attractive elastic force arises, modelling the different parts
of the foam sticking together. However, if two blobs get
too close, they collide, resisting collapse and giving the
foam a solid structure. By properly adjusting these forces
and the gravity, a good approximation can be achieved for
the desired foam type. The simulation is done on the CPU.
Further exploration in this topic could yield more realistic
results and boost performance by implementing a physical
simulation on the graphics card.

7 Results

We implemented the technique using DirectX 10 and
Shader Model 4.0 on an NVIDIA Geforce GTX 260
graphics card. We achieved real-time simulation (32 FPS)
of 100 blobs and a total number of 22700 separate bub-
bles, using the bubble ID technique for calculating inter-
sections. The images were rendered at the resolution of
640× 480. The various parameters like iteration count,
texture size, and the number of bubbles in a blob were set
to imitate soap foam to the highest possible fidelity with-
out visible graphical glitches. Further tweaking these pa-
rameters could result in performance increase, while main-
taining acceptable graphic quality.

Figure 9: A box shaped form consisting of 5000 blobs

Using these same parameters, simulating between 100
and 1000 blobs the FPS stays above a reasonable rate
(around 10). Figure 9 shows a foam formation of 5000
blobs and a total number of 1135000 bubbles, rendered at
5 FPS. Given these numbers, in the near future with further
optimizations the real-time simulation of foam consisting
of hundreds of thousands of bubbles could be possible.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
154

8 Future work

The most serious limitation of the proposed technique de-
rives from the particle based approach. Our blobs are static
entities with fixed size and structure, and when we start
to divide the foam into smaller pieces comparable to the
blob size, it leads to artificial and unnatural results. To
overcome this, we propose a possible direction. First, we
need a model to adjust blob size dynamically, based on
some physical observations, but not too complex to un-
dermine the performance. Another possible way is to lo-
cally increase and decrease the simulation resolution (the
blob size in this case) by the local foam characteristics and
viewer distance. Blobs inside a dense foam or far from the
viewer could be merged together, or their simulation and
render quality should be otherwise decreased, while larger
blobs broken out of the foam should break up into smaller
blobs.

9 Conclusion

Bubbles and foam are extremely complex natural phenom-
ena, the formation, motion and optics of which obey com-
plex physical laws practically impossible to simulate in
real time. A visually convincing result, however, is feasi-
ble with decent data structures and subtle approximations.
As with a wide range of natural geometries, the concept of
impostors is very helpful. We have shown how a generic
impostor technique – the distance impostors – can be mod-
ified to represent bubble clusters, and we also proposed a
specialized representation that exploits the fact that bub-
bles are spherical, and allows not only for a more accu-
rate representation, but also for an approximation of inter-
nal foam walls. Furthermore, we described algorithms for
the simulation and rendering of massive foam composed
of the bubble clusters, based on particle systems and the
billboard visualization technique. Our method is capable
of real-time rendering dense foam consisting of ten thou-
sands of bubbles on modern graphics hardware.

Acknowledgement

This work has been supported by the Teratomo project
of the National Office for Research and Technology, and
OTKA K-719922 (Hungary).

References

[1] L.M. Dias. Ray tracing interference color. IEEE Com-
puter Graphics and Applications, 11(2):54–60, 1991.

[2] C. Everitt. Interactive order-independent transparency.
White paper, nVIDIA, 2(6):7, 2001.

[3] A. Glassner. Soap bubbles: Part 1. IEEE Computer
Graphics and Applications, 20(5):76–84, 2000.

[4] A. Glassner. Soap bubbles: Part 2. IEEE Computer
Graphics and Applications, 20(6):99–109, 2000.

[5] K. Iwasaki, K. Matsuzawa, and T. Nishita. Real-time
rendering of soap bubbles taking into account light
interference. In Computer Graphics International,
pages 344–348, 2004.

[6] S. Rosenbaum and M. Bergbom. Foam.
http://cs.stanford.edu/people/rosenbas/foam, 2007.

[7] Y. Sun, F. D. Fracchina, T. W. Calvert, and M. S. Draw.
Deriving spectra from colors and rendering interfer-
ence. IEEE Computer Graphics and Applications,
19(4):61–67, 1999.

[8] M. Sunkel, J. Kautz, and H.-P. Seidel. Rendering and
simulation of liquid foams. In Vision, Modelling and
Visualization, 2004.

[9] L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, and M. Pre-
mecz. Approximate ray-tracing on the gpu with
distance impostors. Computer Graphics Forum,
24(3):695–704, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
155

156

A Constraint Based System to Populate Procedurally Modeled
Cities with Buildings

Johannes Scharl∗

Supervised by: Daniel Scherzer†

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Austria

Abstract

Creating large-scale virtual environments for interactive
applications such as computer games poses a demanding
challenge for computer graphics. We present a system that
procedurally creates urban environments including street
networks, street geometry and building parcels. Our main
contribution is a constraint based system that chooses the
”best fitting” building for every parcel from a set of ex-
isting buildings. Building properties such as the footprint,
area, and faces that should have street access are used to
select the most suitable building.

Furthermore we introduce a robust technique to create
3D street geometry for streets that adapt to different terrain
heights and describe a method to create a more realistic
city shape and more detailed outer regions.

Keywords: Procedural Modeling, Urban Environments,
Computer Games

1 Introduction

The usual way to create urban environments for computer
games or movies is to use commercial modeling packages
like Autodesk Maya. This is a very time consuming, te-
dious and expensive task and gets less and less suitable
for modern applications that demand even larger and more
detailed environments. A promising approach that has
emerged in recent years is to create content procedurally.

Urban environments are mainly defined by their street
network. Such a network forms the back bone of a city

∗johannes@cg.tuwien.ac.at
†scherzer@cg.tuwien.ac.at

and determines its layout. Therefore it is the first thing
that has to be generated when modeling a city.

Recent state-of-the-art techniques [10, 15] rely on ex-
tended L-systems to create such networks. Usually a top-
down approach is used, meaning that major roads are cre-
ated first, because they define the main routes and districts
in the city. Regions surrounded with major roads are then
filled by minor roads, creating the finer structures of dis-
tricts and neighborhoods. When using this approach, areas
surrounded by major roads are usually located at the city
center. This often leads to sparse regions at the outskirts
of the city, where no minor roads can be created. We pro-
pose an approach to generate cities where minor roads are
also generated in the outer regions. This is illustrated in
figure 1.

Figure 1: Left: In previous methods, no detailed neighbor-
hoods are created in the outskirts of the city. Right: Outer
regions created with our method.

After the street network is generated, street geome-
try is created and the blocks in between are subdivided
into building parcels. Tessellating the street geometry is
straightforward in a case where all streets are in a single
plane, but gets complicated if streets adapt to three dimen-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

sional terrain. In this case, junctions have to be kept planar.
This is usually handled by forcing the junction geometry
to be parallel to the ground plane, resulting in unnatural
steps in steeper roads. We introduce a way to adjust these
junctions to adapt them to the underlying terrain.

Buildings are an essential part of every urban environ-
ment. Usually each model is hand-crafted in a model-
ing software and placed at its destination by a designer
or artist. This approach is not feasible for larger urban en-
vironments. Typically only certain regions of the city are
crucial for a computer game, while other regions do not
contain a lot of individual detail. A method that fills these
regions automatically greatly reduces the time needed to
add building models to a road network. As our main con-
tribution, we propose a method to select a building from a
set of existing models that fits best for a certain building
parcel and place it there.

2 Related Work

Our work is based on previous procedural modeling meth-
ods that employ L-systems. L-systems where originally
developed as a formalism for plant modeling [12].

An extension to L-systems that allowed plants to com-
municate bidirectionally with their environment, called
Open L-systems, was introduced later by Měch et. al. [9].
This method was developed further by Parish et. al. [10]
to create city street maps using a set of production rules.

Weber et. al. [15] extended this method to simulate a
three-dimensional urban model over time. They define a
city hierarchy that guides the creation of such networks.
Because we use this hierarchy definition, we will discuss
it in greater detail in Section 3.1.1.

The CityEngine [11] is a commercial software package
that is capable of procedurally generating complete cities.
Input is provided in the form of many controllable param-
eters and various image maps: height maps can be used
to model terrain, obstacle maps denote regions where no
streets should be created and population density maps con-
trol the type and density of the streets and buildings in cer-
tain regions. The system is capable of creating large street
networks, building parcels and even buildings. Streets
are generated using L-systems, while buildings are created
with a shape grammar technique.

Other methods to create street layouts and networks in-
clude interactive editing of a tensor field [2], a mixture of
interactive and procedural techniques where main streets
have to be created manually, while minor roads are gen-
erated automatically [5], and image based approaches that
rely on aerial images to reconstruct a road network [1]

Recently, procedural generation of buildings and fa-
cades has been researched heavily, including the genera-
tion of facades using shape grammars [8, 16] and interac-
tive editing of shape grammar rules [7].

An excellent review of various urban modeling tech-
niques can be found in a recent survey paper by Vanegas

et. al. [14].
Gebhart [3] describes a system that helps artists to

create 3D street networks. Streets are “drawn” by an
artist or designer, and detailed geometry is created semi-
automatically by setting parameters such as the number of
lanes, the radius of a curve, etc. Zimmermann [17] pre-
sented a technique to construct a fully polygonal 3D street
representation out of centerlines. Although both methods
produce visually impressive results, both fail to address
the problem of maintaining a stable and realistic tessella-
tion for 3D streets that adjust to terrain levels of different
heights.

The problem of finding a model that fits into a certain
environment has not been investigated very extensively.
Kjølaas [6] presented a system that automatically places
furniture into a given floor plan by selecting a template
from a given set of default templates for common rooms
and adapting it to the given room.

In the field of automated building placement a lot of
work has been done in the direction of recognition and re-
construction of buildings from aerial images [4, 13]. This
is usually done in the process of reconstructing existing
cities, e.g. for mapping applications, but not for artist-
created urban environments.

3 Our System

In this section we present our techniques to create street
networks for urban environments, as well as a method to
tessellate the street geometry in a simple and stable way.
Additionally, we propose a technique to match the ”most
suitable” building to a parcel from a set of previously mod-
eled buildings.

3.1 The Street Network

Our algorithm to create street networks is based on the
work of Parish et. al [10] and Weber et. al. [15]. Streets
are created using a system similar to extended L-Systems,
although we chose not to implement a string rewriting
system, but to apply the production rules directly to the
street objects to avoid slow string operations, as proposed
in [15]. We will first explain our city hierarchy definition
in Section 3.1.1 and describe a set of important control pa-
rameters that are used for creating streets in Section 3.1.2.
Finally, we will describe the algorithm based on the de-
scribed hierarchy in Section 3.1.3.

3.1.1 City Hierarchy

We use a city hierarchy definition similar to the one intro-
duced by Weber et. al. [15]:

A street network is a planar graph (V,E) with nodes V
and edges E. A street consists of one or more edges e ∈ E,
the street segments. Each street segment e connects two
nodes n(e)1,n(e)2 ∈ V 2. Streets can be major or minor

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
158

streets and have different widths. A facet in the planar
graph (Vma jor,Ema jor) is referred to as quarter, that is an
area surrounded by major roads. A facet in (V,E) (an area
surrounded by any street) is called a block. Each block
can be subdivided into building parcels. This hierarchy is
illustrated in Figure 2.

Figure 2: City Hierarchy. Main roads are displayed red,
minor roads are orange. Quarters are areas surrounded
by major roads. Blocks are surrounded by any road and
divided into parcels.

To create a city obeying this hierarchy, major streets are
created first, and spaces in between are filled with minor
roads afterwards. This results in a planar street network
and buildings blocks in between. A block consists, ac-
cording to our hierarchy definition, of multiple building
parcels, each defining the space a single building can take
up. These parcels can be generated by repeatedly subdi-
viding a building block.

3.1.2 Control Parameters

The creation of streets can be controlled with a lot of dif-
ferent parameters:

• Cities usually have different layouts. Streets in New
York City are strictly rectangular, whereas Paris fol-
lows a loosely circular pattern. Cities with no super-
imposed pattern grow organically. In our system, ma-
jor and minor roads can follow different patterns.

• Street length, width and angles between adjacent
street segments can be controlled.

• To avoid street ends near existing junctions, a dis-
tance snappingDistance can be defined. If
the distance between a street end and a junction is
smaller than snappingDistance, the street end
is snapped to this junction.

• A height map may be specified to create a terrain (see
Figure 3). The streets will then adjust to this terrain.
If the slope of the street is larger than a user defined
threshold maxSlope, the street is rotated until it is
plain enough, or removed if that is not possible.

• Urban environments may contain areas where no
streets should be created, such as parks or water.
Such areas can be denoted in an obstacle map (see
Figure 3). This map is sampled regularly and streets
will avoid any obstacles.

• Real cities grow after demand: Major roads con-
nect centers of high population densities, while minor
roads provide access to the major roads in populated
areas. A population density map (Figure 3) can be
set to control the development of major and minor
streets.

• The average size of a building parcel can be con-
trolled to adjust the parcels to the desired building
size.

All of these parameters can be set using the user inter-
face of our application.

Figure 3: Input maps for a bay area environment. From left
to right: (1) Height map, (2) Obstacle map, (3) Population
density map.

3.1.3 Creating the Street Network

As explained above, the algorithm is divided in two stages:
(1) creating major streets and (2) identifying quarters sur-
rounded by major streets and filling them with minor
streets. Quarters and blocks can be identified easily using
a planar graph face traversal algorithm.

As discussed in [10] we use a 3-level hierarchy to eval-
uate parameters for a new street segment: First, an ideal
successor is created. This is a new street segment without
any parameters assigned. For this new street segment, the
global goals function is evaluated. The location and ori-
entation of the street is set according to the superimposed
street pattern and the local population density. After the
initial parameters have been evaluated, the street segment
is adapted to its local environment by calling the local con-
straints function: This function changes the location and
orientation of the street according to the parameters in Sec-
tion 3.1.2: The new street segment is snapped to existing
junctions, the street is adjusted to the local terrain slope
or changed to avoid any obstacles such as parks. The pro-
cedure is the same for major and minor streets, although
different parameter sets can be used.

One of the main problems of this approach is that minor
streets are only created inside quarters that are surrounded
by major streets. This leads to unrealistic results at the

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
159

boundaries of the street network, where no minor streets
are created.

We have solved this problem by calculating the convex
hull around the whole street network and using this hull to
create additional quarters at the city boundaries.

If the points of the convex hull are connected by a
straight line, outer regions of the city look ”cut off” and
unnatural. To account for that, we bulge the hull by ran-
dom amounts to create a more realistic city shape.

After all streets have been created, we use the same al-
gorithm we used before for identifying quarters to now
find all blocks surrounded by streets (major and minor).
To create parcels of the size the user specified, each block
is recursively subdivided into building parcels using a
method similar as the one described in [15]: (1) Select
the longest side of the polygon and create a perpendicular
split line at its center. (2) Split the polygon along this line.
(3) Repeat this for each new polygon if its area is larger
than a predefined threshold maxArea.

In most cases, only parcels with street access should
be created, because most buildings have an entrance
that should face a street. If the boolean parameter
deleteInnerLots is set, we delete all parcels that
have no direct street access. The algorithm is illustrated
in Figure 4.

The complete street creation process is illustrated in fig-
ure 5.

Figure 4: This figure illustrates how a block is recursively
split into parcels until each parcel is below the area thresh-
old maxArea.

3.2 Street Geometry Tessellation

Street tessellation is not the main scope of our work, so
we wanted to implement a simple, but stable geometri-
cal representation of the street network that enables simple
shading of streets that adjust to the slope of the underlying
terrain.

Tessellating a single street is straightforward, but some
problems arise at junctions: If each street would be tessel-
lated and rendered independently, discontinuities and z-
fighting would appear where two streets meet. Therefore
we need a special geometric representation for junctions.

Another problem that arises is how streets that adjust to
multiple height levels should be tessellated so that junc-
tions are planar, but do not form unnatural steps on slopes.

We will first describe our method for street tessellation in
case of streets that are coplanar in Section 3.2.1. In Sec-
tion 3.2.2, we will discuss how we solved the problem of
non-coplanar street networks.

3.2.1 Geometry for Planar Streets

The street network is represented as a planar graph of
edges that connect to each other at junctions. To draw this
network, we need to construct a fully polygonal street rep-
resentation. The original edges serve as centerlines for the
street geometry.

The geometric representation of a street network con-
sists of junctions and street segments. Each street has a
certain streetWidth that was set in the street network
creation process. We call the point where two street cen-
terlines meet the center point of a junction.

To create a polygonal representation of the street, we
use a similar approach as the one discussed in [17]:
we offset lines from the centerline on both sides by
streetWidth

2 . These offset lines are called street out-
lines. Street outlines of two adjacent street segments in-
tersect at the corner points that define the corners of the
junction and separate the junction geometry from the street
segment geometry. To create the junction geometry, the
two corner points of one end of a street segment form a
triangle together with the junction center point. This trian-
gle is called a street head.

A junction consists of n street heads, where n is the
number of street segments adjacent to the junction. This
is illustrated in Figure 6. In cases where two junctions are
too near to each other, so that junction geometries overlap,
the two center points are merged to create a stable junction
geometry.

Our method produces simple, but stable results, as can
be seen in Figure 7.

Figure 6: This figure illustrates how a junction is defined
by 4 street heads. The street centerlines are displayed in
red and meet at the center point. Street outlines are colored
black. Street heads are shown in green, the lower right
street head is highlighted for clarity (A).

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
160

Figure 5: This figure illustrates the steps necessary to create a street network. From left to right: (1) Major streets are
created (organic pattern, red). (2) the convex hull is calculated and bulged (blue). (3) Minor streets are created inside the
quarters (grid pattern, orange) (4) The final street network with building parcels, convex hull and dead end roads removed.

Figure 7: Even complex junctions are tessellated correctly
with our method.

3.2.2 Geometry Displacement for 3D Streets

The method described in [17] creates good results as long
as all streets are in one plane. When streets are not copla-
nar, a number of problems arise: The junction geometries
described in Section 3.2.1 need to be flat, otherwise streets
will twist unnaturally. We introduce a method that nes-
tles street segments and junctions to the terrain underneath
while preserving the planarity of junction geometries.

To create flat junction geometries, initially all the ver-
tices of the junction geometry are placed at the same height
as the center point of the junction. This leads to unaes-
thetic and unrealistic steps and extreme slopes, as can be
seen in Figure 8. These steps can be smoothed by moving
the junction geometry into the tangent plane to the terrain
surface at the junction center point. This can be done by
calculating how much the normal of the terrain is rotated
against the up vector. Based on that, a rotation matrix is
calculated around an arbitrary axis that is later applied to
every vertex of the junction. As a result, the whole junc-
tion geometry is rotated into the tangent plane of the ter-
rain surface. An illustration can be found in Figure 8.

Unnatural steps in steep streets are avoided this way, but
we introduce a certain lateral grade. This lateral grade is
limited by the longitudinal slope of all other streets ad-
jacent to this junction. This is acceptable for interactive
applications such as games, since the maximum allowed
longitudinal slope (12%) is not much higher than the max-
imum allowed lateral grade (8%)1.

We follow the approach in [17], where street segment

1In Austria, this may differ in other countries, and for mountain roads.

Figure 8: Smoothing of junction geometry. Top: The ini-
tial geometry is displayed transparent. It is then rotated
into the tangent plane of the terrain surface. Bottom, left:
Geometry before rotation. Right: After rotation.

ends are modified so that they connect to the junction at
a line perpendicular to the direction of the segment. This
is done for the following reason: If the two corner points
of a street head do not lie on a line perpendicular to the
street segment direction, the street may twist unnaturally
or become uneven. Refer to Figure 9 for an illustration.

In between the street heads, the geometry of the street
segment is subdivided regularly and displaced according
to the terrain height to nestle against the underlying terrain
surface.

3.3 Building Assignments

Our main contribution is a technique to assign buildings
to parcels from a set of previously modeled buildings. Af-
ter the street network creation process described in Sec-
tion 3.1, building parcels of various size and shape have
been created, most of them being rectangular. Modeling a
suitable building for all of them by hand would be a huge
and tedious effort. We propose a method that selects the
”best fitting” model for each parcel from a set of exist-
ing buildings. By ”best fitting”, we mean the model that

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
161

Figure 9: Street ends are modified to create connecting
lines perpendicular to the street segment direction. The
original junction geometry is shown in green (A), the mod-
ified geometry in blue (B).

occupies most of the building parcel, while satisfying var-
ious constraints, such as not protruding from the parcel.
These buildings can be created using a commercial model-
ing software like Autodesk Maya, or may be procedurally
generated.

The rest of this section is structured as follows: we first
discuss some characteristics of building models in Sec-
tion 3.3.1. Then we describe our method for selecting the
”best fitting” building for a parcel in Section 3.3.2.

3.3.1 Building Properties

Each house has a footprint that can be defined as the con-
vex hull of all vertices in its geometry projected onto the
ground plane. This gives a good estimate for the area the
building will need on a parcel. If this area exceeds the area
of a certain parcel, the building will not be considered fur-
ther for it (Constraint 1).

A building consists of sides that have to face a street
side, e.g. because there is a door that needs street access.
Also, there are sides that must not face a street, e.g. be-
cause there is a plain brick wall on this side. We refer to
them as Street Access Sides and Inaccessible Sides. These
sides pose constraints for our system that have to be met.
Street Access Sides have to be aligned and placed next to
streets to guarantee direct street access (Constraint 2), and
Inaccessible Sides have to point away from streets so that
they are not directly visible (Constraint 3). All other faces
of the building may face a street, but they do not have to.
See Figure 10.

All these properties are stored as meta information in a
XML file for each building model.

3.3.2 Selecting a Building

The building with the largest footprint that meets all the
criteria described above will be selected as the ”best fit-
ting” building for a parcel.

The set of previously modeled buildings is stored in a
list ordered by footprint area size from largest to small-
est. This list is enumerated for each parcel. All models

Figure 10: A simple building model. Street Access Sides
are displayed by green lines on the ground plane (A), red
lines denote Inaccessible Sides (B).

that have a larger footprint area than the current parcel are
discarded. Also, models that contain more Street Access
Sides than the parcel has adjacent street sides are not con-
sidered, because it is not possible to align them all cor-
rectly. For every remaining building, a series of transfor-
mations and tests are applied. The first model that passes
all the tests is chosen for the current parcel. This guaran-
tees that the building that occupies most of the parcel area
while meeting all constraints is selected. The process is
illustrated in Figure 11.

• The building footprint is moved into the center of the
parcel.

• The largest Street Access Side of the footprint is
aligned to the largest side of the parcel that is adjacent
to a street to get an initial alignment for the building.
This suffices for most of the buildings, since many of
them only have one front side that needs to face the
street.

• Rotate the building footprint until all Street Access
Sides face a street and all Inaccessible Sides do not. A
side faces a street if it is nearly parallel2 and a ray cast
perpendicular from its center directly hits a street.

• Move the footprint as near as possible to any streets
adjacent to the parcel. Buildings usually adjoin di-
rectly to streets, but a minimum distance can be con-
figured in the user interface.

• Check if all points of the footprint are inside the par-
cel.

• If any of the above tests failed, repeat the process
with the next smaller building. If a valid solution was
found, assign the building to this lot considering the
found transformations.

If the parcel is located on a slope, the building is moved
down so that every vertex is on the ground or beneath.
If the slope of the gradient of the parcel exceeds a user
defined threshold maxParcelSlope, the parcel is dis-
carded and no building is assigned.

2we chose a max. deviation of ± 30 degrees

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
162

Figure 12: Some results from our system. Top left: a small village on a hillside next to a bay. Note how the roads adapt to
different terrain heights and stop if they become too steep. If the ground is too uneven, no parcels are created. Top right:
Close-up of a more complex junction in the village. Bottom left: Close-up with view over the bay to the hillside where
streets spread over the plain of the terrace. Bottom right: a larger city without terrain with far over 100 streets and more
than 2.500 buildings.

Figure 11: Steps for fitting a building footprint into a par-
cel. The outer polygon illustrates the parcel, the inner one
the building. Street Access Sides and parcel sides adjacent
to a street are colored green (A), Inaccessible Sides red
(B). (1) The footprint is moved into the center of the par-
cel. (2) The largest Street Access Side is aligned with the
largest parcel side with street access. (3) The footprint is
rotated. (4) The footprint is moved near to the streets.

4 Results

Our system is capable of procedurally generating whole
cities with dozens of streets and hundreds of buildings
within seconds. Most parameters used for the creation
of street networks and the assignment of buildings can be
changed in our user interface. The assignment of buildings

worked well in our tests, however the visual result depends
on the quality and amount of models used. If only a few
buildings are available, very uniform neighborhoods are
created. The larger the set of models is, the more diverse
the cities become. For our tests, we used 20 models avail-
able freely at Google 3D Warehouse and achieved pleas-
ing results. Some screen shots of our results can be seen
in Figure 12.

We implemented our system in C# using the XNA
framework for rendering. All tests and images in this paper
were made on a system consisting of a Core 2 Quad 6600
with 4GB RAM. At the moment our system is single
threaded, but it could easily use multi threading, especially
for the parcel subdivision and building assignments. See
Table 1 for detailed results.

Task Count Time
Street creation 73 streets, 283 segments 0.65s

Street tessellation 73 streets, 283 segments 0.17s
Parcel Creation 811 parcels, 107 blocks 0.08s

Buildings 776 buildings assigned 2.24s
Total 3.14s

Table 1: Performance benchmarks of our system for a
small city consisting of 4 main and 69 minor roads. The
whole city was created in just over 3 seconds.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
163

5 Conclusion and Future Work

We presented a system that procedurally creates urban en-
vironments including street networks, street geometry and
building parcels. Very different types of cities can be cre-
ated by changing parameters in the graphical user inter-
face. Our main contribution is a constraint based sys-
tem that choses the ”best fitting” building for every parcel.
Building properties such as the footprint, area and faces
that should have street access are used to select the most
suitable building.

Furthermore we describe for the first time a robust
method to create 3D street geometry for streets that adapt
to different terrain heights.

In existing street generation systems, no minor roads are
created at the city borders. We addressed that problem by
calculating a convex hull around the city and widen it by
random amounts to create a more realistic city shape and
more detailed outskirts.

5.1 Future Work

Image maps could be used to control more parameters of
the building assignment process and give the user more
control over the selection of buildings for the parcels.

An input map similar to a height map could be used to
control the building height for different regions. Another
map could be used to manage the type of buildings: A
building can be of a certain type (residential, industrial,
suburban, etc.), and each type is associated with a certain
color in the map. This information could be used in the
building assignment process to create districts with a dif-
ferent look and feel.

The main limitation of our current system is that it is
static. Models placed automatically can not be moved or
modified in any way. We want to give the user the power
and flexibility to change the environment after it has been
created automatically.

References

[1] D. G. Aliaga, C. A. Vanegas, and B. Beneš. Inter-
active example-based urban layout synthesis. ACM
Trans. Graph., 27(5):1–10, 2008.

[2] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang.
Interactive procedural street modeling. ACM Trans.
Graph., 27(3):1–10, 2008.

[3] Gernot G. Automatisches generieren von 3d-
straßensystemen. Master’s thesis, Vienna University
of Technology, March 2008.

[4] C. Jaynes, E. Riseman, and A. Hanson. Recognition
and reconstruction of buildings from multiple aerial
images. Comput. Vis. Image Underst., 90(1):68–98,
2003.

[5] G. Kelly and H. McCabe. Citygen: An interactive
system for procedural city generation. In Fifth Inter-
national Conference on Game Design and Technol-
ogy, pages 8–16, 2007.

[6] K. A. H. Kjølaas. Automatic furniture population of
large architectural models. Master’s thesis, Depart-
ment of Electrical Engineering and Computer Sci-
ence, MIT, January 2000.

[7] M. Lipp, P. Wonka, and M. Wimmer. Interactive vi-
sual editing of grammars for procedural architecture.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers,
pages 1–10, New York, NY, USA, 2008. ACM.

[8] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings.
ACM Trans. Graph., 25(3):614–623, 2006.

[9] R. Měch and P. Prusinkiewicz. Visual models of
plants interacting with their environment. In SIG-
GRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive tech-
niques, pages 397–410, NY, USA, 1996. ACM.

[10] Y. I. H. Parish and P. Müller. Procedural model-
ing of cities. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 301–308, August 2001.

[11] Procedural Inc. Cityengine, www.procedural.com,
2010.

[12] P. Prusinkiewicz and A. Lindenmayer. The Algorith-
mic Beauty of Plants. Springer Verlag, 1991.

[13] I. Suveg and G. Vosselman. Reconstruction of 3d
building models from aerial images and maps. IS-
PRS Journal of Photogrammetry and Remote Sens-
ing, 58(3-4):202 – 224, 2004.

[14] C. Vanegas, D. Aliaga, P. Wonka, P. Müller, P. Wad-
dell, and B. Watson. Modeling the appearance and
behavior of urban spaces. Comput. Graph. Forum.
to appear.

[15] B. Weber, P. Müller, P. Wonka, and . Gross. Inter-
active geometric simulation of 4d cities. Computer
Graphics Forum, 28(2):481–492, April 2009.

[16] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky.
Instant architecture. ACM Trans. Graph., 22(3):669–
677, 2003.

[17] M. Zimmermann. Procedural construction of streets.
Technical report, ETH Zürich, 2007.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
164

Data Acquisition

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Laser Scanning Versus Photogrammetry Combined with
Manual Post-modeling in Stecak Digitization

Goran Radosevic
Supervised by: dr Selma Rizvic

Faculty of Electrical Engineering Sarajevo
Bosnia and Herzegovina

Abstract
Stecci (sing. stecak) are hand carved medieval Bosnian
gravestones considered as valuable cultural heritage
objects. One of the best ways for their preservation is
digitization.

In this paper we compare digitization results and
procedures for one of the most famous stecci – The
Stecak from Donja Zgosca. The object was first digitized
using a Minolta 910 laser scanner. Later we created the
3D model from photos using photogrammetry and
improved it in 3ds max. We present advantages and
drawbacks of these two procedures and characteristics of
the obtained models. Results of this comparison will be
used in future digitization projects.
Keywords: Laser Scanning, Photogrammetry, Manual
Modeling, Stecak, Cultural Heritage, 3D Modeling.

1 Introduction
Cultural heritage within its set of materiality, traditions
and knowledge helps us to better understand the past
itself. Therefore it is very important to preserve these
monuments in a way we see them now for next
generations. Thus, new technologies can be very helpful.
Today we are able to create virtual model of a real object
using various techniques. We used two different
techniques in our research, expensive technique of laser
scanning and much cheaper, but also good technique for
acquisition of 3D models from 2D images,
photogrammetry. We also made a step forward and
introduced some improvements of the model achieved
using photogrammetry, as we will see in more details
later in this paper.

Stecci are hand carved medieval Bosnian
gravestones. We applied both techniques on the Stecak
from Donja Zgosca, and got some interesting results.
This stecak originates from the second half of 14th
century. It has a great importance for Bosnian history
because it is assumed that the Bosnian king Stjepan II,
who died in 1353, was buried under this stecak [1]. This
monument is currently located in the botanical garden of
the BH National Museum in Sarajevo (Figure 1).

In many cases, like with the Stecak from Donja
Zgosca, the traditional modeling (for example manual
modeling using 3ds Max or Maya) would require much
more work and effort, and the final result would not be
satisfactory. The model created using these methods
would not be sufficiently accurate. It would not contain
enough information about the real object. This is why we
use methods such as 3D laser scanning, which produces a
virtual model with high accuracy. In the first part of our
research we used a Minolta 910 laser scanner (Figure 2),
borrowed from our project partners, the University of
Bristol, UK.

In the second part of our research, we used
photogrammetry technique for virtual reconstruction of
the stecak. The basic principles of photogrametry are
briefly presented in the Section 4. In this project we used
the Photomodeler software for implementation of
photogrammetry technique with manual approach of
creating 3D model. The model was later improved in 3ds
max software.

The paper is organized as follows: the Section 2 gives
a short overview of the related work in similar projects,
in the Section 3 we describe the laser scanning approach,
applied on the stecak. In the Section 4 we describe the
process pipeline of photogrammetry combined with
manual 3D post-modeling of the model, and steps for its
implementation. In the Section 5 we compare results
achieved using these two approaches, and describe

Figure 1: The Stecak from Donja Zgosca

Figure 2: Scanning the stecak with a
Minolta 910 laser scanner

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

advantages and drawbacks of both techniques. In the
Section 6 we present conclusions based on our
experience from this project, and illustrate reasons why
to use one technique instead of another in future projects.

2 Related work
When creating 3D model of a real object, it is very
important to choose the most appropriate technology and
procedures that can create the best final output in
accordance with the project's specifications and
requirements.

Laser scanning shows its full potential in open pit
mining environment application, where no rival
technology comes close to matching the utility of a laser
scanner, not even digital photogrammetry [11]. In project
of recording 3D measurements from medieval castle of
Haut-Andlau (Alsace, France) [12] laser scanning and
photogrammetry were used. Application of each one of
them resulted with similar level of satisfactory accuracy.
Main difference between these two approaches is that
laser scanning is focused on grid of points, without
taking specific object structures into account, like corners
or edges. On the other hand, photogrammetric
measurements concentrate on object discontinuities and
representative structures, even without generating dense
point cloud [12]. If our method of improving the
generated 3D model in 3ds Max had been used in this
project, the achieved realism of the castle could have
been even better and mainly flat surfaces could have had
more details.

The accuracy of created 3D points in both techniques
was compared in application on the ancient church of
Pozzoveggiani, Italy [13]. Here the photogrammetry
technique has given the similar or even better results than
laser scanning technique, but for the best results author
adviced using some combination of these techniques, as
each one has attributes and elements that complement
one another. In addition our method could be used for
increasing geometry details on the model of the church
created using photogrammetry technique.

Today's laser scanning technique offers a good way
for 3D model acquisition, but also has a lot of issues
which are preventing its wider use [4]. Some projects are
introduced, which could boost the diffusion and
evolution of 3D scanning technology [4]. New tools and
solutions for improving these techniques are often
introduced, such as TexAlign, which helps the user to
improve image-to-image correspondences and it is
presented and applied on the model of David’s statue.
Another example is a new solution for generating 3D
models from high resolution photos, which is presented
on the model of Arc du Triomphe, Paris, France [4]. This
solution uses a special algorithm to calculate accurate
surface details achieved by triangulation. Our method of
improving the model by estimating surface details using
object’s textures is not that accurate.

3 Laser scanning

Laser scanners provide a method of capturing accurate
information about object’s surfaces. The stecak was
scanned with a Minolta 910 laser scanner. It is a scanner
for close range and indoor applications [2]. This scanner
has accuracy of less than a millimeter.

The scanning is based on the principle of laser
triangulation, Figure 3. The target is scanned with laser
beams. The laser scanning mechanism characterizes each
point on the scanned object according to its location in
3D-space by scanning the surface of an object with one
focused beam, and recording the reflected light using
CCD camera. Each point on the object is described by 3
numeric values which correspond to 3D coordinates X,
Y, and Z.

The X coordinate of each point on the object is
calculated from an accurate measurement of the position
of the scanning mirror in the camera. The Y coordinate is
calculated from an accurate measurement of the camera
motion system (CMM). The Z, or range coordinate, is
calculated through laser triangulation within the camera.
Surface shape measurements of the object are obtained
through triangulation, and then converted into a 3D
polygonal mesh [3].

The scanner measures 640 x 480 points regions
within one scan, simultaneously acquiring surface shape
data and color image data.

After measuring the 3D depth data, the Vivid 910
uses its CCD to capture a 2D image in the same way as a
digital camera. The CCD relies on ambient light to
illuminate the target. The scanner software then matches
points on the photograph to points in the surface mesh
and exports the data as a CDM file which contains both
the mesh and bitmap. In addition, a color image of the
object can be also obtained by scanning the CCD through
a RGB filter while the stripe light is not emitted. (A band
pass filter is used when the stripe light is emitted.)

Figure 3: Minolta Vivid 910 measurement principle

Since the less illuminated scan areas produce better

results, the model of stecak was scanned during the night
because of the intense light in that part of the Museum’s
botanical garden during daylight. Given that, the textures
produced were not satisfactory (Figure 4, left), so the

168

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

decision was made to continue without the original
textures. Instead, the model was assigned with the
appropriate textures later, during its reconstruction in
Maya.

Individual scans, created by laser scanning method,
were later connected together in a polygonal mesh by
using the Stitcher software tool provided with the laser
scanner (Figure 4, right). This software was used for
editing captured scan data, merging scans into single
"watertight" mesh, and then exporting .OBJ file to Maya.

The computer model of the scanned stecak was
transferred from Stitcher to Maya. The size of the laser
scanned model was so large that it needed to be reduced
to 5% quality in order to manipulate it in Maya.

Maya has a function for reducing number of vertices
of the model, optimizing it for easier use. Problem is that
this function works only for models created in Maya, but
not for polygon meshes generated by the scanner. The
only suitable solution was to load the original scan file to
Stitcher, and do all reducing there. After applying new
modifications in Stitcher, reduced model was exported
from there, and imported to Maya. Geometry of the
stecak was here improved in some areas, and the
damaged part in the lower corner was repaired (Figure
5).

Radiance – the physically based rendering software
system was used for calculating light over the object. In
Maya the new material was created with information
about the object’s radiance. That material was applied on
the object.

The finished model’s geometry was exported in an
OBJ file, and TIFF texture file was created by the
material conversion as well.

After that, we further optimized this model in

Meshlab tool [4, 5]. Results of comparison of various
optimization methods are presented in Section 4.

The obtained model was used for creating the sun
simulation animation [2] and in the online application
“Virtual Sarajevo” [7]. We also used this model without
optimization to introduce the archaeologists from the
National Museum of Bosnia and Herzegovina with
possibilities in virtual reconstruction of the cultural
heritage objects, reconstructing the damaged part of the
object in Maya (Figure 5).

4 Improved photogrammetry
Our goal in this phase of our research was to create a
model of stecak which has the level of realism similar to
the model created using laser scanning technique, using
much cheaper equipment. The process of creating 3D
model using improved photogrammetry consisted from
three steps:

 Taking photos
 Creating model in Photomodeler
 Improving model in 3ds max

4.1 Taking photos
The first task that had to be done within the
photogrammetry process pipeline was taking photos. It is
very important to have knowledge about the photography
technique and the camera parameters which are used in
this process. To obtain high accuracy and reliability, the
photos must be of the highest quality. The photos taken
on the site are shown in Figure 6. We used Canon
PowerShot Pro 1 camera for taking the photos.

Figure 5: Comparison between raw model of
the stecak before reconstruction (left); Final

model of the stecak after repairing in Maya (right)

Figure 6(a): The photos used to recover 3D
t

Figure 6(b): The photos used for capturing textures
from the sides of the object

Figure 6(c): Additional photos used for obtaining
more information from the top sides of the object

Figure 4: Texture of the model captured by the laser
scanner (left); the stecak without textures. Multiple
scans merged into a single using the Stitcher (right)

169

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

The photos must be taken in a precisely defined
manner in order to be used later in a photogrammetry
process.

This process requires that certain parameters of the
photos remain unchanged. Focal length must be the same
in all taken photos. Digital camera must have the option
for manual adjustment of the focus or for locking the
focal length. After adjusting the focus in a way that the
image is sharp, the same focus value should be locked for
every picture taken in the set.

Other parameters that must remain unchanged while
taking photos are: image resolution, zoom, camera
distance from the object, exposition. Brightness and
possible shadows should be the same in all taken pictures
in the set. If not, we can have problems in overlapping
textures that look different when taken from different
positions [4]. Flashbulb can be used, but we found that
pictures look more natural when they are taken in
daylight.

It is a good practice to take more photos from the
same camera position, because it is not hard to do, and it
can save our time if we find that some of the taken
photos are not good enough. The tripod should be used if
it is available.

Camera calibration is a procedure of taking photos of
Photomodeler’s calibration grid (Figure 7) with the same
camera that was used for taking photos on the site. The
final goal of camera calibration process is to introduce
Photomodeler with internal camera parameters: focal
length, format size of the sensor, image size or lens
distortion. After taking calibration photos, they should be
imported in Photomodeler and then automatically
processed by this application. After successfully finished

calibration process, Photomodeler will use internal
camera parameters for later calculations of the taken
pictures based on triangulation.

In this project we did not use camera calibration
process because we wanted to see if it is possible to
create satisfying model quality without it. We achieved
almost identical results in this way as in a project where
calibrated camera is used, because Total Error is very
low indicating that estimated camera parameters are
excellent.

4.2 Creating the model in Photomodeler
Model creation in Photomodeler is an iterative process.
Each iteration consists of the following steps:

 Marking important elements on the photos
 Referencing elements between different photos
 Starting Photomodeler’s automatic processing
 Drawing surfaces in 3D viewer

In the marking process we should mark the well
visible elements (points, edges, curves, lines, etc.) that
we can see at two or more photos. Every element must be
marked in minimum two pictures in order to be
processed and to reveal its 3D information. It is very
important to have good quality photos with high
resolution. Lower quality photos could lead to lower
accuracy of the final 3D model.

Referencing step refers to connecting the same
elements on different photos. In this way, Photomodeler
“knows” that the same element is appearing in different
photos. This information is used in automatic processing
step in which 3D information can be calculated using
triangulation.

After that, we can start Photomodeler’s automatic
process of calculating 3D data. If the processing step is
finished successfully, the 3D model from given elements
is created. We can make iterations of the process
improving its elements until the Total Error is minimal
(Figure 8). After the processing step, the 3D model is
generated, and we can see it in the 3D viewer. In the 3D
viewer we can also draw all surfaces.

Now we can start with the next iteration of modeling
by repeating these steps of marking and referencing
elements, processing and drawing surfaces in the 3D
viewer. We should repeat this cycle until we have
generated the 3D model with desirable level of accuracy.

Figure 6(d): Additional photos used for
recovering textures and geometry from the

damaged part of the object

Figure 7: Photomodeler’s calibration grid:
Original paper (left); Photo with generated points

after processing (right)

Figure 8: Notification for successfully finished
processing. Processing was done in two iterations of

improving data, with total error of 1.49

170

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Without using calibration in the beginning, accuracy
of our generated 3D model is very low. The software has
no information about the camera parameters, thus 3D
coordinates could be calculated in a wrong way (Figure
9).

Figure 9: Due to the wrong calibration parameters
and lack of marked information in the beginning,

Photomodeler generated the wrong 3D information

In our example we have created a project with

estimated camera parameters, which could be wrong, and
we got poor results after processing. Lack of camera
parameters information could be compensated by high
quality photos, and well marked and referenced elements.
In the beginning this can be very hard work that does not
give us the results we expect.

The Point Table is used for approving overall
accuracy of generated 3D information (Figure 10).

The Point Table holds all information of all points
marked in our project. If we sort points by the “Largest
Residual” value, points with largest value needs to be
reviewed. Largest residual value is the difference
between the position of the marked point, and the
estimated position of that point calculated by
Photomodeler.

At some point we found that our model is quite
satisfying for our purpose (Figure 11). This model was
exported in two files: .OBJ file that contains the stecak’s
geometry information, and .JPEG file with the stecak’s
texture information.

4.3 Improving the model in 3ds max
If we take a look at the previously created model in
Photomodeler, we can see that its surfaces are mainly
flat, and even if textures are fitting, we cannot see any
relief of its surfaces.

In this paper, we introduce a new technique of
improving models created in Photomodeler by
photogrammetry technique using post-modeling in 3ds
max software. We will modify its surfaces to obtain more
relief.

The model is exported from Photomodeler as 3D
Studio file (.3ds) with JPEG texture, and then imported
in 3ds max. After importing, the model is converted to
“Editable Poly”, and we have applied three modifiers to
it: Subdivide, Displace, MeshSmooth.

The first modifier we have applied to the model is
Subdivide modifier. The main purpose of this modifier is
to divide the object’s surfaces in smaller parts, creating
more faces. This modifier is used to prepare the model
for the next modifier, and also for model optimization
(Figure 12). We can optimize the model by selecting
“Size” parameter value in Subdivide modifier.

Subdivide modifier is used to prepare the model for
Displace modifier. Purpose of using Displace modifier is
to create relief on a totally flat surface based on the
information from the texture map. Darker places in the
textures will be pushed into the model, and lighter places
will be pulled out of the model.

In our example, this technique of estimating relief
proved as not so accurate, but it makes the model more
realistic (Figure 13). We applied this modifier in the
same amount on the whole object, but for getting better
results, we could apply various amounts of this modifier
to various parts of the object in different ways.

The last modifier applied on the model is

MeshSmooth. This modifier smooths coarse, fragmented

Figure 13: Model of the stecak before and
after the application of Displace modifier

Figure 12: Model of the stecak before
application of Subdivide modifier (left), and after

Figure 10: The Point Table in Photomodeler is
used to find points that are not marked correctly

Figure 11: The final model of stecak in
Photomodeler’s 3D viewer

171

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

surfaces, and makes model surfaces to look more fluent
(Figure 14).

After applying all mentioned modifiers, the model is
exported as .OBJ file with additionally exported texture
.JPEG file, and also in .WRL format, for usage on the
web.

Figure 14: MeshSmooth modifier: The model before
and after the application

We used the obtained model (Figure 15) as a part of

our project “Digital Catalogue of Stecaks” [6].

This project is a virtual museum of stecci from the
collection of the National Museum of Bosnia and
Herzegovina. The models created using photogrammetry
combined with post-modeling work well considering all
limitations of this online application.

5 Comparison of procedures
Laser scanning technique (LS) and photogrammetry
technique combined with post-modeling (PP) are two
completely different approaches for creating 3D models
with high levels of realism. Both of them have some
advantages and drawbacks which we will discuss in
order to provide some recommendations for future
projects of this kind. Results of this comparison based on
our experience are presented in the following tables and
figures.

We tested both techniques and compared their
features. Results of this comparison are presented in
Table 1.

Table 1: Comparison of LS and PP techniques by
various factors

The model created using laser scanning is optimized

in several ways. Results are presented in Table 2.

Table 2: The Models created using LS (LSx1)
The model created by the Photomodeler and then

improved using 3ds Max is optimized in several different
ways. Achieved results are presented in Table 3.

Table 3: The model created using photogrammetry (P2)
and the models created using photogrammetry combined

with post-modeling (PP1
3-PP4)

1 LSx - The model x created using laser scanning
2 P - The model created using Photomodeler only
3 PPx - The model post-processed in 3ds Max

Figure 15: The final model of stecak optimized
for web

172

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

As we can see, the optimization level of the final

model created by PP can be easily adjusted using the
“Size” parameter of Subdivide modifier. Optimization
dependency of the parameter “Size” from Subdivide and
number of vertices, number of faces and model’s size
(KB) is presented in Figure 16.

Figure 16: Optimization dependency of the parameter
“Size” from Subdivide modifier and number of vertices,

faces and size of model (KB)

Comparison of achieved photorealism in PP models

is presented in Figure 17. These models are improved in
3ds Max and have various levels of quality, achieved
using “Size” parameter of Subdivide modifier. In this
way, we created a high quality model, optimized model
and model intended for web usage (Figure 17).

Using MeshLab tools [5] we created from the laser
scan the models with various levels of quality, Figure 18.
Which quality of the model will be used depends of the
project’s requirements.

In our project we achieved various levels of geometry
details in both techniques. Comparison of the highest and
the lowest tested geometry quality is presented in Figure
19.

5.1 Laser scanning advantages

The most important advantage of using LS is its
accuracy. LS provided one millimeter accuracy in our
example, and this should be more than enough for most
of the applications. LS can be time saving. We can
automatically generate 3D models using LS, and then
optimize them using the software for automatic
optimization in order to get good results. If we can
extract textures from objects using this technology, then
we can create models with high level of details, high
accuracy, models that look very real.

5.2 Laser scanning drawbacks
LS is a very expensive technology. The raw scanned
models usually have a lot of small mistakes that should
be manually removed in order to achieve the high level
of details. In our project we had problems with the laser
scanner’s daylight sensitivity, thus we scanned by night.
Scanning by night caused another problem with textures,
and we chose to exclude the scanned textures from the
project. The optimization for web can be problematic
because models created in this way consist of huge
number of faces, and cannot be optimized for web
without losing overall quality. Optimization can be very
destructive on the models generated by LS. Still, we
achieved very good results using MeshLab software tools
[5].

5.3 Photogrammetry advantages
Photogrammetry is much cheaper than LS technique. If
the budget is our main parameter, we should definitely
choose photogrammetry. With this technique, we can
also achieve very realistic models, especially if using
photogrammetry in combination with manual post-
modeling.

5.4 Photogrammetry drawbacks
This technique is time-consuming. It requires well
experienced operator in order to achieve good results. If

Figure 18: Comparison of various optimized LS models
using MeshLab: 1) non-optimized model (LS1); 2)

optimized model (LS2); 3) optimized model for web
purpose (LS3)

2 1 3

21 3 4

Figure 19: Geometry quality comparison: 1) optimized
LS model for web purpose (LS3); 2) non-optimized LS
model (LS1); 3) optimized PP model for web purpose

(PP4); 4) maximum quality PP model (PP3)

Figure 17: Comparison of models created by PP using
Subdivide modifier: 1) created by Photomodeler

(without post-modeling); 2) optimized with Subdivide
“Size” parameter 1.5 (PP1); 3) maximum tested quality -
Subdivide “Size” parameter 0.8 (PP3); 4) optimized for

web - Subdivide “Size” parameter 4 (PP4)

1 2 3 4

Optimizing model using "Size" parameter
of Subdivide modifier

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

0,
8

1,
1

1,
4

1,
7 2

2,
3

2,
6

2,
9

3,
2

3,
5

3,
8

4,
1

"Size" parameter of Subdivide modifier

vertices

faces

size(KB)

173

Proceedings of CESCG 2010: The14th Central European Seminar on Computer Graphics (non-peer-reviewed)

we need high level of accuracy, then we should choose
laser scanning. It is not completely impossible to
improve accuracy of the model created by this technique,
but it could acquire a lot of additional time to achieve
that goal. This is still mostly manual technique that
requires a lot of user interaction, but there are a lot of
research efforts for achieving higher level of automation
in photogrammetry [8] [10]. We can say that fully
automated modeling using photogrammetry is still an
ongoing research topic in this area of 3D modeling [9].

There are some common drawbacks in both
approaches. Some objects cannot be captured with either
of two techniques, for example objects made of glass,
transparent, polished or mirrored and shiny materials [4].
Research is in progress to find solutions for these
problems. Also, neither of these techniques is fully
automated yet, in a way that manual editing is not needed
at all.

6 Conclusion
In this paper we presented the procedures of laser
scanning and photogrammetry combined with manual
post-modeling applied for digitization of The Stecak
from Donja Zgosca. The obtained results are used for
comparison of these two techniques. Different ways of
optimizing final models are also presented.

We introduced the concept of photogrammetry
combined with manual post-modeling by improving our
object in 3ds Max. This way we obtained more realistic
surface details which were combined with high quality
textures to achieve the satisfying quality of the model.

If we need to create a final model of the object with
high level of realism, and we have a low budget, we
should use some of photogrammetry based techniques. If
we have requirements for creating a model with high
level of accuracy, then we should use laser scanning
technique which gives us more precise results. We can
also use a combination of these techniques,
photogrammetry for getting overall object geometry with
realistic textures, and laser scanning technique for
precise and accurate information of object’s surface. The
results obtained in this project can help us to decide
which technique to use in our future projects.

References
[1] Selma Rizvic, Aida Sadzak, Emir Buza, Alan

Chalmers, Virtual reconstruction and digitalization
of cultural heritage sites in Bosnia and
Herzegovina, Review of the National Center for
Digitization, Faculty of Mathematics, Belgrade,
Issue: 15/2009, pg 64-72, ISSN: 1820-0109

[2] S. Rizvic, A. Sadzak, Z. Avdagic, A. Chalmers,
Maya Sun Simulation of Bosnian Gravestone Virtual
Model, EuroGraphics Italian Chapter, Catania 2006

[3] Selma Rizvić, Aida Sadžak, Zikrija Avdagić, Alan
Chalmers, The Techniques of Virtual 3D
Reconstruction of Heritage Sites in Bosnia and
Herzegovina, Sarajevo, ICAT05

[4] Paolo Cignoni and Roberto Scopigno, Sampled 3D
Models for CH Applications: A Viable and Enabling
New Medium or Just a Technological Exercise?,
ACM Journal on Computing and Cultural Heritage,
Vol. 1, No. 1, Article 2, Publication date: June 2008

[5] Paolo Cignoni, Marco Callieri, Massimiliano
Corsini, Matteo Dellepiane, Fabio Ganovelli, Guido
Ranzuglia, MeshLab: an Open-Source Mesh
Processing Tool, Sixth Eurographics Italian Chapter
Conference, page 129-136, 2008

[6] Digital Catalogue of Stecaks, http://h.etf.unsa.ba/dig-
katalog-stecaka/

[7] Virtual Sarajevo, www.virtualnosarajevo.com.ba

[8] Clive Fraser, Simon Cronk, Ida Jazayeri, Christos
Stamatopoulos, Automation in Close-Range
Photogrammetry,
http://www.eng.unimelb.edu.au/research/themes/projects/
sustainable_systems/automation_in.html

[9] Wolfgang Förstner, Real-Time Photogrammetry,
Photogrammetric Week 05, 2005

[10] Claus Brenner, City Models – Automation in
Research and Practice, Photogrammetric Week 01,
2001

[11] Simon Ratcliffe and Andrew Myers, Laser
Scanning in the Open Pit Mining Environment A
Comparison with Photogrammetry, I-SiTE Product
Development White Paper, July 1, 2006

[12] P. Grussenmeyer, T. Landes, T. Voegtle, K. Ringle,
Comparison Methods of Terrestrial Laser Scanning,
Photogrammetry and Tacheometry Data for
Recording of Cultural Heritage Buildings, The
International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences.
Vol. XXXVII. Part B5. Beijing 2008

[13] Alberto Guarnieri, Antonio Vettore, Fabio
Remondino, Photogrammetry and Ground-based
Laser Scanning: Assessment of Metric Accuracy of
the 3D Model of Pozzoveggiani Church, FIG
Working Week 2004, Athens, Greece, May 22-27,
2004

174

Fine Image Resampling Algorithm

Bronislav Přibyl∗

Supervised by: Pavel Zemčı́k†

Department of Computer Graphics and Multimedia
Faculty of Information Technology

Brno University of Technology
Brno / Czech Republic

Abstract

This paper introduces a fine image resampling algorithm
intended for corrections of image distortions caused by
lenses or similar devices. The algorithm is designed for
correction of small distortions in terms of pixel displace-
ment but with high subpixel precision. The geometri-
cal description of the correction is through bilinear in-
terpolation within each node of a sparse square or rect-
angular mesh. The paper describes the algorithms it-
self, its features, implementation issues and data formats.
Specifically discussed are the issues connected with pro-
grammable hardware (FPGA) implementation.

Keywords: Image resampling, Subpixel resampling,
Lens distortion correction, FIR filter, Bilinear interpola-
tion

1 Introduction

Image processing is one of the fields of computer science
and applications that is developing very fast. The object
of image processing is, of course, an image. Vast major-
ity of image processing methods assumes that the image
is a 2D signal represented through samples organized in
a regular square or rectangular raster [2]. While the con-
temporary image acquisition devices and methods acquire
images that relatively well fulfill the above assumption, in
most cases, the images suffer from small geometrical im-
perfections caused e.g. by lenses (pincushion distortion,
barrel distortion) used with the cameras that acquire the
images.

The geometrical imperfections are in some cases not
critical; however, many applications of image processing
exist that suffer from the imperfections and where it is de-
sirable to correct them. While the geometrical correction
– calculation of new sample positions in the image – is rel-
atively straightforward and can be e.g. performed through
bilinear interpolation within square or rectangular mesh,
the problem remains how to get the new samples values
so that the signal properties of the image remain as much

∗xpriby12@stud.fit.vutbr.cz
†zemcik@fit.vutbr.cz

preserved as possible. Unfortunately, the nearest neighbor
method, which completely destroys the image signal prop-
erties, and bilinear or bicubic interpolation [3] which can
be better but by far is not ideal, are traditionally used for
this purpose (see figure 1 for illustration). The main reason
is that while the algorithms to preserve good signal prop-
erties, namely frequency spectrum, are known, they are
often considered prohibitively computationally expensive.
This paper proposes a method that is far better from the
point of view of signal properties than the bilinear or bicu-
bic interpolation while still preserves relatively low com-
putational requirements. The limitation of the proposed
method, however, is that it is limited to the cases where
the distortions do not involve significant angular or scale
changes – the method merely assumes only local subpixel
shift limited to several pixels displacement [2, 3].

Figure 1: (a) Original pattern with 4 px thick synthetic
lines 15× magnified. (b) The same pattern resampled at
scale 1.05 using bilinear interpolation. Note that edges of
lines in the resampled image are significantly blurred.

2 Image Resampling

General image resampling problem is relatively straight-
forward mathematically – it is merely a problem of proper
reconstruction of signal values in 2D space and proper ap-
plication of sampling theorem. However, the efficient im-
plementation of such resampling is still quite open prob-
lem. In our approach, we limit the general problem to

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

resampling in order to correct geometrical imperfections
only. This limitation has the following implications:

• The displacement of pixel location of the original and
resampled images is only units of pixels,

• no angular distortion is expected, and
• no scaling is expected.

The general approach for resampling in our case is to
scan the output image raster pixel by pixel (sample by
sample) and reconstruct the values from the original raster
based on knowledge of the pixel displacement. Taking into
account the above limitations, it is known that the sam-
pling theorem cannot be violated and also it can be as-
sumed that the function is separable:

rx,y = f (o,d(x,y)) = f ′′
(

f ′ (o,d(x,y)) ,d(x,y)
)
, (1)

where r is the resampled image,
o is the original image,
d is the displacement function,
f is a resampling function,
and f ′ and f ′′ are the partial reconstruction functions

after separation.

In our case, the functions f ′ and f ′′ are implemented
through a bank of FIR1 filters [4] indexed by subpixel lo-
cation of the pixel. Moreover, the sampling is the same in
both directions, so f ′ and f ′′ are implemented using the
same FIR bank.

The above solution with FIR filters was chosen as it has
well defined features and as it is quite flexible in terms of
exchangeability of the filtering function.

3 Proposed Resampling

The proposed approach to resampling relies on the separa-
bility; however, in addition to the generally used approach,
the separability is applied to both the resampling function
itself and the geometrical distortion calculation so that the
distortion calculation is separated in vertical and horizon-
tal directions:

rx,y = f ′′
(

f ′ (o,dx(x,y)) ,dy(x,y)
)
, (2)

where r is the resampled image,
o is the original image,
dx and dy are the displacement functions,
and f ′ and f ′′ are the partial reconstruction functions

after separation.

1Abbreviation from Finite Impulse Response.

The resampling function itself is assumed to be some
suitable filter function and in the presented approach it is
implemented through a bank of FIR filters. The bank of
FIR filters is indexed through a subpixel position of the
desired sample in the raster (see equation 3). The reason
is that the FIR coefficients are dependent on the subpixel
position of the desired sample location. Of course, the
size of FIR filters is limited. The filters in the bank can
be e.g. Lanczos filters [7] for optimal exploitation of the
bandwidth of the image signal given the size of the filter,
or other filter design to achieve the desired image signal
properties. The described approach is, in fact, not depen-
dent on it.

rx,y = FIR f p(x)
(
FIR f p(y) (o, ip(dy(x,y))) , ip(dx(x,y))

)
,

(3)
where r is the resampled image,
o is the original image,
dx and dy are the displacement functions,
FIRt is the function of the bank for position t,
f p is the fractional part of a numerical value,
and ip is the integer part of a numerical value.

The distortion to be corrected can be described in dif-
ferent ways, e.g. analytically or by a offset texture. Dis-
tortion description acquisition is not subject of this work
but it has been studied e.g. in [5, 6, 8]. In our approach the
distortion is described with a sparse rectangular mesh with
displacement specified for each node of the mesh. In fact,
the mesh can be seen as a offset texture. While the dis-
placement in each node (corner of the rectangles) of that
mesh is known, the displacement inside the rectangles is
computed via bilinear interpolation. Size of the rectangles
depends on application and local change of the displace-
ment – the smaller size of the rectangle, the more precise
approximation of the distortion but more memory for the
distortion description needed.

Distortion inside each rectangle is described by means
of the following four precalculated coefficients:

• D0 – displacement of top left pixel in the rectangle.
• DC0 – difference of displacements between adjacent

pixels in 1st row of the rectangle.
• DR – difference of displacements between 1st pixels

of adjacent rows in the rectangle.
• DDC – change in difference of displacements be-

tween pixels of adjacent rows in the rectangle, that
means DCn+1 – DCn.

For more detailed description see figure 2. Note, please,
that the displacement calculation can be subdivided into
independent calculation of vertical and horizontal dis-
placements.

Displacement calculation executed by the resampling
algorithm in each rectangle of the mesh can bee seen in

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
176

Figure 2: Displacement interpolation inside rectangles. (a) Output image is covered with rectangular mesh, source image
distortion is defined within each mesh node. (b) Rectangular area of the output image with individual pixels visible. (c,
d) Graphical representation of precalculated coefficients describing the source image distortion for horizontal and vertical
resampling respectively. Pixels of distorted source image are plotted with gray dashed lines, pixels of output image are
plotted with black solid lines. Big black dots are centers of source image pixels. Meaning of precalculated coefficients is
marked with coloured vectors.

algorithm 1. The input of the algorithm is the original im-
age, distortion description (through the above mentioned
coefficients), and FIR filter; the output is the resampled
pixels within the given rectangle. Note, please, that two
instances of the algorithm are being used, one for vertical
and one for horizontal displacement and filtering.

1: var DoR, DC, D;
2: DoR = D0;
3: DC = DC0;
4: for all rows in rectangle do
5: D = DoR;
6: for all pixels in row do
7: Output FIR[fp(D)](O,ip(D));
8: D += DC;
9: end for

10: DoR += DR;
11: DC += DDC;
12: end for

Algorithm 1: Displacement calculation.

Time complexity class of the displacement calculation
algorithm is O(n2) because displacement for each pixel of

the output image needs to be computed directly. Cost of
displacement calculation for a pixel is just cost of one ad-
dition operation (algorithm 1, line 8) plus cost of FIR fil-
ter response computation (algorithm 1, line 7). When the
proposed FIR filtering is used, the time complexity class
does not change and remains O(n2). This fact is, however,
not important as the size of the image is fixed anyway and
the proposed approach significantly reduces the computa-
tional cost.

As it can be seen from the pseudocode, three vari-
ables are needed in the displacement calculation algo-
rithm. Their meaning is as following:

• DoR – displacement of 1st pixel in a row.
• DC – difference of pixel displacements.
• D – displacement of current pixel.

As shown in the algorithm, the displacement is subdi-
vided into integer and fractional parts. The integer part is
used to determine the pixel placement of the filter while
the fractional part is used to determine the set of coeffi-
cients within the filter bank. When the number of filters in
the bank is N (e.g. 16), the fractional part is multiplied by

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
177

N and then rounded to nearest integer. Then it is used for
filter bank index.

4 FPGA Implementation

Two implementations of proposed approach have been re-
alized so far; On CPU2 using C3 language and in FPGA4

[1] using VHDL5 language. The former one was origi-
nally intended as support and template for implementation
of the latter one, so it does not fully exploit potential of
the CPU. However it closely simulates processes running
in programmable hardware with bit-precision, so outputs
of both implementations are identical.

An FPGA platform has been chosen as it offers high
degree of parallelism, which is exploitable e.g. in
convolution-like operations. In our case it has been em-
ployed together with pipelining6 to accelerate computation
of the FIR filter response.

When implemented on CPU, time complexity class of
filtering operation is generally O(n2) (when using only
row or columnar filter it is O(n)) as a function of the filter
size. This is because all pixels in the filtered area have to
be multiplied by their respective filter coefficients sequen-
tially and also summed up sequentially. On the other hand
FPGA offers the possibility to multiply all pixels with fil-
ter coefficients simultaneously. However impact of this
can be eliminated by pipelining which causes that results
of the filtering operations are available in each cycle, only
with some delay.

The overall structure of the resampling system is based
on the fact that in vast majority of applications, the image
is acquired ”line by line” ”pixel by pixel” from top left cor-
ner to bottom right corner. Also, in most of the memory
storage structures, the images are stored this way. There-
fore, it can be assumed that the image is best processed in
the same order and the dataflow is adjusted so.

The overall structure is illustrated in figure 3. First, the
image is fed into a buffer that can hold several complete
image lines. The buffer must be large enough to accomo-
date as many lines of the image as it corresponds to the
maximal vertical displacement in both directions plus the
size of vertical FIR filter. In this case, the height of the
buffer should be at least 31 pixels (2×12 px maximal ver-
tical displacement + 7 px FIR filter height).

Next, the data fed into the buffer is processed so that
for each line of the output image and for each position
of a pixel on that line, the corresponding vertical location
in the buffer is found. Then columnar neighborhood of
that location, which is of same size as the FIR filter, is fed

2Abbreviation from Central Processing Unit – a processor.
3A general purpose programming language.
4Abbreviation from Field-programmable Gate Array – a type of inte-

grated circuit which can be programmed after manufacturing.
5Abbreviation from Very-high-speed integrated circuit Hardware De-

scription Language.
6Pipeline is a series of computational elements which work in paral-

lel. Output of one element is input of the next one.

into the vertical resampling unit (in our case 7 samples).
Thanks to parallelism of FPGA, the buffer allows to access
the neighborhood in one clock cycle.

Then, the resampling unit calculates on output value of
the vertical part of the resampling process through FIR′′

q ,
where q is the index of a set of coefficients in the FIR′′ fil-
ter bank determined from the fractional part of the vertical
position. This concludes the vertical resampling process.

After the vertical resampling, the horizontal resampling
takes place. The horizontal resampling part can take ad-
vantage from the fact that the data used in it is image line
data only – the result of the vertical resampling unit. As
the sampling frequency of the resampled image is very
similar to the original image, it can be additionally as-
sumed that for one pixel produced by the vertical resam-
pling unit, approximately one pixel of the output image
will be produced by the horizontal resampling unit as well.
This allows for usage of only a small buffer (units of sam-
ples) between the vertical and horizontal resampling. In
fact, the data buffer can even be in a form of a small shift
register where the shift factor is 0, 1, or 2 samples at a
time.

When the location of the data in the horizontal direction
is determined, the actual horizontal resampling takes place
using similar mechanism to the vertical one – the FIR′

q
filter is applied based on the subpixel position in horizontal
direction, where q is the index of a set of coefficients in the
FIR′ filter bank.

The horizontal resampling unit directly produces the re-
sampled image pixels that should be stored into the resam-
pled image data structures and this concludes the process-
ing of the complete resampling unit.

In both vertical and horizontal resampling units, the
control is done based on the calculation of displacements
of resampled pixels according to the method described in
section 3.

An FPGA implementation of the resampling algorithm
has been prepared as part of the experiments with the de-
sign. The dataflow in the resampling unit can be seen in
figure 4. Functional blocks are associated in two groups
– one group handles vertical resampling while the other
handles horizontal resampling. Each group consists of a
FIR module, a Displacement interpolation module and re-
spective Resampling module.

Figure 4: Dataflow of the resampling algorithm in FPGA.

Data formats used in the algorithm are the fixed deci-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
178

Figure 3: Overall processing of the image resampling.

mal point numbers in order to represent the data accurately
enough while maintaining the design simple to enable its
simple implementation.

The actual data formats used in the experiments are de-
scribed below.

• Pixel data – 16 bit signed or unsigned. The pixel pro-
cessing is assumed in 16 bit format in order to support
the standard dynamic range of contemporary video
cameras, which is 10 to 14 bits, plus an overhead for
absorption of rounding errors of FIR.

• Coordinate – 12+4 bits unsigned. The subpixel res-
olution is assumed to be 16 subpixel positions which
is in practical terms enough to avoid measurable ad-
verse effects of granularity in subpixel position.

• Difference of coordinates – 2+8 bits signed. The dif-
ference of positions must be precise enough to repre-
sent the change of displacement.

Data formats of precalculated coefficients used as pa-
rameters of the displacement interpolation algorithm (see
section 3) as well as data format of its output can be seen
in table 1. Data formats specified in the table may seem-
ingly not correspond to data formats described above. This
is because all the coefficients and variables used in the in-
terpolation algorithm do not represent coordinates of pix-
els. Instead of this, they represent displacements of out-
put image pixels relative to input image pixels which have
smaller range. Therefore upper bits of integer parts of the
variables do not have to be used. On the other hand, more
bits of fractional parts of the variables are utilized in order
to absorb a cumulative error which emerges during execu-
tion of the interpolation algorithm.

The experimental design and synthesis of the resam-
pling unit was performed for Xilinx7 Virtex-II xc2v1000
FPGA device. XST8 version H.38 was chosen for this
task. As the unit is relatively generic, the following pa-
rameters were used: Image size 256×1024 px and square
size 64 px which results in square mesh of 4×16 squares

7A company producing programmable logic devices, such as FPGAs.
8Abbreviation from Xilinx Synthesis Technology; A application for

synthesizing device designs from hardware description language code.

(and also displacement coefficient sets). Device utilization
with configuration mentioned above is shown in table 2.

Items on chip Used Capacity % capacity
Slices 3 947 5 120 77 %
Slice Flip Flops 2 112 10 240 21 %
4 input LUTs 3 103 10 240 30 %
BRAMs 20 40 50 %

Table 2: Exploitation of FPGA unit Virtex II-1000.

The device clock frequency is up to 105 MHz. While
the resampling unit produces one output pixel per 2 clock
cycles, the output resampling data rate for a single unit is
up to 52.5 Mpixels per second. Thus the device is able to
process 720p high definition video format (1280 × 720 px)
at framerate 50 fps. This demonstrates the real-time poten-
tial of the design.

5 Results

The algorithm has been evaluated with images of artificial
lines, photographic patterns acquired by camera and other
images with results identical for standard CPU implemen-
tation and FPGA implementation. The resampling itself
was performed with 7-sample Lanczos filter and the sub-
pixel resolution was 16. These values are the limit values
for the current implementation. These values can be seen
as limits for efficient exploitation in real-life applications;
However, they do not represent any limit for FPGA hard-
ware.

Because no ground truth of an resampled image is avail-
able, we decided to use energy of power spectrum as a
measure of error. The exact measure is ratio of energy of
the resampled image and energy of the source image. An
ideal algorithm would have the ratio 100 %.

The image of artificial lines (figure 5) was resampled at
constant scale 1.05 in whole area using bilinear interpo-
lation as well as our proposed algorithm. Power spectra
of respective images are also shown. Bilinear interpola-
tion algorithm proved to preserve 88.96 % of the spectrum
energy, our proposed algorithm preserved 91.77 %.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
179

Order of bit (2n) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16

D0 (signed) s • • • • • , • • • •
DC0 (signed) , s • • • • • • • •
DR (signed) , s • • • • • • • •

DDC (signed) , s • • • • • • • • • • • •
Displacement (signed) s • • • • • , • • • • • • • • • • • • • • • •

Table 1: Precision of the interpolation algorithm coefficients and computed displacement. • denotes a used bit, ”s” stands
for sign, void bits are not used. Fixed decimal point is marked between bits nr. 0 and -1 with a comma.

Figure 5: (a) Original pattern with 4 px thick synthetic lines 15× magnified and (d) its power spectrum. (b) The same
pattern resampled at scale 1.05 using bilinear interpolation and (e) its power spectrum. 88.96 % of energy of the power
spectrum has been preserved. (c) The same pattern resampled at scale 1.05 using our proposed algorithm and (f) its power
spectrum. 91.77 % of energy of the power spectrum has been preserved.

The image of photographic pattern (figure 6) was re-
sampled simulating geometrical correction of barrel dis-
tortion using bilinear interpolation and our proposed algo-
rithm too. Power spectra of respective images are shown
as well because there are no observable differences in the
output images. Bilinear interpolation preserved 90.32 %
of the spectrum energy, our proposed algorithm preserved
98.45 %.

6 Conclusions

In this paper we described the accelerated fine image re-
sampling approach based on a combination of a set of al-
gorithms. Its intention is to correct geometrical image dis-
tortions caused by lenses or similar devices. Additionally,
the implementation in software and FPGA is mentioned.

The presented approach and set of selected algorithms

is based on approximation of the image distortion using a
sparse rectangular mesh with bilinear interpolation of the
positions within the nodes. The resampling itself is based
on separable FIR filtering with a bank of filters indexed by
a subpixel position.

As shown in the paper, the selected approach proved
to be functional and lead into efficient implementation
of resampling in both software and programmable hard-
ware. The FPGA implementation is able to process up to
52.5 Mpixels per second which demonstrates the real-time
potential.

It has also been shown that the selected approach gives
better results than widely used bilinear interpolation algo-
rithm. Additionally, we solved the problem of efficient
implementation of a resampling algorithm, which properly
reconstructs signal values in 2D space. However the gen-
eral problem is limited by this approach to cases without
angular distortion, scaling and significant pixel displace-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
180

Figure 6: (a) Original image with a photographic pattern acquired by a camera and (d) its power spectrum. (b) The same
image resampled using bilinear interpolation simulating barrel distortion correction and (e) its power spectrum. 90.32 % of
energy of the power spectrum has been preserved. (c) The same image resampled using our proposed algorithm simulating
barrel distortion correction and (f) its power spectrum. 98.45 % of energy of the power spectrum has been preserved.

ments.
Future work includes exploitation of the design in real-

time applications of image processing. For example an
efficient GPU9 implementation will be considered. The
work also includes further improvements of the structure
and possible extension to 3D raster data.

7 Acknowledgements

This work was supported by the grant project of the Min-
istry of Education, Youth and Sports of CR, (MSMT
2B06052) project ”BioMarker”.

References

[1] S. Brown and J. Rose. FPGA and CPLD Architec-
tures: A Tutorial. IEEE Design and Test of Comput-
ers, pages 42–57, 1996.

[2] D. A. Forsyth and J. Ponce. Computer Vision: A Mod-
ern Approach. Prentice Hall Professional Technical
Reference, 2002.

[3] A.C. Gallagher. Detection of Linear and Cubic In-
terpolation in JPEG Compressed Images. In Proceed-

9Abbreviation from Graphics Processing Unit. A specialized proces-
sor mainly used for accelerating computer graphics algorithms.

ings of the 2nd Canadian conference on Computer and
Robot Vision, page 72. IEEE Computer Society, 2005.

[4] L.R. Rabiner and B. Gold. Theory and application of
digital signal processing. Prentice Hall, 1975.

[5] C. Ricolfe-Viala and A.J. Sánchez-Salmerón. Robust
metric calibration of non-linear camera lens distortion.
Pattern Recognition, 43(4):1688–1699, 2010.

[6] GP Stein. Lens distortion calibration using point cor-
respondences. In 1997 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
1997. Proceedings., pages 602–608, 1997.

[7] T. Theußl, H. Hauser, and E. Gröller. Mastering win-
dows: Improving reconstruction. In Proceedings of
the 2000 IEEE symposium on Volume visualization,
pages 101–108. ACM New York, NY, USA, 2000.

[8] T. Thormählen and H. Broszio. Automatic line-
based estimation of radial lens distortion. Integrated
Computer-Aided Engineering, 12(2):177–190, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
181

182

The Prototype Light Projection System for Cultural Heritage
Reconstruction

Bartłomiej Specjalny∗

Institute of Computer Graphics and Multimedia Systems
West Pomeranian University of Technology

Szczecin / Poland

Abstract

In this paper we present prototype of cultural heritage vir-
tual reconstruction method by extracting three color pat-
tern projected on object’s surface. With rising accessi-
bility to projecting devices and digital cameras new pos-
sibilities have risen. This paper focuses on automatizing
active range scanner techniques with assumption to move
pattern and not any of the scene elements including both
object and devices. The goal was to acquire detailed point
cloud for further reconstruction by determining shape of
pattern lines. Results show that with the use of difference
images, low-pass signal filters and line thinning methods
a detailed high poly model can be obtained even without
refining point cloud.

Keywords: virtual reconstruction of cultural heritage,
3D model acquisition, pattern projection, depth from pho-
tographs

1 Introduction

In the last years virtual reconstruction has been an essen-
tial problem in many practical applications. One of the
applications is preserving and reconstructing cultural her-
itage in order to visualize catalogue or reconstruct actual
historic objects of great value. The Wkryujście Altar pre-
sented in Figure 1, is one of the greatest cultural heritages
both of the Polish and German nations in Western Pomera-
nian region. It is currently held in Szczecin National Mu-
seum, in Poland. Our goal is to create a technology to
make a 3D geometrical reconstruction of the Altar. How-
ever, to protect the Altar against any damage all the test
work were held on the test sculpture of the similar struc-
ture (see Figure 5) but relativly smaller.

The reconstruction is done by analyzing series of im-
ages. Each of images contains record of displayed light
pattern. Each pattern consists of three lines with differ-
ent colors. Colors used for the projection are main colors
of the RGB color space both projected and recorded by
camera. New Boolean images with extracted lines are cre-
ated from three corresponding channels. Lines are filtered,

∗bartlomiej.specjalny@gmail.com

posterized and thinned. The third dimension is extracted
by lineform analysis. All gathered information are then
extracted as the point cloud for further reconstruction.

In section 2 we provide information about the target ob-
ject which is a piece of cultural heritage. Moreover, typical
virtual reconstruction methods and previous work taken
are described. Section 3 contains visualization concept
and detailed information about implemented method. Sec-
tion 4 documents results of the prototype reconstruction
and presents encountered artifacts. Section 5 concludes
the whole work and results. In this section we summarize
final effect and propose future work.

In this paper we present prototype method for low cost
virtual reconstruction. We adopt range scanning tech-
niques to obtain high polygon surface of real object. We
analyze set of images taken from one setup. We extract
lines, and based on their shape we recreate point cloud.

2 Virtual reconstruction of cultural
heritage

Target object - the Wkryujście Altar - is of the great cul-
tural value despite the fact it was partially demolished.
Because of its actual state it can not be rotated, moved
or lifted. We would like to present its unique history and
value.

2.1 The Wkryujscie Altar

The Wkryujście Altart is held in National Museum. It was
founded about 1500 AC by prince Bogusław X for church
in Wkryujście. Originally it consisted of eleven oak, poly-
chrome reliefs and two figures of st. Paul and st. Peter.
However, as the time passed the parts of Altar were dam-
aged or lost (st. Paul figure is missing since 1900). It was
during the Second World War when some of the reliefs
were taken to Germany and four of them were confiscated
by the Soviet Army. They were held in Kiel, Greifswald,
Moscow and Riga. Most of the Altar parts were recovered
by 2001 [2].

The Altar parts are currently in different conditions, due
to the lack of conservation. This caused degradation of the
wooden structure such as fractures and cracks, which gave

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: The photograph of a sample plate of the
Wkryujście Altar titled: Jesus Christ coronation with
thorn.

the surface a specific structure. Mostly all of the paint fell
of, and only small fragments were preserved. Also some
of Altar parts were devastated by human hands: noses,
hands and weapons fragments. The overall spatial shape
of the subject is problematic because of complex surround-
ing fragments which are more likely sculptures attached to
relief.

The object is unique and priceless testimony of me-
dieval masters of wood-carving. That is why the National
Museum wants to bring it back to public when most all of
its parts are back. Even in its current shape it is worth see-
ing for medieval art connoisseurs. However, for ordinary
man it looks like a regular wooden sculpture.

Due to the lack of information about the original shape
of the Altar, the decision was made by the head restorer,
to not change anything on the original Altar. This decision
was made according to Venice Charter [1] and adequate
Polish law. Instead, virtual reconstruction was held. Com-
puter modelsnot only give museum or artists the ability to
reconstruct paintings, but also missing parts of Altar with-
out interfering with the original sculpture. Any attempts
to recreate fragments of relief on the actual object would
be considered devastating. This corresponds to ”primum
non nocere” (in English ”First, do no harm”) maxim that
all works on the object have to preserve original substance
as well as the object’s material and immaterial value. This
means that only the minimum interference in the object
is allowed. It makes from conservation, restoration and
renovation a multidisciplinary subject, since it allows to
preserve objects of great historical and cultural value.

2.2 Reconstruction techniques

In our work we focus on the automated and accurate geo-
metric reconstruction of the museum’s objects like sculp-
tures and monuments. We take into consideration that our
target object will be Wkryujście Altar.

There are a few projects like The Digital Michelangelo
Project [4] or Scanning Monticello Project [6] which focus
on the single laser projection and triangulation method.
This method gives very good results but due to size of in-
stallation and costs it could not be used for Wkryujście
Altar. Furthermore, fast laser scanning methods with hand
devices could be difficult to perform because of large
scanned surface, despite its great accuracy.

There are the real time model acquisitioning methods
permitting to rotate object kept in hand and continuously
updating its geometry, also filling missing holes in the
fly [9]. Our object however can not be moved because
of its poor condition.

The first attempt of the reconstruction of the Altar in-
volved using stereophotogrammetric method in which ge-
ometric properties of objects are determined from im-
ages [5]. Only low detailed model was obtained. It was
caused by the fact that model was reconstructed from a
whole piece of the Altar and most of details were lost.
But other multiple view geometry methods [8] with the
detailed images of the Altar could give good results.

However, we want to focus on the high detailed recon-
struction that can be done without any special equipment
with single scene setup. That is why we based on conven-
tional range scanning methods [3]. Taking into consider-
ation the features of the Altar (poor condition and limited
possibilities of moving the sculptures) and low budget of
the project we propose method that uses ordinary and com-
monly available projector and camera. We wanted also to
focus more on the actual data that can be extracted from
images than the information that could be established on
the knowledge of the position of the camera or projector.

3 Model acquisition technique

The measurement setup consists of the projector 3MTM

MP76401, CanonTM EOS 10D digital camera with
CanonTM 17-40 mm f/40 L USM lens and the laptop with
MATLABTM software (Figure 2). The projector is placed
in front of the object. The camera is set on the same hor-
izontal plane as the projector and their view directions
form 45◦ angle. This way, the calculated depth is twice
longer than a pixel horizontal shift from its base position
(we assumed that the distance from the camera to the ob-
ject is much longer than the depths). Both the projector
and the camera are connected to the laptop to display line
pattern and automatically take pictures of the object. To
generate line pattern we use MATLABTM PsychoToolbox
3 [10]. The camera is controlled by CanonTM SDK 2.5.2
and CanonTM Remote Capture 2.7 software.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
184

Figure 2: Model acquisition setup.

Before scanning, calibration takes place. Single dot is
displayed in the middle to center the camera on the middle
of projected area. Afterwards, we run line calibration to
get indices of the two boundary lines enclosing the object.
It allows to limit the number of required photographs and
to estimate proper distance between the lines. Finally, a
single shot of the object lighted by black image from the
projector is taken (this image is called ”base image Y ”).
This photograph will be used to reduce noise in the ac-
quired data and extract color lines.

During scanning, the projector displays the vertical line
pattern (Figure 4). The pattern is moved one pixel right
after each photographs is taken (photograph is called ”pat-
tern image X”). The measurement is finished when the
whole surface of the object is covered. The pattern consist
of three vertical lines displayed simultaneously and set in
constant range. This technique decreases by three times
the number of required photographs without influencing
the accuracy of the measurement.

The accuracy of reconstruction is limited by the projec-
tor resolution. It is desirable to project on the object as
thin lines as possible. The lines should be sharp and the
camera and the projector should be focused accurately.

After gathering all the input images, the workflow pre-
sented in the Figure 3 is executed. We compute the differ-
ence matrix XY for every pattern image X and base image
Y . It helps to remove noise and highlights from the ob-
ject. Then, difference matrices XY R, XY G and XY B are
computed for each color channel. Additionally, a modifier
can be used in the above equations to reduce exposition.
We empirically found that this value should be set to 3,
although, for less illuminated scenes it can be set to 1.

The low-pass Gaussian filter reduces noise and high-
lights. It also makes line smother and covers some of the
missing parts. However, the filter kernel can not be too
large because it could deform the lines. After Gaussian
filtering, we posterize each channel to obtain the logical
matrix containing information about lines (empirically de-
termined thresholds are used). Since lines on logical ma-
trix are a few pixels wide we reduce their thickness basing
on the morphological operations algorithm [7].

Figure 3: The flowchart of data processing, X ,Y and XY
represent all pixel from RGB image channels with val-
ues between 0 and 255, r,g and b stand for color chan-
nels index, XY R, XY B, XY G and R represent one channel
images, additionally R is Boolean logical image, a is real
modifier for image difference and a > 1, b is real modifier
for horizontal distortion height correction and b > 1, T ar-
ray contains all found vertexes that belong to a projected
spline on the surface of the object.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
185

Figure 4: The RGB light pattern projected on the object.

In the next step the projective transformation is con-
ducted to reduce the perspective deformation of the ob-
ject. Lines that are closer to camera are longer then the
most distant ones. Their length should be reduced and the
choice of what side to decrease/increase depends on which
side of the projector the data is recorded.

Computed images XY R, XY G and XY B are saved main-
taining number of line index. This way they are already
sorted. After processing all files we reread them one by
one as R matrix. Non-zero elements in R represent points
in the point cloud. The coordinates of these points are
computed basing on the position of the line and the pixel
shift (see Figure 3). Height modifier b is applied to min-
imize flattening caused by taking picture from 45◦. Ex-
tracted points are pushed into temporally array T . Before
loading new sets of points T is concatenated with the final
result array.

We export final point cloud to ASCII vertex file (∗.asc).
Mesh reconstruction is done in external software: Point
Cloud 1.0 and Delaunay2 5D.

4 Results and discussion

In this section the results of the shape reconstruction of
the object are presented. We tested our algorithm on the
sculpture presented in Figure 5. It has similar structure to
the Wkryujście Altar. The sculpture is also made of wood
and has similar color as well as the surface texture.

The reconstructed mesh is presented in Figure 6. It con-

Figure 7: The final raw point cloud acquired from a set of
50 RGB pattern photographs.

sists of 403 317 triangles and was created basing on 203
672 points of the point cloud depicted in Figure 7. The
points were gathered from 50 photographs of the light pat-
tern and 1 base reference image.

The shape of the object was preserved correctly with
most of its details. The fidelity of reconstruction directly
depends on the resolution of the projected pattern. For
comparison, the mesh generated from lower number of in-
put photographs (it means lower number of lines per the
object surface) is presented in Figure 8. As it can be seen,
less details were reconstructed in this mesh.

There are some artifacts in the final mesh. The main
problem is a low scan resolution on surfaces parallel to the
camera view direction (see the cheeks in Figure 6). This

Figure 8: The mesh reconstructed with 8 RGB pho-
tographs. The yellow lines depict location of the projected
lines.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
186

Figure 5: The test object used to prototype the reconstruction technique. We can not use the Wkryujscie Altar because of
its actual condition and prototype method that is still developed.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
187

Figure 6: The final mesh reconstructed from the raw point cloud.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
188

Figure 9: A sample close-ups of the light pattern projected
on the object. A. The fluctuation of color caused by the
highlight. B. The reflection of a blue line, this line is ac-
tually not visible in the presented image area. C. Red line
splits into three separate lines.

Figure 10: Magnified fragment of a green line. Its struc-
ture is distorted by the object surface. The visible green
squares are effect of the projector resolution: every 1 pixel
line consist of 2 projectors dots width. The projected lines
has width from 1 to 3 millimeters.

drawback can be eliminated by mixing photographs taken
from different directions. Some inaccuracies are caused by
the material structure which splits a line into two or three
(see Figure 9c). The lines have discontinuities and altering
thickness (see Figures 9 and 10).

The results can be improved using advanced resampling
and smoothing methods that would increase the fidelity of
lines acquisition. What’s more, more sophisticated the ver-
tical perspective correction would correct the mesh pro-
portions by making result model less flatten.

5 Conclusions and future work

In the paper we describe the prototype of the technique for
the reconstrucion of object’s shape. It is based on light
pattern projection on the object surface. The photographs
of the pattern deformed by the object irregularities are an-
alyzed and virtual mesh of this object is reconstructed. We
use inexpensive camera and projector but even with the
use of this equipment high detailed elements can be cor-
rectly captured (see Figure 6). The missing regions can be
filled by making another scan of the object from different
camera position. We leave this issue for future work.

The presented technique is addressed for the
Wkryujście Altar - the cultural heritage of the West
Pomeranian Region. The shape and surface structure
of the Altar is suitable for this type of scanning. After
finishing the prototype phase we plan to make a scan of
the whole Altar.

The accuracy of the reconstruction depends on the pro-
jector’s resolution and its optical quality. We plan to use
better projector for the actual scan. The using of the analog
projector is also considered. Further improvement could
be made by utilizing more sophisticated method of noise
reduction and line acquisition.

Acknowledgements

I would like to thank Radosław Mantiuk for his continuous
support during my work and presented paper. I appreciate
all his advices, comments and patience. Additional thanks
to Mariusz Borawski for his support with image analysis
methods. I would also like to thank my friend Sławomir
Mazgaj who was in the beginning working with me on this
project.

Specially I would like to thank Marta Kotecka. I owe
her my motivation for everything.

References

[1] Venice charter. Venice, 1964.

[2] Uwe Albrecht. Po 60 latach znowu razem. . . , Zmi-
enne koleje losu ołtarza z Wkryujścia (in Polish).
2009.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
189

[3] Brian Curless. From range scans to 3d models. In
ACM SIGGRAPH Computer Graphics, 1999.

[4] Brian Curless Szymon Rusinkiewicz David Koller
Lucas Pereira Matt Ginzton Sean Anderson James
Davis Jeremy Ginsberg Jonathan Shade Duane Fulk
Marc Levoy, Kari Pulli. The digital michelangelo
project 3d scanning of large statues. In ACM SIG-
GRAPH Computer Graphics, 2000.

[5] Krzysztof Miler. Rekonstrukcja wirtualnych modeli
obiektów muzealnych (in polish). Master’s thesis,
West Pomeranian University of Technology, 2009.

[6] Kok-Lim Low John Thomas Kurtis Keller
Lars Nyland David Luebke Anselmo Lastra
Nathaniel Williams, Chad Hantak. Monticello
through the window. In 4th International Sympo-
sium on Virtual Reality, Archaeology and Intelligent
Cultural Heritage, 2003.

[7] Steven Eddins Rafael Gonzlez, Richard Eu-
gene Woods. Digital Image processing using
MATLAB. 2009.

[8] Andrew Zisserman Richard Hartley. Multiple View
Geometry in computer vision. 2006.

[9] Marc Levoy Szymon Rusinkiewicz, Olaf Hall-Holt.
Real-time 3d model acquisition. In ACM SIGGRAPH
Transactions on Graphics, 2002.

[10] Psychtoolbox Wiki. http://psychtoolbox.org.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
190

Automatic Image-Based 3D Head Modeling with a Parameterized
Model Based on a Hierarchical Tree of Facial Features

Peter Kán∗

Supervised by: Andrej Ferko†

Faculty of Mathematics, Physics and Informatics
Comenius University

Bratislava

Abstract

The automatic modeling of a 3D human head has chal-
lenged researchers in computer graphics for many years,
because 3D head models are useful in several application
areas to assist in different tasks. In this paper we present
the novel system for automatic 3D head model creation
from two images based on a parameterized head model
with a hierarchical tree of facial features. The proposed
system is divided into three parts. In the first one we use
computer vision techniques like Skin-Tone based image
segmentation or Haar Cascade Classifiers to detect head
parameters for parameterized model update from frontal
and profile head photograph. Then a 3D head model is
reconstructed by updating a parameterized model with pa-
rameters detected from images and a texture is mapped.
In the second part the reconstructed head model is ren-
dered with real-time rendering techniques simulating skin
illumination. In the third part the model is exported to
the Collada format for further use in other applications.
The system for automatic image-based 3D head modeling
can be used e.g. in computer games development, movies,
telecommunications, medicine, or security systems for hu-
man identification.

Keywords: 3D head modeling, face detection, facial fea-
tures detection, face reconstruction, parameterized model,
real-time rendering, Collada

1 Introduction

A 3D head model is an essential part of many computer
graphic applications and its easy creation is an important
task for developers. Manual 3D head model creation is
very time consuming, especially when good precision is
needed. The Automatic 3D head creation algorithm with
few or no user interaction is a challenging task.

A parameterized head model [6] provides us possibil-
ity of creation many variable 3D heads and we can obtain
a model representing concrete person if correct parame-

∗peterkan@peterkan.com
†ferko@sccg.sk

ters and texture are used. In this work we created a new
parameterized head model based on a hierarchical tree of
facial features which enable application to easily estimate
correct parameters for a specific human head. This model
defines vertex weights for each facial feature, which gives
us the information about transformations intensity in each
vertex.

To gather concrete head parameters we use computer
vision and image processing techniques like Haar cas-
cade classifiers [23] and skin tone based image segmen-
tation [14, 12, 17, 18]. Then we analyze detection results
and estimate final head model parameters.

According to detected parameters from input images we
calculate global and local transformations and apply them
to create new model. Then we interpolate between old and
changed model with parameters defined as vertex weights
for each facial feature.

Our parameterized model consists of 32672 triangles to
reach good reconstruction precision and to gives us high
resolution head model. This model can be rendered with
texture-space diffusion [11] technique even approximating
subsurface scattering in interactive frame rates.

The paper is organized as follows. In section 2 previ-
ous works are discussed. In section 3 main parts of our
modeling system are described, our novel parameterized
head model based on hierarchical tree of facial features is
discussed and rendering techniques simulating skin illumi-
nation are shown. In section 4 our reconstruction system
results are shown and in section 5 we discuss conclusion
and future work.

2 Related Work

The automatic head detection and reconstruction is an im-
portant task solved in research area for a long time. Many
techniques were created to reach the best results. Head de-
tection and reconstruction are in some approaches strongly
related. The automatic head model creation techniques use
head detection results and vice versa.

Reconstruction results within different approaches are
variable in quality and computation time according to the
purpose of use. Techniques used in telecommunications

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

create a low-polygonal face or head model to achieve
lower data transfer in videoconferences. For this pur-
pose Mikael Rydfalk [22] created a parameterized face
model named Candide in 1987. His model was a low-
resolution adjustable model, which can be updated by
several parameters. This model was later improved by
Jörgen Ahlberg [6] to simplify animation and it was named
Candide-3. An advantage of the Candide-3 model is fast
reconstruction time, but disadvantage of this technique is
low precision and few details.

Another approach generating high quality 3D head
models, called a Morphable Model, was proposed by
Volker Blanz and Thomas Vetter [8] to reach photoreal-
istic model appearance and high precision in reconstruc-
tion. In this approach head model is represented as a mul-
tidimensional 3D morphing function based on the linear
combination of large number of the 3D face scan. The
main disadvantage of a Morphable Model is high compu-
tational time. This model was later updated by Yong-Li Hu
et al. [15], who used the mesh resampling method to over-
come the key problem of model construction, the pixel-to-
pixel alignments of prototypic faces. When applying the
method to several images of a person, the reconstructions
reach almost the quality of laser scans.

Image-based head model reconstruction techniques are
much more available and applicable. In some of them
a head is reconstructed from one image like the Av-
Maker [16] program or reconstructed from several images.
The special case of image-based head reconstruction is
gathering 3D coordinates of points from two 2D images
using stereo vision [20]. Advantages of image-based head
model reconstruction techniques are generally fast compu-
tational time and low reconstruction cost. The main disad-
vantage is low reconstruction accuracy.

An Active Appearance Models [10] is an example of
head model reconstruction technique based on predefined
model and it is used mainly for head tracking in video.
Liu et al. [21] use video sequences to generate 3D head
models. A disadvantage of this approach is low acceptable
head rotation angle.

In our solution image-based 3D head model reconstruc-
tion technique with predefined parameterized head model
based on a hierarchical tree of facial features is used. This
approach is capable of giving us the reconstructed 3D head
model in a few seconds.

3 Virtual reconstruction of a human
head

We created the Modeling system, which consists of the
three main phases (Figure 1). In the first phase input im-
ages are loaded, head is detected in both images and tex-
tured 3D model is created. Then the reconstructed model
is rendered in second phase with real-time rendering tech-
niques, which simulate skin lighting. In the third phase the

Figure 1: Three main phases of the modeling system

model can be exported to Collada format for further use in
another application. The texture is also exported with a
model given.

The modeling system detects facial features positions
and head attributes automatically from input images and
also allows user to adjust detected positions to enhance
reconstructed model precision.

In our work a 3D head model is automatically recon-
structed from two input images. For this purpose we cre-
ated the new parameterized head model based on the hier-
archical tree of facial features (Figure 4).

Figure 2: Example of vertex weights for the left eye.
White color means weight value 1 and Black means 0.

All of these features have defined their own area of ver-
tices. This assignment is done by vertex weights for each
region as we can see in Figure 2. 3D positions of facial
features are calculated from automatically detected 2D po-
sitions from input images. Facial features are organized
in the hierarchical tree, where root node is the head cen-
ter and child nodes are main facial features. Child nodes
of the facial feature are its properties or other more de-
tailed features. For example Left eyes nodes define left,
right, top and bottom border coordinates in front image.
The reconstruction system can easily adjust head param-
eters with the hierarchical tree of facial features, because
in each facial feature position estimation all subnodes are
precalculated to help find a real feature position. Another
advantage of this approach is a possibility of simple user
interaction and manual adjusting of the head model.

The reference mesh (Figure 3) of the parameterized
model automatically controlled by the hierarchical tree
contains 32672 triangles to achieve high resolution output

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
192

model with better precision and smoothness.

Figure 3: Reference mesh of parameterized head model

Figure 4: The hierarchical tree of facial features and theirs
attributes. In bottom image are nodes in the tree and in top
image is their visualization.

3.1 Head Model Reconstruction

Our automatic 3D head modeling algorithm with a param-
eterized model based on a hierarchical tree of facial fea-
tures generates a three dimensional representation from
two 2D images in two stages. In the first stage head po-
sition, facial features positions, and head attributes are de-
tected from frontal and profile images using computer vi-
sion and image processing techniques. In the second stage
is the parameterized model transformed to shape values
detected from input images.

3.2 Face Recognition and Parameters De-
tection

Frontal and profile head photographs are expected as an
input for the reconstruction system, therefore face and its

properties detection should be performed separately for
both images. To recognize the head and gather its prop-
erties from images two main techniques are used.

Haar Cascade Classifiers based on an extended set of
Haar like features [19] are employed to detect face and fa-
cial features in the front image. For this purpose classifiers
trained to detect Front head region [19], Eyes positions,
Nose position [9] and Mouth position [9], and facial fea-
tures proportions are used. The results of the face region
and facial features detection can be seen in Figure 5.

To detect a head shape in the front image a Skin tone
based image segmentation [14, 12, 17, 18] is used. The
image encoding is converted into YCrCb color space and
for all pixels Cr and Cb values are evaluated. If Cr and Cb
coordinates of the pixel are in a skin tone area (Figure 6a),
the pixel is segmented as skin-tone colored. By this tech-
nique all pixels are divided into skin tone pixels and non
skin tone pixels as we can see in Figure 6. Then we can
analyze skin tone colored pixels and acquire information
about the head shape.

Figure 5: Face region and facial features detection by Haar
Cascade Classifiers. Facial features are marked with a
cross and face region with a rectangle.

Figure 6: Skin tone based segmentation. (a) Adjusted
skin-tone area in CrCb color plane. Black pixels give us
the information about Cr and Cb value considered as skin-
colored. (b) Input image, and (c) segmentation result.

A color space selection is an important choice in Skin
tone based image segmentation technique. We examined
three color spaces Normalized RGB, Lab and YCrCb to
select one, which will give us the best segmentation re-
sults. We chose chrominance plane from each color space
to have the most chrominance information stored in two

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
193

selected channels. Skin tone areas in tested color spaces
can be seen in Figure 7. Finally we chose YCrCb color
space, because it gives us the most covered facial area by
skin tone segmented pixels, and we manually adjusted skin
tone area in CrCb plane (Figure 6a) to achieve better seg-
mentation result. Skin tone area is stored in 255x255 bi-
nary image in our reconstruction system, because Cr and
Cb values can reach maximum value 255.

Figure 7: Skin tone areas (top) and segmentation result
(down) in Normalized RGB (a) Lab (b) and YCrCb (c)
color spaces. Skin tone areas were created by selecting
skin areas in images from training set and adding skin
pixel values into the skin tone area.

Figure 8: Profile face and facial features detection. From
input image (a) the binary image is created by the skin
tone based segmentation (b). The segmented image is fil-
tered by a median filter and moving probes are sent from
head center to each direction (c) to find borders. Then a
head bounding box (d) is calculated. Finally a front head
contour is obtained by sending moving probes from left
border to right and gathered face curve is analyzed.

To detect parameters from the profile image (Figure 8)
we use the skin tone based segmentation and then we apply
a median filter to smooth the segmentation result and re-
duce noise. After median filtering we calculate head center
by a linear interpolation of skin tone colored pixels’ coor-
dinates. We send moving probes from head center to each
direction. These probes stop moving when they reach non
skin tone colored pixel. After all probes stop, we calculate
head bounding box by getting minimum and maximum x
and y coordinate of probes. Then we obtain front head
contour by sending moving probes from left to right bor-
der. Probes stop if they reach skin tone colored pixel. After

all probes stop, we smooth out the result curve by a median
filter and we can analyze it to obtain the information about
tip of the nose position, eyes and mouth position. To ana-
lyze back head contour we send moving probes from right
border to left.

As input images to parameters detection could be used
photographs in an optional resolution and quality, but we
recommend to use images with resolution 512x512 and
higher, where more information about facial features is in-
cluded and high resolution texture could be created.

3.3 3D Model Update

Updating model parameters is a key point in the 3D head
reconstruction with the parameterized model. In this step
new vertex coordinates are calculated to shape head from
input images. Head color texture and normal map texture
are created from input images and they are mapped to re-
constructed model geometry to reach more realistic result
in rendering.

Figure 9: The parameterized head model with a reference
coordinate system aligned to the tip of the nose.

All features in the parameterized model based on the
hierarchical tree of facial features have defined vertex
weights to transform correct vertex due to the features co-
ordinates in the hierarchical tree calculated in the head
recognition phase. These weights were precalculated in
a training process (Figure 2). Each facial feature has also
defined its own local coordinate system, which center is
stored in our parameterized model and usually it is in the
center of facial feature. Rotation of local feature coordi-
nate system is same as in global coordinate system.

Firstly we need to define a model coordinate system ori-
gin to perform image space to model space position calcu-
lation. In our model a tip of the nose was selected as a ref-
erence point (Figure 9) of a 3D model coordinate system.
The first step in updating model phase is global scale trans-
formation application. We don’t change head model width
in global transformations. According to model width and
head aspect ratio in images we calculate vertical head scale
along z coordinate and depth head scale along y coordinate
as

Vs =
FH2DW3D

FW2DH3D
(1)

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
194

and

Ds =
PW2DH3D

PH2DD3D
, (2)

where Vs is a vertical scale coefficient along z axis, Ds is
a depth scale coefficient along y axis, FW2D and FH2D are
head sizes in front image, PW2D and PH2D are head sizes
in profile image and W3D is 3D head model width, H3D is
3D head model height and D3D is 3D head model depth in
model space. After calculating Vs and Ds we scale all ver-
tex positions in the 3D head model with those coefficients.
Global scale is performed in coordinate system with origin
in head center to preserve head center position.

After performing the global scale we translate head
model to have the tip of the nose in the origin (0,0,0). Then
we can make local head transformations in local features
coordinate systems on vertices with weights defined per
each facial feature in the hierarchical tree. We calculate
new features positions and sizes according to the location
in front and profile image. Then we calculate a final vertex
position by the linear interpolation between new features
positions and their old locations.

Vertexi = (1− p).oldVertexi + p.newVertexi (3)

According to equation 3 we calculate the position of ith

vertex Vertexi from old ith vertex position oldVertexi and
new vertex position newVertexi for each vertex and each
facial feature in the 3D model. We set parameter p in lin-
ear interpolation as vertex weight defined for each facial
feature. We calculate new vertex coordinate from old co-
ordinate by scaling and translating according to facial fea-
ture transformations. Final coordinates of each vertex are
obtained by applying equation 3 to it for each facial fea-
ture transformation (scale, translate), where vertex weight
for current vertex and facial feature is set as parameter p.
The vertex position newVertexi is calculated by concrete
facial feature transformation.

After performing all local transformations according to
facial features positions and sizes in images we have ad-
justed 3D head geometry, which shapes a head from input
images. Then we create a head texture from detected head
image areas and map this texture on the reconstructed ge-
ometry. Front and profile images are joined together in
texture creation phase. The first step is scaling a smaller
image up to have same head height as in the bigger one.
Then is front head image rectangle from frontal image
joined with profile head image rectangle. A profile rect-
angle is connected to front rectangle from both left and
right sides. Horizontally flipped profile image is joined
from the left side. X joint coordinate is in front image left
eye left border position and right eye right position and
eye center in profile image. Blending between images is
calculated by the linear interpolation in connection area.
After image junction, known texture part is cloned into
background texture part. For example the hair texture is
cloned into the space above head.

When the texture creation is finished, we need to cal-
culate normal map texture. Grayscale copy of color tex-
ture is used as a surface height map, because it contains
main head surface details information. For each pixel in
grayscale image it is calculated its x direction and y di-
rection intensity difference with the next pixel in current
direction. This difference is scaled with surface height
scale constant to decrease differences. We found empir-
ically the height scale constant 0.01 in our experiments. X
and Y differences are brought into account as derivations
of image function in their directions. From these deriva-
tions we can create direction vectors and calculate image
function normal as their cross product. Then we normalize
obtained normal and transform its coordinates into RGB
color space for storing in normal map texture.

The head model uv coordinates also need to be ad-
justed to correctly shape head in new created texture. For
this purpose uv coordinates of vertices are recalculated for
each facial feature. Scale and translation are performed on
all vertices with the origin in concrete facial feature center
and with linear falloff.

3.4 Head Rendering

When the 3D head model is reconstructed we would like
to display it to user and enable him or her to interact with
the model and optionally change parameters to reach bet-
ter precision. For making the reconstructed 3D head model
rendering more realistic we can use local lighting illumi-
nation calculation. Very simple approximation of skin il-
lumination is a local Phong lighting model [24], because
it is not so computational expensive and gives us a better
performance with slower computers. To enhance details in
rendering we can use a Normal mapping [13] technique,
which simulates local object normals with a normal map
texture calculated in the reconstruction phase. The Normal
mapping enhances details, but causes very hard and rough
surface, because it does not calculate light transport under
the skin surface.

When we want to reach a realistic skin lighting, we
should simulate a subsurface scattering effect caused by
light scattering under the skin. We use a texture-space dif-
fusion technique described by Simon Green in the GPU
Gems book [11]. In the first step the 3D head model is
rendered without the texture to texture space according
to uv coordinates and lighting is calculated by a Phong
model or advanced lighting calculations like the normal
mapping. In the second step the result is blurred with a
predefined convolution to simulate light transport under
the skin. The Uniform blur only approximates subsurface
light transport, because a distance between two pixels is
in the texture space different than in the 3D world space.
In the third step the model is rendered with the color tex-
ture and lighting computed in previous steps. The Light
transport of different color channels could be simulated
variously to create inner material light coloring, like soft
red color from blood under the skin. Rendering techniques

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
195

Figure 10: Head rendering result with techniques (a)
Phong illumination model, (b) normal mapping, (c)
texture-space diffusion. Detail rendering (top) and whole
head (bottom).

results comparison could be seen in Figure 10.

4 Results

The proposed modeling system was implemented in C++
programming language using OpenCV [2] library in de-
tection phase and OpenGL [3] library to render the re-
constructed head model. Glsl shading language [4] was
used to implement shaders calculating Phong model, nor-
mal mapping and texture-space diffusion lighting simula-
tion.

Lighting calculation fps
No shader 65

Phong lighting model 64
Normal mapping 42

Texture-space diffusion 26

Table 1: Frame rates in rendering the reconstructed 3D
head model with different rendering techniques.

Method Quality Reconstruction time
Morphable Model 89% 50 minutes

CyberExtruder 82% 4 seconds
Our method 57% 4 seconds

Table 2: Reconstruction quality evaluation and speed com-
parison. Our solution, morphable model [8] and CyberEx-
truder [16] solution were tested.

The system was tested on AMD Athlon X2 1.9 Ghz,
2GB RAM computer with NVIDIA GeForce 7150 graphic
card. Detection in a front image takes 1.54 seconds in av-
erage and detection in a profile image takes 1.8 seconds
in average in this hardware configuration. The 3D head

model updating process takes 4 seconds on average. The
Reconstructed 3D head model was rendered at interactive
framerates reported in Table 1. In each tested rendering
technique we used the textured model.

Quality of reconstruction was measured by statistics of
subjective human evaluation. Respondents were asked to
evaluate the quality of 3D head reconstruction from con-
crete front and profile images in percentage. Three dif-
ferent approaches were compared by this evaluation (Ta-
ble 2). Final approach quality was figured out as an aver-
age of respondents answers. Quality of our solution could
be improved in future work by adding more head attributes
to parameterized model and by enhancing detection preci-
sion.

Example of front and profile source photographs, recon-
structed head geometry and textured model with Phong il-
lumination could be seen in Figure 11.

We create a 3D head model from 2D images to use re-
construction result in various applications and therefore
we need to export model and texture to common data for-
mat usable in broad scale of programs. Many data formats
to store 3D information are available today, but most of
them are strongly application dependent and their binary
formats are difficult to read and do not allow all required
information storing.

Therefore, for 3D data storage we chose Collada for-
mat [7, 5], which was created to enable work with one
content in many digital content creation tools, it was ac-
cepted as industry standard by Khronos Group and it is
used in OpenGL ES and several other real-time APIs. Col-
lada provides us easy readable XML based data format to
store required geometric and radiometric information.

The basic model information like reconstructed geom-
etry, global transformations and visual effects should be
stored in the output file. Collada output file contains rela-
tive links defining file names and paths to textures stored
in jpg file format.

5 Conclusion and Future Work

We created the automatic image based 3D head modeling
system, which is capable of reconstruct the 3D head model
from 2D images. This system creates 3D head model auto-
matically, but it allows user to change reconstructed model
to reach better precision. The 3D head modeling system
renders the reconstruction result with advanced illumina-
tion techniques simulating skin illumination. Finally, user
can export reconstructed high polygonal model for use in
other applications.

New parameterized head model based on the hierarchi-
cal tree of facial features, which defines vertex weights
for each feature to set transformation intensity, was devel-
oped in this work. This model provides easy feature po-
sition and attributes estimation for modeling system and
user. Our parameterized model consists of 32672 triangles
and allows modeling system to reconstruct high resolution

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
196

Figure 11: Example of front (a) and profile (b) source photograph, reconstructed head geometry (c) and textured model(d).

model.
We introduce a novel method for detecting head param-

eters from image with use Haar Cascade Classifiers and
skin-tone based image segmentation in this work. This
method gives us correct results to achieve good precision
with updating a parameterized model.

To load parameterized head geometry and render the re-
constructed model we created a Collada rendering engine,
which could be used in many other works to easily load
and render digital content with GPU.

Many extensions could further improve our modeling
system, because the application is object based and al-
lows updating or changing each reconstruction part for
other purposes. More facial features controllers could
be added and better head parameters detectors could be
implemented to enhance the reconstruction precision and
speed.

In a future work we are planning to improve the recon-
struction precision with optical flow based techniques used
in the morphable model approach [8]. Reconstruction pre-
cision could be improved also by adding more head at-
tributes to the parameterized model. We are aiming to de-
velop a hair reconstruction technique, which could update
the modeling system to give full head and hair reconstruc-
tion result. Lower precision head model could be created
by decimating high precision reconstructed model, but a
better way is to estimate it during reconstruction and make
model details selection part of the modeling system. We
are planning to use OpenCL [1] library to move computa-
tion to GPU.

6 Acknowledgments

I would like thank doc. RNDr. Andrej Ferko, PhD.
for his helpful guidance and support in this work, Jörgen
Ahlberg for providing his parameterized face model re-
port and Michal Šukola, Tomáš Matúš and others for pro-
viding their photographs to development and presentation
purposes. I thank to anonymous reviewers for their many
valuable comments and suggestions. This work has in part
been funded by Slovak Ministry of Education VEGA No.
1/0763/09.

References

[1] Opencl. [online]. [quot. 2010-02-16]. Available on
www: < http://www.khronos.org/opencl/>.

[2] Opencv. [online]. [quot.
2009-11-18]. Available on www:
<http://opencv.willowgarage.com/wiki/Welcome>.

[3] Opengl. [online]. [quot. 2009-11-16]. Available on
www: <http://www.opengl.org/>.

[4] Opengl shading language. [online].
[quot. 2009-11-17]. Available on www:
<http://www.opengl.org/documentation/glsl/>.

[5] Collada - digital asset exchange schema for interac-
tive 3d. [online], 2009. [quot. 2009-12-10]. Available
on www: <http://www.khronos.org/collada/>.

[6] J. Ahlberg. Candide-3 an updated parameterized
face. report no. lith-isy-r-2326. Technical report,
Dept. of Electrical Engineering, Linköping Univer-
sity, Sweden, 2001.

[7] R. Arnaud and M.C. Barnes. COLLADA Sailing the
Gulf of 3D Digital Content Creation. A K Peters,
Wellesley, 2006.

[8] V. Blanz and T. Vetter. A morphable model for the
synthesis of 3d faces. In SIGGRAPH ’99: Pro-
ceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 187–194,
New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[9] M. Castrillón-Santana, O. Déniz-Suárez, L. Antón-
Canalı́s, and J. Lorenzo-Navarro. Face and facial
feature detection evaluation, performance evaluation
of public domain haar detectors for face and facial
feature detection. In International Conference on
Computer Vision Theory and Application, 2008.
[online], [quot 2010-01-10]. Available on www:
<http://alereimondo.no-ip.org/OpenCV/uploads/37/
CameraReadyPaper63.pdf>.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
197

[10] N. Faggian, A. Paplinski, and J. Sherrah. Active
appearance models for automatic fitting of 3d mor-
phable models. In AVSS ’06: Proceedings of the
IEEE International Conference on Video and Signal
Based Surveillance, page 90, Washington, DC, USA,
2006. IEEE Computer Society.

[11] S. Green. GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics, chapter
Real-Time Approximations to Subsurface Scattering.
Addison-Wesley Professional, Indiana, 2004.

[12] A. Hadid, M. Pietikäinene, and B. Martinkauppi.
Color-based face detection using skin locus model
and hierarchical filtering. In ICPR ’02: Proceed-
ings of the 16 th International Conference on Pat-
tern Recognition (ICPR’02) Volume 4, pages 196–
200, Washington, DC, USA, 2002. IEEE Computer
Society.

[13] W. Heidrich and H.P. Seidel. Realistic, hardware-
accelerated shading and lighting. In SIGGRAPH
’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques,
pages 171–178, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[14] R.L. Hsu, M. Abdel-Mottaleb, and A.K. Jain. Face
detection in color images. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24:696–706,
2002.

[15] Y. Hu, B. Yin, S. Cheng, and Ch. Gu. An improved
morphable model for 3d face synthesis. In Proceed-
ings of International Conference on Machine Learn-
ing and Cybernetics, pages 4362–4367, Washington,
2004. IEEE Computer Society.

[16] J.D. Ives. Method for generating a three-dimensional
representation from a single two-dimensional image
and its practical uses. [online]. Newark: CyberEx-
truder.com, Inc. [quot. 2009-12-11]. Available on
www: <http://www.cyberextruder.com/>.

[17] Ch. Kim and J. Yi. An optimal chrominance plane
in the rgb color space for skin color segmentation.
In International Journal of Information Technology,
volume 12, pages 73–81. World Scientific Publish-
ing, 2006.

[18] P. Kuchi, P. Gabbur, P.S. Bhat, S.David, and
S. Smieee. Human face detection and tracking using
skin color modeling and connected component oper-
ators. In IETE journal of research, volume 48, pages
289–293, New Delhi, 2002. Institution of Electronics
and Telecommunication Engineers.

[19] R. Lienhart and J. Maydt. An extended set of haar-
like features for rapid object detection. In IEEE ICIP
2002, pages 900–903, 2002.

[20] K. Lin, F. Wang, J. Yao, and Ch. Zhou. Human head
modeling based on an improved generic model. In
FSKD ’08: Proceedings of the 2008 Fifth Interna-
tional Conference on Fuzzy Systems and Knowledge
Discovery, pages 300–304, Washington, DC, USA,
2008. IEEE Computer Society.

[21] Z. Liu, Z. Zhang, C. Jacobs, and M. Cohen. Rapid
modeling of animated faces from video. Technical
report, Journal of Visualization and Compute Ani-
mation, 2000.

[22] M. Rydfalk. Candide, a parameterized face, report
no. lith-isy-i-866. Technical report, Dept. of Elec-
trical Engineering, Linköping University, Sweden,
1987.

[23] P. Viola and M. Jones. Rapid object detection using
a boosted cascade of simple features. In Conference
On Computer Vision And Pattern Recognition, pages
511–518, 2001.

[24] J. Žára, B. Beneš, J. Sochor, and P. Felkel. Modernı́
počı́tačová grafika. Computer Press, Brno, 2004.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)
198

Color Plates

Martin Berger
Real-time Fur Using GPU-based Raycasting

pp. 11–17

Left: A model of a bear rendered with our technique using 128 planes per tangent space axis. Right: A close-up
comparison of our technique with textured shells.

T. Langenbucher, S. Merzbach, D. Möller, S. Ochmann, R. Vock, W. Warnecke, and M. Zschippig
Time-Varying BTFs

pp. 19–25

Renderings of a Time-Varying Bidirectional Texture Function (TV-BTF) of rusting metal. Top row: PCA-
compressed BTFs of the original four aging stages of the material. Bottom row: linear interpolations between
the compressed BTFs, demonstrating the concept of TV-BTFs.

Oskar Elek
Layered Materials in Real-Time Rendering

pp. 27–34

(a) Examples of the general layered model - varying top layer roughness and thickness. (b) Specialized metallic car
paint model with sparkling effect. (c) Temporal development of patina on a copper object.

Pavel Vlašánek
Usage of the Webcam as 3D Input Device

pp. 45–50

The system is able to recognize a hand drawn keyboard and compute a position of the finger in the space.

Zuzana Haladová
Segmentation and Classification of Fine Art Paintings

pp. 59–65

Original image and images of paintings segmented with Anisotropic diffusion, Gauss gradient and watershed meth-
ods.

Bartosz Bazyluk
Eye Tracking in Virtual Environments: Implementation of Gaze-point Dependent Depth of Field

pp. 75–81

Top row: Example screens from our demo that present the resulting depth of field effect. Bottom row: The depth
discontinuity problem (left) and the solultion (middle) with its downside (right). On all figures the green crosshair
represents the filtered, while red cross is the raw gaze point.

Reinhold Preiner
Real-Time Global Illumination in Point Clouds

pp. 83–90

Left-Top: Two figures illuminated by our GI technique. Right-Top: Cornell-Box scene showing specular reflections.
Left-Bottom: Caustics produces by our technique. Right-Bottom: Sample scene showing an indirect shadow.

Tomáš Pastorek
Concept of Interactive Coloring book

pp. 101–107

Scenes from Interactive Coloringbook, a programmable physics based game environment for small children. Left-
Top: Easter eggs scene; Right-Top: Truck scene; Left-Bottom: Path Coloring; Right-Bottom: Music scene.

Martin Madaras
Extraction of Skinning Data by Mesh Contraction with Collada 1.5 Support

pp. 133–139

(a) Computation of the geodesic distance between the control point marked with red cross and the mesh vertex.
(b) Comparison of the extracted skeleton (left) and the skeleton rigged by an artist (right). (c) Example of the
contraction of the geometry and the extracted skeleton.

Zsolt Fehér
Terrain Rendering with the Combination of Mesh Simplification and Displacement Mapping

pp. 141–147

These four viewpoints were selected to be used during frame rate test of the algorithm on different platforms with
different options. Shown frame rates were achieved on Geforce 8800 GT, 2049 × 2049 height map, 256 × 256
quads.

Tamás Huszár
GPU-Supported Bubble and Foam Rendering

pp. 149–155

Top left: bubble formation with mutual bubble walls. Top right: close-up of rendered foam Bottom left: foam
formation sliding down on a slope. Bottom right: large foam consisting of more than 180000 bubbles.

Johannes Scharl
A Constraint Based System to Populate Procedurally Modeled Cities with Buildings

pp. 157–164

Some results from our system. Top left: a small village on a hillside next to a bay. Top right: Close-up of a more
complex junction in the village. Bottom left: Close-up with view over the bay to the hillside where streets spread
over the plain of the terrace. Bottom right: a larger city without terrain with far over 100 streets and more than
2.500 buildings.

Goran Radosevic
Laser Scanning Versus Photogrammetry Combined with Manual Post-modeling in Stecak Digitization

pp. 167–174

Left: The final model of stecak created using photogrammetry technique only. Right: The final model of stecak
improved in 3ds Max. This model has maximum tested level of details.

Bart lomiej Specjalny
The Prototype Light Projection System for Cultural Heritage Reconstruction

pp. 183–190

Left: A photograph of a sample plate of the Wkryuj́scie Altar titled: Jesus Christ coronation with thorn. Middle:
The test object used to prototype the reconstruction technique. Right: The final mesh reconstructed from the
point cloud.

Peter Kán
Automatic Image-Based 3D Head Modeling with Parameterized Model Based on Hierarchical Tree of Facial Features

pp. 191–198

Example of source photographs (Left) and the reconstructed 3D head model (Right) rendered with the texture-
space diffusion technique.

Advertisments for
Sponsors of CESCG 2010

The VRVis Research Center
The VRVis Research Center is a joint venture in research
and development for virtual reality and visualization. VRVis
was founded in 2000 as part of the Austrian Kplus pro-
gram to bridge the gap between academic research and
commercial development as well as to supply the necessary
transfer of knowledge between the academic community
and industry. VRVis is now a COMET K1 center.
This mission is mirrored in a variety of academic and indus-
trial partners. The research center is currently conducted
by five academic institutes and numerous industrial part-
ners. Leading-edge innovations and down-to-earth busi-
ness style characterizes VRVis as a valued partner for
high-level research.
The company's headquarter is located in Vienna, Austria.
Today, around 50 researchers together with about 20 stu-
dents do high-level applied and basic research in five differ-
ent areas.

The Team of VRVis
VRVis consists of internationally experienced researchers in
the areas of visualization, rendering and visual analysis.
Their outstanding experience and knowledge in these topics
qualify them for the innovative research they are performing.
The research areas are headed by key researchers who
manage these areas, define goals and projects for this area,
and conduct the defined research together with their staff.
All members of the research team are young researchers,
whose creativity and ingenuity is the key to the success.
VRVis is always looking for young, talented, and motivated
researches in the fields of research to extend its research
work or to support partner companies.

Research Program of the VRVis
The scientific research program consists of three research
areas in which thematically matching research projects are
conducted. Each research area realizes application projects
on the one hand and basic research for these application
projects on the other hand.

• Research Area Visualization
• Research Area Rendering
• Research Area Visual Analysis

Working at VRVis
VRVis is always looking for students, junior and
senior researchers who want to join the VRVis
team. VRVis is offering internships, diploma the-
ses, PhD theses and regular positions. For more
information please refer to the additional informa-
tion listed below.

Some Partners of VRVis

Scientific Partners of VRVis:
• Institute of Computer Graphics and Algo-

rithms, Vienna University of Technology
• Institute of Computer Graphics and

Vision, Graz University of Technology

Industrial Partners of VRVis:
• AVL List GmbH, Graz
• Agfa Healthcare, Wien
• Eybl Development GmbH, Krems
• Geodata Ziviltechniker GmbH, Leoben
• Imagination Computer Services, Wien
• ÖBB Infrastruktur Bau AG, Wien

Currently, VRVis is again extending its industrial
base with new partners from several new fields.

Additional Information and Contact
For detailed information about the research program,
current projects and job opportunities please visit our
web pages at http://www.VRVis.at/.
If you need additional information or search for
job opportunities in VR or visualization, please
feel free to contact Prof. Werner Purgathofer
(VRVis Scientific Director) at
Purgathofer@VRVis.at or +43(1)20501/30155;
Donau-City-Straße 1, A-1220 Wien.

5

5

5

00

5

5

5

00

0

5

25

75

95

100

0

5

25

75

95

100

Túto konferenciu sme podporili z lásky k vede.

	Keynote and Invited Talks
	Autodesk Education Continuum – Interactive Curricula Model for Technical Excellence and Creativity
	Solving Vision Tasks with Variational Methods on GPUs
	Simulating the Dynamics of Fluids

	Materials
	Real-time Fur Using GPU-based Raycasting
	Time-Varying BTFs
	Layered Materials in Real-Time Rendering

	Computer Vision
	Comparison of Face Recognition Algorithms in Terms of the Learning Set Selection
	Usage of the Webcam as 3D Input Device
	Computer-Vision based Pharmaceutical Pill Recognition on Mobile Phones
	Segmentation and Classification of Fine Art Paintings

	Rendering
	Traversal Methods for GPU Ray Tracing
	Eye Tracking in Virtual Environments: Implementation of Gaze-point Dependent Depth of Field
	Real-Time Global Illumination in Point Clouds
	Interactive Ray Tracing of Distance Fields

	Applications
	Concept of Interactive Coloring book
	Obesity in Children - A Serious Game
	Methods of Simplification for Process of 3D Animation Production
	Parallel Distances Analyzing Multi-Level Relationships in Networks

	Modeling and Natural Phenomena
	Extraction of Skinning Data by Mesh Contraction with Collada 1.5 Support
	Terrain Rendering with the Combination of Mesh Simplification and Displacement Mapping
	GPU-Supported Bubble and Foam Rendering
	A Constraint Based System to Populate Procedurally Modeled Cities with Buildings

	Data Acquisition
	Laser Scanning Versus Photogrammetry Combined with Manual Post-modeling in Stecak Digitization
	Fine Image Resampling Algorithm
	The Prototype Light Projection System for Cultural Heritage Reconstruction
	Automatic Image-Based 3D Head Modeling with Parameterized Model Based on Hierarchical Tree of Facial Features

	Color Plates
	Advertisments for Sponsors of CESCG 2010

