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Abstract

Volumetric visualization of medical data is a specific task,
as doctors and radiology technicians are not well trained
in the field of computer graphics; therefore, algorithms for
visualization of medical data must be as intuitive as pos-
sible, so that visualization tools employing them would
be helpful in medical environment. Visualization of vol-
umetric data acquired by medical imaging could not be
effectively used without defining a proper transfer func-
tion, which transforms measured intensities to colours and
opacity values. Many visualization methods use com-
plex means for designing transfer functions, which could
lead to decreased usability of said methods. We propose
a modification of MIP, a common volumetric visualization
method that uses a simple one-dimensional transfer func-
tion for classifying different materials. The goal of our
method is to visualize individual tissues from the medical
data, present them with minimal effort and enable users to
observe areas of interest.

Keywords: Medical Data, Volumetric Visualization,
Classification, Maximum Intensity Projection, Standard
Deviation

1 Introduction

Volumetric visualization plays important role in medical
imaging. Data acquired by CT (Computed Tomography)
or MRI (Magnetic Resonance Imaging) scanners can be
visualized using two-dimensional cross-sections and ex-
amined by moving these cross-sections through the data
set. Another way is to visualize the data set as a whole by
means of volumetric visualization. This approach has the
advantage of displaying the data in their original context
and it is better suited for some tasks.

Direct volume rendering (alpha blending accumulation
of sampled values in front-to-back or back-to-front order)
is a commonly used method for volumetric visualization.
It is usually implemented using the volumteric ray cast-
ing algorithm. One of the disadvantages of this method
is that it is rather slow (however, it can be accelerated by
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precalculation of gradients used for lighting) and it needs
a proper transfer function, which is essential for the al-
gorithm. It has to be properly designed so that it will cor-
rectly classify individual organs, tissues or materials repre-
sented by the volumetric data set. Designing such function
is not a trivial task and it is often time consuming when
done manually; consequently, it is not uncommon to use
simpler methods of transforming intensities sampled from
volume data along the viewing ray into pixel colour.

One possible solution is to visualize an iso-surface ex-
tracted from the visualized data set. 1 Major drawback of
this rendering method is that only a small part of the data
can be examined at once. Users do not see through the
iso-surface, nor do they see anything above the rendered
surface; therefore, this method is not suitable for visualiz-
ing complicated biological structures or tissues of human
body, as they usually do not consist of voxels of the same
intensity. However, it can be used to visualize bones in CT
scans, or parts of objects scanned by industrial CT scan-
ners.

In medicine, it is often necessary to display struc-
tures composed of materials with different intensity val-
ues. Where the direct volume rendering or the iso-surface
extraction is not an option, simple visualization methods
based on processing every sampled value along the rays
can be used. A common way is to use some statistical
property of the one-dimensional data sampled along the
ray. This could be for instance standard deviation, mean
value, or maximum value. Using the maximum value is a
widespread method called Maximum intensity projection
(MIP) [12]. These methods are non-photorealistic, as their
goal is not to necessarily mimic real appearance of the vi-
sualized objects but rather provide adequate insight into
the volumetric data.

Since these methods generally do not use any shading
of sampled voxels, their advantage over direct volume ren-
dering is in their speed. The speed enables these methods
to be implemented in real time. This is important for us-
ability of the rendering method, as dynamically changing
view or other properties of the visualization is crucial for
the medical imaging applications.

1This could be done without ray casting as well; algorithms such as
Marching cubes could be employed to extract the iso-surface and gen-
erate a polygon mesh that would be rendered using standard rendering
capabilities.
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Another major advantage of the MIP algorithm and sim-
ilar methods is their simplicity. Very easy set-up of simple
transfer functions or similar classification methods usually
results in satisfactory images.

On the other hand, using only the statistical proper-
ties of the sampled data or an order independent-operators
(such as a maximum operator used in the MIP rendering)
has a drawback of discarding depth information of the vi-
sualized objects. Many different algorithms have been de-
veloped in order to maximize displayed information using
these simple rendering methods [4, 11, 10, 1].

Additionally, single statistical property may not provide
satisfactory representation of data of interest. For instance,
the projection of maximum intensity is useful only when
higher intensities are those of interest. This may be the
case in the CT scans when the bones are to be visual-
ized (bones have generally higher intensity than surround-
ing tissue), or in scans with application of contrast agents.
However, areas of interest are often occluded by structures
of higher intensity values in the MRI scans without con-
trast; therefore, MIP is not applicable in this case.

Sometimes the volumetric visualization algorithms use
classification to enhance the final image [9]. The classi-
fication assigns colours, opacity values, or both (depends
on the rendering method) to individual tissues or materi-
als to help the user to easily distinguish them. One of the
simplest and most intuitive methods of the classification
is a one-dimensional transfer function. It is able to filter
out some of the structures and reveal the areas of inter-
est within the volumetric data set. However, blurryness
and other factors cause this classification method to fail on
some of the data sets when using MIP or similar visualiza-
tion algorithms.

2 Related work

As one of the most commonly used volumetric visualiza-
tion methods, the MIP rendering algorihtm (introduced
in [12]) has been subject to many improvements. Its ad-
vantages make this method interesting, even though more
complex visualization methods exist. Several enhance-
ments that eliminate various disadvantages of MIP have
been proposed.

Use of depth weighting has been proposed in [4]. Inten-
sity values are weighted by a value dependant on a distance
from the origin (position of virtual camera). This is essen-
tially a fog effect applied to the MIP rendering. It results in
images with distinguishable depth of individual visualized
objects. However, in some cases it may partially occlude
the areas of interest.

Another modification of the MIP method was proposed
in [11]. Instead of using the global maximum of the values
along the viewing ray, a first local maximum higher than a
pre-selected threshold value is used. If no value is higher
than the threshold, the global maximum is projected. An
improvement of this method has been proposed in [10].

A method that combines advantages of MIP and direct
volume rendering has been introduced in [1]. This method
updates an opacity profile based on difference between the
sampled value and a current maximum value.

Numerous volumetric visualization methods that pro-
vide additional information about visualized data have
been introduced as well. The goal of these methods is
to show as much information as possible without diffi-
cult transfer function design. The use of weighted distance
transfrom has been proposed to enhance various features
in rendered images of anatomical structures and to pro-
vide contextual information about selected body parts [5].
The gradient based rendering technique of objects bound-
aries was introduced in [2]. Additionally, visualization en-
hancement by level lines has been proposed in the paper.
Probabilistic classification of different materials using sev-
eral one-dimensional transfer functions has been proposed
in [8].

Even though the classification methods using the one-
dimensional transfer functions are widely used, volumetric
rendering methods with multidimensional transfer func-
tions are being examined as well. The problem of de-
signing the multidimensional transfer functions has been
also addressed [7]. Semi-automatic generation of trans-
fer functions for direct volume rendering of boundaries
between different materials within data set has been pro-
posed in [6].

Statistical transfer function space has been introduced
in [3] and addresses the problem of overlapping of inten-
sity distributions of different materials that are to be clas-
sified. The method extracts statistical properties from the
data and uses them to classify different materials. De-
scribed method uses adaptive growing approach to esti-
mate statistical properties of each sample point. Estima-
tion is based on neighbouring values. Extracted properties
are also utilized to improve visual quality of volume shad-
ing by noise reduction.

3 Weighting by statistical cues

Our proposed approach is an enhancement of the standard
MIP rendering with the distance weighting using the volu-
metric ray casting algorithm. The goal was to enhance the
MIP rendering technique in such manner that it could be
employed in rendering of CT or MRI scans with different
areas of interest.

The algorithm uses a one-dimensional transfer function
for material classification, which is designed by the user
by placing and moving control points of a cubic spline.
The transfer function assigns opacity values to individual
voxels according to their intensity, which is used as an in-
put for the transfer function. It could be used to suppress
various ranges of intensities in the data set to reveal areas
of interest.

Figure 1 shows the inability of a one-dimensional trans-
fer function to classify a MRI scan in order to reveal the
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brain in the MIP rendered image. The goal was to re-
move the skull (assign it a zero opacity), which the one-
dimensional transfer function failed to accomplish, as the
voxels forming the outlines of the skull have the same in-
tensity values as the brain tissue. Thin layers of voxels at
the surface of the head after classification have the same or
higher intensities than the brain tissue. MIP projects these
voxels instead of the area of interest, which is the brain in
this case.

(a) Cross-section without classifica-
tion

(b) Cross-section with classification

(c) MIP without classification (d) MIP with classification

Figure 1: Cross-section through an MRI scan of a human
head without classification (1a) and with classification by
a 1D transfer function (1b). Brain is occluded in the MIP
rendering (1c), as well as in the MIP rendering with clas-
sification by the 1D transfer function (1d). In both render-
ings, higher intensity voxels of the skull occlude the brain.

Our algorithm tries to override this problem by using
standard deviation of voxels along the projection ray to
calculate the weight of the sampled values. These values
are then treated as in the standard MIP rendering – the
maximum of the weighted values is projected into the final
image.

The standard deviation is calculated from n previously
sampled values. These values form a window, whose size
is constant during the rendering process. The size of the
window should be as big as possible; however, voxel in-
tensities should not be affected by voxels representing dif-
ferent materials. Bigger window size therefore requires
use of a smaller step size for the ray traversing.

The algorithm uses parameter τ , which is adjustable
along with the transfer function by the user. Weights of

the sampled values are calculated by formula 1.

wi = |2σ − τ| (1)

σ is the standard deviation of the window of i-th sample
point, wi is the weight. The sampled value is multiplied
by the weight and finally, the maximum of the resulting
weighted values along the ray is projected into the image.

The τ parameter can be adjusted by the user to further
specify the area of interest. It serves as a parameter of a
simple V-shaped transfer function for the standard devia-
tion used to weight the sampled intensities from the data
set. Appropriate value of the τ parameter can be found by
trial and error by continually changing it while observing
the final rendering.

Our algorithm also uses the distance weighting imme-
diately after sampling the value from the data set, as pro-
posed in [4]. The depth of rendered objects is more per-
ceptible this way. Figure 2 demonstrates the ability of our
method to efficiently employ a 1D transfer function for
material classification.

3.1 Implementation

The proposed method is based on the volumetric ray cast-
ing algorithm and processes one ray at the time. Colours
of individual pixels in rendered image could be calculated
independently; therefore, rendering could be parallelized.
Implementation on state-of-the-art graphic hardware may
take advantage of its massive parallelism and may result in
interactive real time rendering.

We have implemented the method as a GLSL ver-
tex/fragment shader pair using OpenGL library. The im-
age is rendered as a single quadrilateral covering the whole
screen while the vertex/fragment shader pair is in use. The
vertex shader does not transform positions of rendered ver-
tices with the model view matrix, but it uses this transfor-
mation to calculate the direction and position of the vir-
tual camera. This design enables the use of the standard
OpenGL matrix transformation commands to control the
virtual camera of the shader.

The volume ray casting algorithm is implemented as
a fragment shader described bellow. The fragment shader
processes rays, as fragment colour is dependant only on
the evaluation of its respective ray. Number of steps is
taken in order to evaluate each ray. Every step consists
of sampling two values along the ray. First value is sam-
pled at the sampling position, which gradually move along
the ray in constant intervals away from the camera posi-
tion. Second value is sampled at the position n steps back.
The steps, or the sampled values between these two posi-
tions are referred to as a window. The two sampled values
(which are transformed by the transfer function, stored as a
1D texture) are used to calculate the standard deviation of
the window. Standard deviation is calculated by following
formula:
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(a) Boundaries (b) Volumes

Figure 2: Comparison of a visualization of object boundaries and volumes by using our method with different transfer
functions (x-axis of the transfer function represents sampled intensity, y-axis represents output opacity)

; τ = 0 for both images.

σ =

√√√√√n(
n
∑

i=1
x2
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n
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n(n−1)
(2)

x1...xn are sampled intensities of the current window. The
are calculated by trilinear interpolation of voxel values sur-
rounding the sampling point.

To calculate the standard deviation in O(1) time for the

window of every sampling point, values of
n
∑

i=1
xi and

n
∑

i=1
x2

i

are being accumulated as the shader marches along the ray.
In every step, value sampled at the end of the window (far-
ther from the camera) and its square are added to respec-
tive accumulators, while value at the begining of the win-
dow (closest to the camera) and its square are subtracted
from the accumulators. This way, the formula 2 could be
used to calculate the standard deviation for every window
in constant time, as the accumulators would always con-
tain the sum of the sampled values and the sum of their
squares. Consequently, the window would not be centred
at the current sampling point.

The volumetric data is enclosed in a bounding box in
order to speed up the rendering. At the beginning of the
evaluation of a ray, two intersections of the ray with the
bounding box are calculated (in case the ray hits a vertex
of the bounding box, these two intersections are equal).
The sampling occurs only between these two positions in
space. As the values are sampled from positions with uni-
form distances between each other, the number of steps for
each ray vary. This helps to reduce the rendering time.

The volumetric data are stored as a 3D texture in the
memory of the graphic card. This way, sub-voxel values

(values from intermediate space between voxels) can be
sampled from the data set. Using OpenGL commands,
graphic card could be instructed to use the trilinear filter-
ing for the sampling. The trilinear interpolation of val-
ues of neighbouring voxels significantly improves the ren-
dering quality, even though it could introduce some minor
artefacts to the visualized data. Listing 1 shows a fragment
of the shader program implementing out method.

Listing 1: Part of the MIPWSC fragment shader; p0 and p1
are positions on the ray, i0 and i1 are step numbers on the
begining and the end of the window, t is the τ parameter.

vox0 = da taRead ( p0 ) ∗ ( 1 . 0 − f l o a t ( i 0 ) /
fogLen ) ;

vox1 = da taRead ( p1 ) ∗ ( 1 . 0 − f l o a t ( i 1 ) /
fogLen ) ;

p r o j 1 += vox0 ;
p r o j S q r += vox0 ∗ vox0 ;
p r o j 1 −= vox1 ;
p r o j S q r −= vox1 ∗ vox1 ;
c o u n t e r = f l o a t ( i 0 − i 1 ) ;

s = pow ( ( c o u n t e r ∗ p r o j S q r − p r o j 1 ∗ p r o j 1
) / ( c o u n t e r ∗ ( c o u n t e r − 1 . 0 ) ) , 0 . 5 ) ;

vox0 = vox0 ∗ abs ( s ∗ 2 . 0 − t ) ;
i f ( vox0 > p r o j ) {

p r o j = vox0 ;
}

The listed fragment calculates the standard deviation of
the window and weights the actual sampled value. The
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(a) MIP (b) Iso-surface

(c) AIP (d) SDP

(e) DVR (f) MIPWSC

Figure 3: An MRI scan of a female head rendered with
different volume visualization techniques using 1D trans-
fer function for classification.

conditional branching at the end of the listing serves as a
maximum operator for weighted values.

4 Results

As mentioned in Section 3, out method uses a one-
dimensional transfer function for transforming intensities
of voxels, window with adjustable length, and the τ pa-
rameter adjustable by users; consequently, great variety
of result images could be achieved from a single data set.
The transfer function and the τ parameter can be dynami-
cally modified and are applied on the final rendering in real
time. This enables users to find the ideal transfer function
and the value of τ by trial and error.

Figure 3 compares several volumetric visualization
methods with our proposed method. Drawbacks of indi-

(a) τ = 0.6 (b) τ = 0.3

(c) τ = 0.3 (d) τ = 0.2

(e) τ = 0.2 (f) τ = 0

Figure 4: An MRI scan of a female head rendered using
our method with different settings.

vidual rendering techniques are demonstrated: maximum
intensity projection (3a) and iso-surface rendering (3b) are
unable to efficiently use the transfer function classification
to reveal the brain tissue. Average intensity projection (3c)
and standard deviation projection (3d) can reveal brain oc-
cluded by skull, but the final images are blurry and do not
show too much detail. Direct volume rendering (3e) is able
to show the brain tissue in higher detail using a simple 1D
transfer function, but the rendering quality is decreased by
severe artefacts. Maximum intensity projection weighted
by statistical cues (3f) is able to reveal brain in high de-
tail; therefore, it is demonstrated that our method overrides
some of the drawbacks of other commonly used visualiza-
tion methods.

Figure 4 shows several images rendered using our visu-
alization method as a demonstration of variability, which
enables users to classify data in required fashion. One-
dimensional transfer function and τ parameter are used to
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reveal different tissues.
Figures 5, 6 and 7 show MRI and CT scans of vari-

ous human body parts rendered using the standard MIP
method and our proposed method. One-dimensional trans-
fer functions were used for the classification. The MIP al-
gorithm failed to reveal areas of interest. Our algorithm
was able to visualize the structural characteristics of indi-
vidual objects in the scans.

The algorithm was tested on NVIDIA GeForce GTX
260. We have achieved interactive framerates (40 frames
per second at 800x600 screen resolution) on the data sets
containing 2563 and 5123 voxels. However, rendering
speed depends on screen resolution.

5 Conclusions

We proposed a non-photorealistic method for visualization
of volumetric data sets. Our approach is an improvement
of the MIP rendering method with the goal of being sim-
ple, intuitive and fast, yet able to visualize different tis-
sues or materials represented by the volumetric data. We
have implemented the method in an interactive prototype
application that uses real-time shader programs. We pre-
sented a comparison with commonly used methods of vol-
umetric visualization. Results show that our method uses
one-dimensional transfer function for classification more
effectively and with better results than the other methods.

The algorithm could be improved in several ways. The
length of the window used to calculate standard deviation
could be adaptively changed during every step according
to neighbouring voxels. This would make the algorithm
more intuitive, although control over resulting renderings
would be probably reduced in some cases.
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(a) MIP (b) MIPWSC, τ = 0.6

Figure 5: A comparison of MIP and MIP weighted by statistical cues rendering of an MRI scan of a male head.

(a) MIP (b) MIPWSC, τ = 0.25

Figure 6: A comparison of MIP and MIP weighted by statistical cues rendering of a CT scan of a knee.

(a) MIP (b) MIPWSC, τ = 0.34

Figure 7: A comparison of MIP and MIP weighted by statistical cues rendering of a CT scan of a chest.
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