Workflow Optimization for a Graphic Artist working on large
Texture Sets using Virtual Texturing

Michael Birsak*
Supervised by: Michael Wimmer'

Institute of Computer Graphics and Algorithms
Vienna University of Technology
Vienna / Austria

Abstract

In this paper we present an approach to optimize the work-
flow for a graphic artist currently working on high resolu-
tion photographs of architectural and archaeological mon-
uments. These photographs are used as texture maps to
color the meshes, which are calculated from laser-scanned
point clouds corresponding to exactly those monuments.
Because a particular region belonging to a monument is
covered from several photographs with different coloriza-
tion, further manual processing of the photos is required.
Therefore we developed an application, which generates
masks to emphasize regions of the photographs that are
used in the final model, to ease the work of the graphic
artist. For fast rendering of the model, we took Virtual
Texturing into account, and developed an application for
fast generation of the Virtual Texture Atlas and the Tile
Store. A fast and efficient update of the Tile Store, if a
photograph is edited after the final generation of the Vir-
tual Texture Atlas and the Tile Store, the application also
provides. The used algorithms are stated as well as the
speed-up compared to an existing implementation.

Keywords: Mask Generation, Virtual Texturing, Texture
Atlas, Fast Tile Update

1 Introduction

At the Vienna University of Technology, the aim of the
Terapoints-Project! is the preservation of important archi-
tectural and archaeological items. This preservation is
done by laser-scanning these items, that yields huge point
clouds. Further, photographs with registered cameras are
taken, to make a colorization of the digitized model possi-
ble. To allow rendering of the model inside a standard tool
like Meshlab [2], the point cloud is transformed into a tri-
angle mesh using the algorithm from Abdelhafiz [1]. This
has the advantage not to be constrained to applications im-
plementing algorithms like Instant Points from Wimmer

*michael.birsak @ gmx.at
fwimmer@cg.tuwien.ac.at
Thttp://www.cg.tuwien.ac.at/research/projects/ TER APOINTS/

and Scheiblauer [8]. Further, a mesh allows a continuous
mapping of the photographs onto the model. The differ-
ent lighting situations depending on the different scanning
positions lead to colorization differences between the pho-
tographs. For that reason, processing of these photographs
is necessary. At the moment, all processing steps are done
by a graphic artist, which means that every photograph
contained in the final model has to be edited in a graph-
ics editing application like Adobe Photoshop?. Without
further processing, there would be visible artifacts in the
model, where two regions, belonging to two different pho-
tographs, adjoin each other. In Figure 1 you can see such
artifacts.

Figure 1: Visible artifacts in the Domitilla model without
further processing of the photographs. The arrows show
the regions, where different photographs adjoin each other.

The rendering of the whole model is important for the
graphic artist to see all the photographs and the possible
artifacts in action. Currently, the rendering is happening
in MeshLab. The current workflow of the graphic artist is
shown in Figure 3.

Because of the high resolution and the large quantity of
photographs in a single 3D model, there is a need to accel-
erate the rendering of the whole model. Without this accel-
eration, there is an unnecessary amount of traffic between
the CPU and the GPU during the rendering process, be-
cause not all photographs fit into the memory of the graph-

Zhttp://www.adobe.com/de/products/photoshop/compare/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Part of the Domitilla Catacombs visualized using the unprocessed photographs. Especially on the floor the

aforementioned artifacts are visible.

Recheck of the existing artifacts inside the model

Figure 3: Current workflow of the graphic artist. The first
and third step in the cycle are the ones, we want to opti-
mize.

ics card. The results are low frame rates and therefore
smaller productivity of the graphic artist. Due to this we
decided to use Virtual Texturing, where only those parts of
all photographs reside in the memory of the graphics card,
which are currently visible.

As application to visualize the virtual textured model,
we chose Scanopy because it implements LibVT? (devel-
oped by J. Mayer, the author of [5]), a library which pro-
vides Virtual Texturing functionality. Scanopy is devel-
oped at the Vienna University of Technology and at the

3http://sourceforge.net/projects/libvt/

Fast rendering of the whole model in
Scanopy using Virtual Texturing

Recheck of the existing artifacts inside the model

Optimized Editing of the photographs
causing artifacts using masks

Figure 4: Optimized workflow of the graphic artist. The
rendering is accelerated using Virtual Texturing, the edit-
ing is eased by the generated masks.

Imagination® in Vienna. We implemented additional func-
tionality into Scanopy, to directly call our application via
keystroke to update the Virtual Texture Atlas (in the fol-
lowing just referred to as Atlas) and Tile Store when a
photograph has changed. So, in future the graphic artist
will use Scanopy for faster rendering of the model. The
optimized workflow of the graphic artist, introducing Vir-
tual Texturing for faster rendering and masks for the pho-
tographs for easier editing, is shown in Figure 4. In Figure
2 you can see a part of the Domitilla Catacombs, on which
the graphic artist is currently working on.

“http://www.imagination.at/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Contribution. In this paper, we present two applica-
tions to optimize the current workflow of the graphic artist,
who edits the photographs of the monuments. The first
program generates masks for the photographs belonging
to a model. These masks consist of black and white areas,
where white areas correspond to areas in the photographs,
which are visible in the model, whereas black areas corre-
spond to invisible areas in the photographs. The generated
masks can be used in every graphics editing program, to
avoid editing areas of the image which are invisible in the
model.

The second program is used for fast generation of the
Atlas and the Tile Store. Although there already exists
an implementation for this task, we found it too slow to
meet the requirements of the graphic artist concerning time
consumption. Our program is also used for updating the
Atlas and the Tile Store, when a photograph is changed
after the Atlas and the Tile Store are generated.

In Section 2 we give some background information
about Virtual Texturing and the existing implementations
for the generation of the Atlas and Tile Store. In Section 3
and 4 we will give detailed information about the develop-
ment of the applications we have implemented. Finally, in
Sections 5 and 6 we present the results concerning our ap-
plications as well as possible additions which can be done
in future.

2 Related Work

Virtual Texturing, as it is described detailed by J. Mayer
in [5], is a sophisticated technique to overcome the mem-
ory limitations of the graphics card, when rendering ob-
jects or scenes with a large quantity of textures. Rendering
such scenes might work without Virtual Texturing as well,
but the frame rate would probably suffer extremely under
the high traffic rate between the CPU and GPU, resulting
from continuous streaming of texture data. In contrast to
Virtual Texturing, every needed texture would be loaded as
a whole, regardless of the visible texture area. With Virtual
Texturing, only those parts of the texture are streamed to
the graphics card, which are actually visible. The smallest
part, that can be streamed to the GPU, is called a tile. A
tile is a small texture with a resolution of 642 up to 5122
pixels, so its final side length must be of the form 2" pixels
forne {6, 7, 8,9}. If just one pixel of a texture is needed
to render the scene, at least the whole tile containing this
pixel must be streamed.

The first step for Virtual Texturing is to produce one big
texture, consisting of all the single textures in the scene.
This texture is the Atlas. In Figure 5 an example of such
an Atlas is shown. The Atlas must fulfill some require-
ments regarding its size (refer to [5] for details). Because
the Atlas often has side lengths of 32k pixels and more, it
would be very unhandy to store it in a single file. There-
fore, it is stored in 4, 16 or more equally sized files.

Note, that it is important to adapt all texture coordinates

Figure 5: 32k* Atlas consisting of 62 4064x2704 pho-
tographs of the Domitilla model.

of the models in the scene to refer to the layout of the At-
las. The Atlas is the base of the Tile Store. The Tile Store
can be viewed as a mipmapped Atlas. In contrast to clas-
sic Mip Mapping [7], where the side lengths of the original
textures are halved until only one pixel resides, the small-
est part, representing the highest level of the Tile Store,
is one single tile. If we have, for example, an Atlas with
a resolution of 32k2, and a tile resolution of 1282, there
would be 65536 tiles at Level O of the Tile Store. At Level
1, there would be 16384 tiles and so on. At the highest
Level with number 8, there would just be one tile repre-
senting the whole Atlas. In Figure 6 you can see exactly
this scenario applied to the Atlas of Figure 5.

wv wv
O O I
2 Q ﬂ i/
B 26 tiles | |
L L\ _
~ "~
Level 0 Level 1 (16384 tiles) Level 7 Level 8
(65536 tiles) Level 2 (4096 tiles) (4 tiles) (1 tile)
Level 3 (1024 tiles)
Level 4 (256 tiles)
Level 5 (64 tiles)
Level 6 (16 tiles)

Figure 6: Tile Store generated with the Atlas shown in
Figure 5 as its base. The tiles have a resolution of 1282.

J. Mayer, the author of [5], has already implemented
scripts to generate the Atlas and the Tile Store. Therefore
he chose Python as scripting language. His script to gen-
erate an Atlas is based on ImageMagick’, a command line

Shttp://www.imagemagick.org

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

based graphics editing program. The script to generate the
Tile Store uses the Python Imaging Library. We will show,
that our application, fully implemented in C++, acceler-
ates the task significantly.

3 Mask Generation

The first step to ease the work of the graphic artist, was
the development of an application to generate masks for
every photograph contained in the model to prevent the
editing of invisible image areas. The masks have exactly
the same resolution as the photographs, so that every white
pixel of a concrete mask corresponds to a visible pixel,
and every black pixel corresponds to an invisible pixel in
the underlying photograph. To generate a mask for a tex-
ture, the only information needed from the model are the
face indices into the texture coordinates list, the texture co-
ordinates themselves as well as the material information,
to know which primitives belong to which photograph.
The face indices are needed, to know which of the tex-
ture coordinates belong together to form a primitive, e.g.
a triangle. The texture coordinates are values € [0, 1]°.
Therefore it is important to choose a virtual camera (via
the projection matrix), whose image plane corresponds to
the whole area of possible texture coordinates. The cam-
era, which fulfills exactly these requirements, is an ortho-
graphic camera placed in the world coordinate system at
position p = (0.5, 0.5, 0.0). The width and height of
the view frustum must both be 1. Since the simplest way
to render 2D content is to use the XY-plane, the values for
the near and far clipping plane can be set to an arbitrary
negative and positive value respectively. In Figure 7 the
view frustum of this virtual camera is shown.

Y

view vector

(0,0,1)

b2 o4

Figure 7: View frustum of the orthographic camera used
to render the masks. All primitives are rendered into the
XY-plane.

The masks are generated on the GPU using OpenGL
as the graphics API. Therefore a buffer with the same di-
mensions as the current photograph is created. The back-
ground color is set to black, which corresponds to invis-
ible image areas. After that, all primitives of the model

are rendered in white color into the buffer. The texture co-
ordinates of the primitives are used, as if they were vertex
positions. Because texture coordinates are € [0, 1]?, the z-
value is set to O to use the XY-plane as the plane to render
into.

Our application to generate masks is fully implemented
in C++, currently only available for Microsoft Windows.
To make it small and simple, we omitted a graphical user
interface. Per default, the mask generation application
copies a shortcut to itself into the Windows SendTo di-
rectory during the installation. Due to this, it can simply
be started by a right click onto the model file followed by
a ”Send To” to our application. After that, all masks will
be generated in a sub directory called masks. Of course,
all textures belonging to the model must be at the position
referenced in the model file.

4 Virtual Texturing

The second step to optimize the workflow of the graphic
artist was the introduction of Virtual Texturing for faster
rendering of the models. Due to this, we had to improve
the already existing scripts, developed by J. Mayer, the
Author of [5], to generate the Atlas and the Tile Store.
The existing scripts are implemented in Python. Because
these scripts need a very long time, to produce the Atlas
and the Tile Store (see Section 5 for concrete values), we
decided to implement a new application, which should do
the same task in much less time. In contrast to the existing
scripts, which first generate an own Tile Store for every
part of the Atlas, and then merge these to come to the final
Tile Store, we decided to implement it in that way, that the
final Tile Store is generated out of all the parts of the Atlas
in a single run. Our application is also used for the update
of the Atlas and the Tile Store, when the graphic artist has
changed one or more of the photographs. Because this is
the most time-critical function of our application, since it
is used after every editing step of a photograph, we will
explain it in detail in the following subsection.

4.1 Atlas- and Tile Store-Update

Because the generation of the Atlas and the Tile Store is,
also when done with our fast application, a relatively time
consuming task, we decided not to regenerate the Atlas
and the Tile Store for an update, but to reproduce just those
parts, which are concerned with the changed photographs.

To make an update of the Atlas and the Tile Store possi-
ble, it is important to know which photographs inside the
Atlas have changed and where every photograph is posi-
tioned in the Atlas. To accomplish this, a text file is pro-
duced during the generation of the Atlas. This text file con-
tains the time of last change, which can be queried from
the operating system, of all produced Atlas files. If a pho-
tograph is changed and the update routine is run, the time
stamp in the text file and the current time stamp would dif-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

fer, indicating that all parts of the Atlas and the Tile Store
belonging to this concrete photograph must be updated.
The exact position of the photograph which has changed
is so important to know, because otherwise it would not be
possible (at least not without much effort) to find the areas
in the Atlas and Tile Store the photograph belongs to.

When the changed areas of the Atlas have been found,
it is easy to calculate the concrete coordinates of the parts
of the Atlas, that are concerned. During the update all
levels of the Tile Store have to be considered. Because
every level corresponds to a mipmap level of the Atlas,
the Atlas must be scaled down to the half after one par-
ticular level has been updated. As already mentioned in
Section 2, the Atlas is of course not stored in one single
file, but in 4, 16 or more parts. Therefore, there may be
parts of the Atlas, which are not concerned by the update
process. After the update of one particular level of the Tile
Store, the Atlas must be scaled down to deliver the neces-
sary information for the next level of the Tile Store. This
would be redundant work for every update, if unchanged
parts would be scaled every time. Due to this, our applica-
tion not only stores the Atlas itself, but also every mipmap
level needed. Certainly, this scaled parts of the Atlas must
also be updated, if they consist areas of a photograph that
was changed.

Tile Cache and VRAM. When updating the Atlas and
the Tile Store, it is also important to update the dedicated
memory region on the graphics card (VRAM), which is
used to store the currently used tiles. Further, it is nec-
essary to update the so called Tile Cache, which is the
dedicated region inside the main memory, to hold a finite
number of tiles to prevent another time consuming stream-
ing from hard disk. Another streaming of a particular tile
can be necessary when it has been overwritten inside the
VRAM by another tile because of a certain time period
without usage. A problem that arises, if such an update
is not executed, is the simultaneous usage of the old and
the new version of tiles corresponding to a particular pho-
tograph. This happens, because currently just those tiles
are streamed from hard disk, cached, and then streamed to
the graphics card, that are needed to render the next frame,
but are not already stored inside the Tile Cache. When a
particular tile is needed again, but is already stored in the
Tile Cache, this version is streamed to VRAM, no matter
if it has changed on hard disk.

In Figure 8 you can see a part of the Domitilla model
rendered with Virtual Texturing inside Scanopy, showing
visual artifacts when the Atlas and the Tile Store change,
but an update of the Tile Cache and VRAM is not exe-
cuted. To emphasize the artifacts, the old version of the
photograph was patterned before the creation of the Atlas.

LibVT originally was not designed for a modification
of the Atlas after it was generated. Therefore, the LibVT
has been modified by the implementation of two new func-
tions, one function to delete a particular tile from VRAM,
and one function to delete it from Tile Cache. Now,
the graphic artist can edit a particular photograph, while

2B B O 1 0 e

FIE/
HEEHEE

Figure 8: Visible artifacts while rendering in Scanopy re-
sulting from simultaneous usage of the old (patterned) and
the new version of tiles corresponding to a particular pho-
tograph.

Scanopy is running, and can start the update procedure by
keystroke to see the changes inside the 3D model immedi-
ately.

We chose C++ as programming language to use a li-
brary J. Mayer proposed in his thesis [5]. This library,
called libjpeg-turbo®, produced the best results regarding
loading JPEG-images from hard drive. Because of the
large quantity of textures, the Atlas and the Tile Store pro-
vide, JPEG is because of its high compression rate the im-
age format of choice. Like the application for mask gen-
eration, our program for the generation of the Atlas and
the Tile Store can be called via "SendTo”. The only file
the application expects is a small text file with all config-
uration parameters. The most important of these param-
eters are the maximum side length of the Atlas parts, the
paths where the Atlas and the Tile Store should be stored,
the side length of the tiles as well as the output format of
the Atlas and the Tile Store. The configuration file must
be placed in the directory of the images, which should be
contained in the Atlas. The application will consider all
available image files in the base path of this text file. If
all parameters are valid, the generation of the Atlas and
the Tile Store starts. The results are the Atlas, split into
as many parts, so that the desired maximum side length is
not exceeded and the Tile Store, consisting of tiles with
the desired side length.

5 Results

Our first application for the mask generation is already in
use by the graphic artist and provides considerable ease of
his work. In Figure 9 you can see the result of the mask
generation for a single photograph, in Figure 10 the usage
of the mask inside Adobe Photoshop is shown.

Our second application for the generation of the Atlas
and Tile Store is significantly faster regarding Atlas gener-

Ohttp://libjpeg-turbo.virtualgl.org/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 9: Photograph used as texture (left side) with its
corresponding mask (right side).

wien » | O citver ‘

SPCHEN TSN ACERSFAR N RSB T

| B

nee 6 ohompsin b o 5 S AO O

Figure 10: Usage of a generated mask inside Adobe Pho-
toshop.

ation than the existing Python implementation, as you can
see in Figures 11 and 12. Both diagrams show, that our ap-
plication is at least four times faster than the Python script
with ImageMagick. While our application produces nearly
consistent results, the Python script needs the longer the
more parts are produced. This increase can be explained
by the nature of the script, which calls ImageMagick for
every single image it produces. So when 64 Atlas parts
are desired, ImageMagick must be called 64 times. This
also means, that it has to read a particular photograph for
every part, the photograph belongs to, again. In contrast to
this behavior, our application holds as many photographs
in memory as possible, to read them only once.

—&o—Python with ImageMagick —B-0ur C++ Implementation

25
20 /
15

10 /

(less is better)

Time needed for generation [s]

1 4 16 64

Number of parts of the 8k? Atlas

Figure 11: Performance of the generation of an 8k> Atlas
using our C++ implementation compared to the existing
one.

=o—Python with ImageMagick =@=Our C++ Implementation
800

700 »

600 /

=
c
2
=
g __
]
c 500
2
%3 /
L« 0
55 40 /
T 9
% E 300
3= /
@ 200 pa———
@
€ 100
= o B — 0
16 64 256

Number of parts of the 32k? Atlas

Figure 12: Performance of the generation of a 32k> Atlas
using our C++ application compared to the existing one.

The generation of the Tile Store delivers even more dra-
matic results. As you can see in Figures 13 and 14, our ap-
plication is at least ten times faster than the Python script.
To be consistent, the python script has been altered to use
ImageMagick instead of the Python Imaging Library. Be-
cause of the huge time consumption of the Python script,
the generation of the Tile Store with a tile resolution of
1282 has been omitted for the 32k> Atlas. With our appli-
cation, this takes only 158.1 seconds. We also tested the
generation of a 128k> Atlas with its corresponding Tile
Store with a tile resolution of 1282, The Atlas was gener-
ated in 9min 11s, the Tile Store (11 levels with 1,398,101
tiles) in 2h 58min 21s.

—&—Python with ImageMagick —@—Our C++ Implementation

900,00

= »

= 800,00 /

(=]

2 700,00

T /

g T 60000 /

@ £ 500,00

*3 pd

S @ 400,00

T & 300,00 /

gd v

T =

g = 200,00 &

s 100,00

.§ 0,00 = —a
8k 16k

Atlas side length

Figure 13: Performance of the generation of a Tile Store
using our C++ implementation compared to the existing
one. The tiles have a resolution of 128

The update procedure again shows the speed-up when
our application is used instead of a Python script. The
Python script doing the update procedure was imple-
mented to show a comparison. In Figure 15 you can see
the times needed for an update.

The times for Atlas generation have been measured on a
Hewlett Packard Pavilion dv6599eg notebook with an Intel
Core2Duo T7300 processor with 2.0 GHz, 2 GB RAM and
an nVidia GeForce 8400M GS graphics card. The times

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

=o—Python with ImageMagick ~l-Our C++ Implementation

1200,00
1000,00
800,00 /
600,00 /
400,00 /

200,00 //
0,00 ‘/ y//.

8k 16k 32k

(less is better)

Time needed for generation [s]

Atlas side length

Figure 14: Performance of the generation of a Tile Store
using our C++ implementation compared to the existing
one. The tiles have a resolution of 2562.

—o—Python with ImageMagick —-Qur C++ Implementation

6

5 /

) —

Time needed for update [s]
(less is better)

8k 16k

Atlas side length

Figure 15: Performance of the update process using our
C++ implementation compared to a Python script.

for Tile Store generation and update procedure have been
measured on an Intel i7 2600k processor with 3.4 GHz,
8 GB RAM and an nVidia GeForce GTX 570. Only the
128k Atlas was also generated on the i7.

6 Conclusions and Future Work

We have presented an optimization of the workflow for
a graphic artist, who is currently editing a large quantity
of photographs used as textures for laser-scanned models.
Our approach is based on the development of two applica-
tions and the introduction of Scanopy implementing Vir-
tual Texturing into his workflow to ease his work. The
first application is a mask generation program to visibly
emphasize image areas corresponding to visible areas in
the final model. Our second application is used for fast
Atlas and Tile Store generation and update.

In future, the workflow could be further improved by
transformation of the surrounding photographs into the
plane of the actually edited photo. One approach to do
this is the generation of a list with all photos and the cor-
responding neighbors, to know which of them have to be
opened inside the editing program as a reference. This

could decrease the number of checks inside the rendered
3D model.

Further, usage of the mask information for the Atlas
and Tile Store generation might be useful to reduce the
final size of the produced JPEG images, because of the
higher compression rate when using input material with
big homogeneous areas. An even smaller Atlas could be
achieved by tightly packing of the visible image mate-
rial. Therefore a transformation of the texture coordinates
would be necessary, to reference the right areas inside this
new Atlas.

A fully automated editing of the photographs corre-
sponding to a model is desirable. This could be done with
an approach based on Poisson Image Editing by Pérez,
Gangnet and Blake [6]. There are already approaches for
stitch-less image composition, that could be introduced to
further ease the work of the graphic artist: [4], [3].

References

[1] Ahmed Abdelhafiz. Integrating Digital Photogram-
metry and Terrestrial Laser Scanning. PhD thesis,
Technical University Braunschweig, 2009.

[2] Paolo Cignoni, Massimiliano Corsini, and Guido
Ranzuglia. MeshLab: an open-source 3D mesh pro-
cessing system, April 2008.

[3] Ran Gal, Yonatan Wexler, Eyal Ofek, Hugues Hoppe,
and Daniel Cohen-Or. Seamless montage for textur-
ing models. Comput. Graph. Forum, pages 479-486,
2010.

[4] Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair
Weiss. Seamless image stitching in the gradient do-
main. In ECCV (4), pages 377-389, 2004.

[5] Albert Julian Mayer. Virtual texturing. Master’s the-
sis, Vienna University of Technology, 2010.

[6] Patrick Pérez, Michel Gangnet, and Andrew Blake.
Poisson image editing. In ACM SIGGRAPH 2003
Papers, SIGGRAPH ’03, pages 313-318, New York,
NY, USA, 2003. ACM.

[7] Lance Williams. Pyramidal parametrics. In Pro-
ceedings of the 10th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’83,
pages 1-11, New York, NY, USA, 1983. ACM.

[8] Michael Wimmer and Claus Scheiblauer. Instant
points. In Proceedings Symposium on Point-Based
Graphics 2006, pages 129-136. Eurographics, Euro-
graphics Association, July 2006.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

