Real-time Lighting Effects using Deferred Shading

Michal Ferko*
Supervised by: Michal Valient'

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

Rendering realistic objects at interactive frame rates is a
necessary goal for many of today’s applications, especially
computer games. However, most rendering engines used
in these games induce certain limitations regarding mov-
ing of objects or the amount of lights used. We present
a rendering system that helps overcome these limitations
while the system is still able to render complex scenes at
60 FPS. Our system uses Deferred Shading with Shadow
Mapping for a more efficient way to synthesize lighting
coupled with Screen-Space Ambient Occlusion to fine-
tune the final shading. We also provide a way to render
transparent objects efficiently without encumbering the
CPU.

Keywords: Real-time Rendering, Deferred Shading,
High-dynamic range rendering, Tone-mapping, Order-
Independent Transparency, Ambient Occlusion, Screen-
Space Ambient Occlusion, Stencil Routed A-Buffer

1 Introduction

Our rendering engine is based on concept of Deferred
Shading [3], which avoids shading occluded pixels and by
postponing the lighting evaluation allows one pixel to be
affected by hundreds of lights.

Our system uses HDR rendering coupled with the tone-
mapping operator by Reinhard et al. [11] and Bloom,
Shadow Mapping [16] to provide hard-edged shadows,
Screen Space Ambient Occlusion to simulate indirect
lighting and Stencil Routed A-Buffer [8] to render trans-
parent objects. All these techniques allow easy integration
into a deferred renderer while providing much more real-
istic display of scenes.

The main contribution of this paper is a complete
rendering pipeline incorporating these well-known tech-
niques. Our aim is to determine in which order these tech-
niques should be applied to avoid incorrect artifacts and
how to maintain reasonable quality while allowing real-
time display even on older hardware.

*michalferkol @ gmail.com
Tmichal.valient@guerilla-games.com

We are targeting OpenGL 3 capable hardware, because
we require the framebuffer object features as well as mul-
tiple render targets.

2 Related Work

There are many implementations of Deferred Shading and
this concept has been widely used in modern games [15]
[12] [5], coupled with techniques used in our paper as well
as certain other.

Deferred Shading does not directly allow rendering of
transparent objects and therefore, we need to use a differ-
ent method to render transparent objects. There are several
approaches to hardware-accelerated rendering of transpar-
ent objects without the need to sort geometry. This group
of algorithms is referred to as Order-Independent Trans-
parency.

An older approach is Depth Peeling [7] [4], which re-
quires N scene rendering passes to capture N layers of
transparent geometry. Dual Depth Peeling [1] improves
the algorithm by capturing two layers of geometry in
one pass. However, the objects still need to be rendered
multiple times and the performance is still unacceptable
for large scenes. Once the layers are captured, a final
fullscreen pass blends them together.

A newer approach, Stencil Routed A-Buffer [10], al-
lows capturing of up to 32 layers during one rendering pass
thanks to multisample render targets on OpenGL 3 hard-
ware. An additional pass for sorting the values is used.
This approach is part of our system.

With OpenGL 4 hardware, it is possible to actually have
per-pixel linked lists [13] and thus generate an arbitrary
number of layers and sort these samples afterwards in a
fullscreen pass. This approach is very similar to Sten-
cil Routed A-Buffer except for the way the samples are
stored. We did not use this approach due to the lack of
OpenGL 3 support.

To further improve the visual quality of rendered im-
ages, we include standard Shadow Mapping [16] for
shadow-casting lights and real-time Ambient Occlusion.
There has been much research done regarding real-time
Ambient Occlusion. In [2], the authors convert polygonal
meshes into disks, for which the occlusion computation
is simplified and allows dynamic rendering. In [6], the au-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Images of test scenes rendered with our system at interactive frame rates. Dragon scene (Left), House scene

(Middle) and Sponza scene (Right)

thors propose a method to generate fields around objects in
pre-processing. As long as the objects are not deformed,
the fields do not need to be recomputed. It thus allows
real-time estimation of occlusion. A similar technique [8]
performs a slightly different field generation in the geome-
try shader and allows for fully-dynamic ambient occlusion
even on deformable meshes.

Our work is based on Screen-Space Ambient Occlusion
[9] which uses the scene depth information captured dur-
ing the first stage of deferred shading to approximate scene
geometry and thus compute occlusion. The choice was
made mainly due to the fact that the previous methods are
scene-dependent and perform slower than SSAO when the
scene contains hundreds of thousands of triangles. SSAO’s
performance depends only on the number of samples taken
and the screen resolution, being totally independent from
the actual scene.

3 Deferred Shading

Deferred Shading [3] is an alternative to Forward Shading,
the traditional rendering where a fragment shader accesses
all light information at once and outputs the final light con-
tribution directly into the window’s framebuffer.

The main idea of Deferred Shading is separation of the
lighting calculations from the scene rendering pass (or
the geometry pass). During this pass, material and ob-
ject properties (usually albedo, depth, normal and specular
power) are stored into a geometry buffer (G-Buffer).

When compared to forward rendering or multi-pass ren-
dering, the scene is rendered only once and only the frag-
ments that are visible are shaded. No shading needs to be
evaluated for objects that are not affected by a certain light
(the object is outside of the light volume - part of the scene
that is affected by the light).

During the consecutive lighting pass, the light volumes
are rendered (cones for spot lights and spheres for point
lights) and during the fragment shader execution, the G-
Buffer data is read and used to synthesize lighting. The
light shapes are rendered with additive blending thanks to
the additive nature of light. The results can be displayed

on the screen, but usually more post-processing steps are
executed after this pass and the results should instead be
rendered into a texture - the lighting buffer (L-Buffer).

When rendering light shapes, we use front-face culling
to avoid problems when the camera is inside a light vol-
ume. Furthermore, for every pixel getting rendered, it is
needed to reconstruct the eye-space position correspond-
ing to the current pixel position and the depth stored in
the G-Buffer. For this position, we calculate whether it
actually is inside the light volume, since we might be ren-
dering nearby light volumes while the G-Buffer contains
information about distant objects unaffected by the light.

Deferred Shading mainly outperforms Forward Shading
when there are many lights that do not cover large por-
tions of the screen when being rendered. Many directional
lights (which affect the entire screen) pose a problem for
Deferred Shading, because we do extra work when com-
pared to Forward Shading. Therefore, some implementa-
tions evaluate directional lights using Forward Shading [5]
and all other lights using Deferred Shading.

In a typical outdoor scene there is usually one direc-
tional light representing the sun and in indoor scenes, di-
rectional lights are avoided altogether. Our system cal-
culates directional lights with forward shading during the
G-Buffer generation phase. Due to this fact, only a fixed
amount of directional lights can be forward shaded, for
more lights the system would have to switch to deferred
shading for the additional lights.

3.1 HDR and Tone-mapping

Having evaluated lighting in a texture adds direct support
for HDR rendering. Performing tone-mapping during the
L-Buffer generation phase is not possible, since the results
get additively blended and we cannot guarantee that a pixel
will not be affected by a large number of lights, resulting
in a sum of many tone-mapped values which result in a
luminance value higher than 1.

Our system is open to many tone-mapping operators.
Currently, we are using the global part of the operator by
Reinhard et al. [11]. As an input into the tone-mapping
stage, we have the L-Buffer which contains 16-bit floating

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Real-time Reinhard’s tonemapping. HDR im-
age before applying tonemapping (Left) and after applying
tonemapping (Right).

Figure 3: A scene with Bloom disabled (Left) and enabled
(Right). Notice the light leaking into the shadow.

point RGB values.

Reinhard’s operator analyzes the whole input image and
tries to estimate whether it is light or dark. Based on
the average luminance of the image L, the luminances are
tonemapped into a valid range.

We perform a traditional GPU accelerated calculation of
the average luminance of the L-Buffer by downscaling the
image up to a 1x1 texture (using mipmap generation) and
the value of this one pixel is the average image luminance.

3.2 Bloom

When looking at an object that is occluding a part of a
bright light source, the light rays appear to “bend” at the
object’s edge and a fringe is visible on the occluding ob-
ject. This effect is called Bloom, and it is usually coupled
with HDR lighting since only very bright light sources
produce such an effect. A scene with and without Bloom
is shown in Figure 3.

Our implementation is tightly coupled with the tone-
mapping operator we use. After calculating the average
luminance L of the image, we subtract L from the inten-
sity of pixels in the L-Buffer (we ignore low-luminance
pixels) and store these as a tresholded image. Pixels with
luminance above average are marked in this image and we
perform a blur based on how much brighter the pixels are
when compared to average luminance.

Instead of performing a gaussian blur of different kernel
size in each pixel, we chose to generate mipmaps for the
tresholded image and sum values from multiple mipmaps,
while alpha blending into the final image based on result-
ing pixel luminance.

3.3 Shadow Mapping

Incorporating Shadow Mapping into a Deferred Renderer
is straightforward and allows for hard-edged shadow with-
out much effort.

Shadow Mapping [16] is a fully GPU accelerated
method for rendering real-time shadows. The entire scene
is rendered one additional time (from the light’s point
of view in the light’s direction) for every shadow-casting
light, storing the depth values generated during this ren-
dering.

Afterwards, when evaluating the lighting equation, the
world position of the current surface point is projected (us-
ing the same projection as was used during the shadow
map generation phase and remapping from [—1,1]? range
into [0,1]%) which gives us the (x,y) coordinates in the
shadow map and a depth value z. The fragment shader
reads the depth value d at position (x,y) in the shadow
map and compares it to z. If z = d, the point with depth z
is the closest point to the light source and therefore is not
shadowed. If z > d, this point is behind a point with depth
d and is therefore not directly lit by the light.

Due to floating-point precision errors, a small offset
needs to be added to all values stored in the shadow map,
otherwise non-realistic self-shadowing artifacts occur.

Integrating Shadow Mapping into a Deferred Renderer
is simple. The scene is rendered one additional time for
every shadow-casting light and thanks to the fact that we
only access one light at a time in the fragment shader, we
can reuse one texture for multiple lights. Our system does
this by flip-flopping between shadow map generation and
L-Buffer generation. We first generate the shadow map
for the first light, then render the light’s shape into the L-
Buffer while accessing the map. We then clear the shadow
map, render from the second light’s point of view (into the
same shadow map), and render the second light’s shape
into the L-Buffer. For lots of shadow-casting lights, this is
a necessary approach due to the fact that we already took
up a lot of memory with the G-Buffer (and the L-Buffer).

4 Transparent Objects

The Deferred Shading approach does not support render-
ing of transparent objects. The G-Buffer contains informa-
tion only about the nearest pixels, but we require multiple
points per pixel when rendering transparent objects to cor-
rectly compute the final pixel color.

Due to the alpha blending equation:

c0lor fina = (1 — Oge)colorg,e + Ogrecolorgy, (1)

which is used for correct rendering of transparent objects,
the resulting color needs to be evaluated back-to-front
from the camera’s point of view. Therefore, a typical im-
plementation sorts all triangles in the scene and then ren-
ders these back-to-front. Problems are pairs of intersecting

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

triangles which introduce the need to split at least one of
those triangles into two parts.

For static transparent objects, constructing a BSP tree
as a pre-processing step for all transparent triangles in the
scene is a common approach. During scene rendering, the
BSP tree is traversed back-to-front based on camera lo-
cation. However, when we consider dynamic objects, the
BSP tree needs to be maintained every frame (in worst-
case, the whole tree needs to be rebuilt), which is usually
a CPU intensive approach, especially for thousands of tri-
angles.

4.1 Stencil Routed A-Buffer

Our goal was to have fully dynamic scenes, therefore we
chose Stencil Routed A-Buffer [10] for rendering trans-
parent objects. Thanks to newer hardware supporting
OpenGL 3 and higher, it is possible to render to a multi-
sample framebuffer object (FBO) and use the stencil buffer
to fill each sample of a pixel with different values at dif-
ferent depths. This feature is called Stencil Routing.

At first, a multisample framebuffer with a depth, stencil
and color buffer is created - this will be our Alpha buffer
(A-Buffer). Then, every frame, the stencil values are ini-
tialized to n+ 1 for the n-th sample of a pixel by rendering
a full-screen quad once for every sample while allowing
writing only into the current sample.

During the rendering of transparent objects (with depth
write disabled), we set the stencil operation to decrease
whenever a fragment is being rendered and we set the sten-
cil function to equal with the reference value 2. When the
first fragment of a pixel is being rendered, the first sam-
ple (which has a stencil value of 2) is filled with color and
depth of the fragment and all stencil values are decreased
by one. Now the second sample has a stencil value of 2
and the next fragment being rendered for this pixel gets
stored in the second sample. This behavior is shown in
Figure 5.

Using this approach, we can compute n layers of trans-
parent objects in one rendering pass, where n is the number
of samples per pixel in our multisample FBO. Latest hard-
ware allows up to 32 samples per pixel, but older graphic
cards support 8 samples with no problems.

Finally, we need to display the transparent objects on the
screen. We render a fullscreen quad and in the fragment
shader, we access all the samples one by one and sort them
based on their depth value. Finally, the sorted samples
are blended in the fragment shader using standard alpha
blending and the result is displayed on the screen. A result
is shown in Figure 4.

Despite the improvement on speed of rendering, there
is still a problem with shading transparent objects. When
blending the fragments together, we need to shade them
accordingly, and this is a forward shading step, so it inher-
its all the limitations of forward shading. Therefore, only
a small amount of lights can be selected for shading the
transparent surfaces.

Figure 4: Stencil Routed A-Buffer - Result

D|1.0| [1.0] |1.0] [1.0 1.0] (1.0 |1.0
&

0 1 2 3 0 0 1 2

N> H

0.9] (1.0] |1.0 0.9 1.0

Figure 5: Stencil Routing - The 4 samples for a pixel after
initialization step ready to write to the sample with stencil
value § = 2 (top-left). When the first fragment is stored all
stencil values are decreased by one, color C and depth D
of the first fragment are written into the first sample (top-
right) and after next two steps (bottom-left, bottom-right)
we have three valid samples that can be blended together.

Problems can still occur when there are more samples
per pixel than the multisample buffer can hold. Sam-
ples get lost and there is the question of what to do when
an overflow occurs. One simple improvement is to use
bounding volumes which are probably used during view
frustum culling to estimate distance from camera and ren-
der sorted (not completely like with a BSP tree) geometry,
which causes the closest surfaces to be stored in our A-
Buffer before it overflows. Afterwards, overflown pixels
will probably be more distant and their final contribution
might be so small that the artefacts will not be visible.

5 Ambient Occlusion

Ambient occlusion is defined as the amount of ambient
light reaching a point in the scene. It is calculated by inte-
grating the visibility function over a hemisphere centered
at the target point and oriented according to the surface

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

normal. Static ambient occlusion can be precomputed for
static objects (and dynamic lights, since the occlusion does
not depend on light sources), however it is a costly process
and it does not produce correct results when there are mov-
ing objects in the scene.

5.1 Screen-Space Ambient Occlusion

Dynamic pre-computation of ambient occlusion is impos-
sible especially when we don’t know how objects in the
scene will move. Therefore, we need a dynamic solution
that estimates occlusion every frame.

In Mittring’s work [9], the author proposed a method
called Screen-Space Ambient Occlusion (SSAO) which
uses the depth buffer (as rendered during the G-Buffer
phase) to approximate scene geometry and estimate oc-
clusion based on this inaccurate approximation.

The output of the algorithm is a one-channel 8-bit ac-
cessibility texture covering the entire screen. The value in
each pixel in range [0, 1] is then used as a multiplication
factor for ambient light of the respective pixel.

The SSAO generation pass occurs after the G-Buffer
is generated and before we synthesize lighting, since we
want to use the occlusion values during the lighting phase.
We render a fullscreen quadrilateral and access the G-
Buffer depth and the G-Buffer normal. For every pixel
p with (x,y) coordinates and d depth, its 3D eye-space
position P is reconstructed using the depth value and po-
sition in the depth map. In a small sphere around this
3D point, a number of points Qy, ..., Q. are generated by
adding random vectors of length less than 1 multiplied by
the sphere’s radius r to the point’s position.

Afterwards, every point Q; is projected back into clip
space which gives us (x;,y;) coordinates to the depth map
and the actual depth d; of point Q;. If the value stored at
position (x;,y;) in the depth map is smaller than d;, there
is an object covering point Q; and it is a potential occluder
for point P.

Our approach utilizes the G-Buffer normal as well,
which increases the number of correct samples - samples
that are below the surface are false occluders. This is not
included in the Crytek implementation and it avoids self-
occlusion which generates occlusion values of 0.5 on flat
surfaces. In Figure 6, we have the scene’s depth buffer as
seen from the camera C. Point Q does not lie in the half-
space assigned by point P and the normal at P. There-
fore, any object containing Q should not be considered as
an occluder. The object in front of Q should be consid-
ered and we rely on the point distribution that at least one
of the sampling points will be inside the sphere and the
sphere will contribute to occlusion. Even if this is not the
case for one point, for neighbouring pixels it probably will
be and after blurring the occlusion value gets propagated
from those as well.

To avoid generating points behind the surface, we test
the angle between the surface normal and the offset vector

PR
" ",

Figure 6: The SSAO algorithm - When calculating occlu-
sion for the surface point P, we generate points such as Q
and R in the dotted sphere with radius . Both Q and R
have depth larger than the value stored in the depth buffer,
therefore both points are considered as occluders.

v added to P. If larger than J we simply take —V as the
offset vector.

For every potential occluder, the occlusion factor is
computed as a function of the occluder’s distance d:

1
o) = R 2)

A necessary step during the SSAO computation is the
generation of random vectors that are added to P. If for
every pixel we use the same set of vectors, certain repeat-
ing patterns occur. A more acceptable solution is that the
vectors differ for neighboring pixel. We use a RGB texture
containing random values that are interpreted as a vector
and up to 32 uniformly distributed vector (stored as uni-
form variables during shader execution) in a unit sphere.
In the shader, all the uniformly distributed vectors are re-
flected by using the vector value read from our random
vector texture. This ensures different rotation of vectors
on the sphere for neighboring pixels.

The difference can be seen in Figure 7. The randomized
pattern gets blurred into a smoother result since it avoids
large portions of uniformly occluded areas, which would
not disappear after blurring.

The SSAO fragment shader performs a lot of operations.
However, the results are quite noisy even when using a
large number of samples and they still require a blurring
step. Therefore, using a 5 x % (where w X h is the cur-
rent resolution) sized SSAO texture is acceptable because
it will be blurred anyway. Some implementations even use
X % SSAO textures.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7: The difference when using randomized vector in
SSAO (Left) and same for each pixel (Right)

5.2 Cross-Bilateral Filtering

Actual occlusion is mostly smooth and without any kind
of noise. Therefore, we need to reduce noise somehow.
Simply blurring the SSAO texture with a gaussian blur is
not enough, because occlusion will “leak” through edges
in the screen which results in an unnatural behavior such
as the detaching of the occlusion in Figure 8.

Figure 8: Artifacts occuring when using gaussian blur
(Left) and elimination of those artifacts when using Cross-
Bilateral Filtering (Right)

To avoid blurring over edges, we use a modified gaus-
sian blur. What we want is an edge-aware blur that
does not blur edges in the image. A great help is the
depth buffer we have stored. The difference of depth val-
ues between two neighbouring pixels describes quite well
whether there is an edge between these two pixels or not.
If there is a tiny difference, the neighbouring pixels were
very close to each other before projection.

We use a version of cross-bilateral filtering [14] coupled
with a separable gaussian blur. We perform a horizontal
and vertical blurring pass on the SSAO texture while mul-
tiplying the gaussian coefficients with a simple function of
depth difference between the center sample diepnrer and the
current sample dg,rens- We use the following function:

1
1) = ’
w(cm‘r@n) S+ |dcenter - dcurrent| ’ ©

6 > 0 is a small constant to avoid division by zero.

After multiplying all samples with their corresponding
weights, the sum of all weights is computed so we can
normalize the result.

The results of SSAO after performing a simple gaussian
blur and a cross-bilateral blur are shown in Figure 9.

Figure 10: Comparison of a final scene without SSAO
(Left) and with SSAO (Right)

In Figure 10, you can see the visual improvement pro-
vided by SSAO with a 15x15 cross-bilateral filter.

6 Complete rendering pipeline

Our implementation was written in C++ and OpenGL and
runs on hardware supporting OpenGL 3.3. When putting
together all the rendering parts described in this paper, the
steps of our pipeline are as follows:

1. Render non-transparent objects while generating the
G-Buffer.

2. Using the G-Buffer depth and normal textures, gen-
erate the SSAO accessibility texture.

3. Render transparent objects using Stencil Routed A-
Buffer into a multisample buffer and perform forward
shading on all pixels with the selected lights.

4. Render light volumes while generating the L-Buffer.
Access SSAO texture for ambient term.

5. Blend sorted samples from the multisample buffer
into the L-Buffer.

6. Compute log-average luminance and L, from the
L-Buffer.

7. Prepare unfiltered bloom texture by subtracting val-
ues based on average luminance.

8. Compose final bloom image by averaging multiple
mipmaps.

9. Tonemap L-Buffer and display on screen.

10. Display Bloom on top of tonemapped data.

7 Performance and Results

We tested our rendering engine on several scenes, the test-
ing machine had an Intel Core i5 750 CPU, a NVIDIA
GeForce 9800 GT graphic card and 4GB of RAM. Our ap-
plication is single-threaded at the moment, it was utilizing
one core of the CPU.

We used three different quality settings of our engine
during the tests:

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 9: Comparison of simple blurring (Left) and edge-preserving blurring (Right) of the accessibility texture. Both
images have been darkened for the effects to be visible. Most notable differences are around the dragon’s head

e Low - 800x600 resolution, using % sized SSAO tex-
ture with 16 samples per pixel and a 21x21 pixel wide
bilateral blur. Stencil Routed A-Buffer had 4 samples
per pixel. Using one 512x512 shadow map for sun-
light.

e Medium - 1280x720 resolution, using % sized SSAO
texture with 16 samples per pixel and a 61x61
pixel wide separable bilateral blur. Stencil Routed
A-Buffer had 8 samples per pixel. Using one
1024x1024 shadow map for sunlight.

e High - 1920x1080 resolution, using full-sized SSAO
texture with 16 samples per pixel and a 61x61
pixel wide separable bilateral blur. Stencil Routed
A-Buffer had 8 samples per pixel. Using one
2048x2048 shadow map for sunlight.

Furthermore, we used multiple presets to determine
which operations take how much performance.

e SSAO + SR - SSAO and transparent objects enabled

e SSAO - SSAO enabled and transparent objects dis-
abled

e SR - SSAO disabled and transparent objects enabled
e OFF - SSAO and transparent objects disabled

The results are shown in Table 1, listing average FPS
values. SSAO is the main time-consuming operation, es-
pecially on High settings when using a full-sized buffer.
However, on lower settings, the effects of SSAO were still
visually appealing and only an experienced user would no-
tice some artifacts due to the low resolution of the buffer.
We do not recommend doing SSAO in full-size, % sized
buffer is a good performance and quality trade-off.

Note that the performance of SSAO depends mainly
on screen resolution and samples per pixel. Since it is a

screen-space algorithm, it does not in any way depend on
scene complexity. This is one of the advantages of SSAO,
that it provides stable performance and no unexpected FPS
spikes.

Stencil Routed A-Buffer, on the other hand, depends on
how many transparent objects and layers are visible at the
moment. The more pixels, the more we need to sort and
the higher FPS spikes. In the Dragon scene, there were no
transparent objects, therefore the measurements are omit-
ted.

All testing scenes had 6 animated point lights and one
static directional light with Shadow Mapping as a good
base for Deferred Shading.

8 Conclusion

We have presented a fully-dynamic real-time rendering
system that overcomes any kind of pre-processing steps
and allows dynamic objects and lights. The system runs at
interactive frame-rates on newer hardware but it is com-
patible with OpenGL 3 hardware and it can be altered
(in terms of quality) to run at interactive frame rates on
older hardware as well. We have presented how the differ-
ent techniques fit together and provide visually appealing
quality.

Our system still has limitations to overcome, especially
allowing an arbitrary number of lights to affect transparent
objects without a performance hit. Other Real-time Ambi-
ent Occlusion techniques as well as Per-pixel Linked Lists
for Order Independent Transparency should also be inte-
grated into the system to evaluate the quality/speed trade-
off and provide other solutions for latest hardware.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Scene | Triangles Preset Low | Medium | High
SSAO+SR | 187 | 109 3.0
SSAO 209 | 13.8 36
Sponza | 287353 SR 197 | 158 10.7
OFF 247 | 213 146
SSAO 38.1 19.1 38
Dragon | 201075 OFF [496 | 362 | 212
SSAO+SR | 46.7 | 183 39
SSAO 601 | 260 46
House | 11 563 SR 675 | 327 | 178
OFF 95.0 | 600 | 363

Table 1: Overall performance on three different scenes. Showing average FPS values for different settings of our engine

9

Acknowledgements

We would like to thank Marko Dabrovic for providing
the Sponza Atrium model and The Stanford 3D Scanning
Repository for providing the Dragon model. We also thank
Martin Madaras and Andrej Ferko for providing the hard-
ware for testing.

References

[1]

(2]

L. Bavoil and K. Myers. Order independent trans-
parency with dual depth peeling. Technical report,
NVIDIA Developer SDK 10, February 2008.

Michael Bunnell. Dynamic ambient occlusion and
indirect lighting. In Matt Pharr, editor, GPUGems
2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, pages
223-233. Addison-Wesley, 2005.

Michael Deering, Stephanie Winner, Bic Schediwy,
Chris Duffy, and Neil Hunt. The triangle processor
and normal vector shader: a VLSI system for high
performance graphics. SIGGRAPH Comput. Graph.,
22:21-30, June 1988.

Cass Everitt. Interactive order-independent trans-
parency. Technical report, NVIDIA Corporation,
May 2001. Available at http://www.nvidia.com/.

Dominic Filion and Rob McNaughton. Effects &
techniques. In ACM SIGGRAPH 2008 classes, SIG-
GRAPH °08, pages 133-164, New York, NY, USA,
2008. ACM.

Janne Kontkanen and Samuli Laine. Ambient occlu-
sion fields. In Proceedings of ACM SIGGRAPH 2005
Symposium on Interactive 3D Graphics and Games,
pages 41-48. ACM Press, 2005.

Abraham Mammen. Transparency and antialiasing
algorithms implemented with the virtual pixel maps
technique. IEEE Comput. Graph. Appl., 9:43-55,
July 1989.

(8]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

M. McGuire. Ambient occlusion volumes. In Pro-
ceedings of the Conference on High Performance
Graphics, HPG 10, pages 47-56, Aire-la-Ville,
Switzerland, Switzerland, 2010. Eurographics Asso-
ciation.

Martin Mittring. Finding next gen: Cryengine 2.
In ACM SIGGRAPH 2007 courses, SIGGRAPH 07,
pages 97-121, New York, NY, USA, 2007. ACM.

Kevin Myers and Louis Bavoil. Stencil routed a-
buffer. In ACM SIGGRAPH 2007 sketches, SIG-
GRAPH 07, New York, NY, USA, 2007. ACM.

Erik Reinhard, Michael Stark, Peter Shirley, and
James Ferwerda. Photographic tone reproduction
for digital images. In Proceedings of the 29th an-
nual conference on Computer graphics and inter-
active techniques, SIGGRAPH 02, pages 267-276,
New York, NY, USA, 2002. ACM.

O. Shishkovtsov. Deferred shading in
S.T.ALK.ER. In Matt Pharr and Fernando
Radima, editors, GPU Gems 2, chapter 9, pages
143-166. Addison-Wesley Professional, 2005.

Nicolas Thibieroz and Holger Gruen. OIT and indi-
rect illumination using DX11 linked lists. In GDC
San Francisco 2010.

C. Tomasi and R. Manduchi. Bilateral filtering for
gray and color images. In Proceedings of the Sixth
International Conference on Computer Vision, ICCV
’98, pages 839—, Washington, DC, USA, 1998. IEEE
Computer Society.

Michal Valient. Deferred rendering in kill-
zone 2. Online, accessed Feb. 20th, 2012,
2007. Develop Conference, http://www.guerrilla-
games.com/publications/dr_kz2 rsx_dev07.pdf.

Lance Williams. Casting curved shadows on curved
surfaces. SIGGRAPH Comput. Graph., 12:270-274,
August 1978.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

