
Real-time particle simulation of fluids

Zsolt Horváth

Supervised by: Adam Herout

Faculty of Information Technology

Brno University of Technology

Brno / Czech Republic

Abstract

Physically plausible simulation of fluids in real-time is

mostly achieved using approximations of the Navier-

Stokes equations. Recent methods simulate fluids by ex-

ploiting the capabilities of modern graphics processing

units. This article describes a method called Smoothed

Particle Hydrodynamics (SPH), which is a numerical ap-

proximation of the Navier-Stokes equations. The real-time

simulation allows for interactivity which is a great advan-

tage against the offline methods. Offline methods are not

running in real-time. The main goal of this project was

to experiment with the Smoothed Particle Hydrodynamics

running in realtime on the GPU.

Keywords: particle systems, fluid simulations, Navier-

Stokes equations, smoothed particle hydrodynamics,

CUDA, GPGPU, marching cubes

1 Introduction

Real-time simulation of fluids is a hot topic and major

challenge in computer graphics. Fluids like liquids and

gases are an important part of our life and environment. In

real-time grapics we tradicionally try to reproduce a part

of our world as visually realistic as possible, but unfortu-

nately it is hard to simulate. Researchers concentrate on

developing new, better and faster methods to simulate and

visualize fluids. It is commonly said to be one of the hard-

est phenomenon to simulate realistically and even harder

to simulate detailed fluids interactively. The offline meth-

ods which run not in real-time, can generate physically and

visually better results, but with no user interaction, which

is a disadvantage.

The mostly used method in computer graphics to sim-

ulate fluids is the Smoothed Particles Hydrodynamics

(SPH) [6]. SPH is based on the Navier–Stokes equations.

Because of the complexity of these equations, they can be

solved only in simple cases. Generally, they are solved by

a numerial method. The SPH method has good approxi-

mation which computes the most important properties of

fluids like density, pressure and viscosity.

The aim of this work was to experiment with the SPH

method on the CUDA platform. The experiments were

mostly focused on achieving a simulation running in real

time with different types of visualization methods and on

speeding up the slowest parts of the implemented algo-

rithms.

This work is structured as follows. In Section 2 we de-

scribe the present state of methods used in this area. Then

the Section 3 and 4 present theoretical aspects. Section 5

contains important implementation details. The results are

summarized in Section 6.

2 Related work

In 1822 Claude Navier and in 1845 George Stokes formu-

lated the famous Navier-Stokes equations that describe the

motion of the fluid substances [3]. With these equations

which describe the conservation of momentum together

with the two additional equations for the mass and energy

conservation, it is possible to simulate the fluid flow.

Simulations apply numerical methods to solve the non-

linear partial differential equations. One common way to

do this is to treat the fluid as a continuum, discretize the

spacial domain into a grid, and use the finite differences or

the finite volume method [16]. In the literature about the

fluid simulations, the grid-based fluid models are called

Eulerian models. The fluid is thought of as being com-

posed of fluid cells that form a uniform grid. Each cell

contains a number of fluid molecules, or particles. The

grid-based methods, as a matter of principle, have the

drawback of a bounded simulation space which is caused

by the finite memory of the computation devices. The fluid

can not flow freely in the virtual environment because it

can not exist outside the grid; it is locked in the grid.

The grid provides a solution to estimate the derivatives

using a finite difference method (FDM). For theoretical de-

tails on Eulerian fluids see [5, 8, 19]. Although the Eule-

rian method provides better description of some the prop-

erties of fluids (mass-density, pressure field) compared to

the Lagrangian method, but the major disadvantage is the

grid itself.

The particle-based methods in the literature are called

the Lagrangian models. These methods represent fluids

using a discrete set of particles. These particles simulate

the flow of the fluid by solving the particle hydrodynamics.

For the real-time applications this has some advantages

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

against the grid-based methods. The biggest advantage is

that the fluid can spread freely in the simulation space. For

these reasons, we focus on the Lagrangian method based

on the Smoothed Particle Hydrodynamics [6], which is the

most popular solution for this kind of applications simulat-

ing the fluids. Each particle distributes its fluid properties

to the surronding particles in the near neighbourhood us-

ing a radial kernel function (the smoothing kernel). The

evaluated new property of a particle is the sum of property

quantities of neighbour particles weighted by the smooth-

ing kernel.

The Smoothed Particle Hydrodynamics method was in-

troduced in 1977 by Monaghan and Gingold [15] and in-

dependently by Lucy [9]. First, it was used in astrophysics

to simulate large scale gas dynamics [18]. Later, it was

applied to incompressible flow problems. In the real-time

applications, at first the Eulerian method was favoured.

Müller, Charypar and Gross [12] showed that the SPH is

well suitable for interactive real-time applications. Vizual-

ization of the results plays as important role as the main

simulation process in these applications. The most often

used methods for rendering are these: point splatting [12],

marching cubes or marching tetrahedra [21, 20], and ray-

casting [7].

3 Smoothed Particle Hydrodynam-

ics

This section is focused on the theoretical explanation of

the Lagrangian equations and how they are discretized.

The most important parts are symmetrizations of the

forces, like pressure and viscosity. The last part about the

smoothing kernels describes the force computations.

3.1 Lagrangian equations

This subsection describes the Lagrangian method of the

fluid simulation. The conservation of mass / continuity is

given by:
dρ

dt
=−ρ∇ ·v, (1)

where ρ is density, v velocity and t is time. Using the sub-

stantive derivative [4], which specifies: dv
dt

= ∂v
∂ t +v · ∇v,

it defines the strength of how viscous the fluid is. We get

the Lagrangian formulation of the conservation of momen-

tum:
dv

dt
=−

1

ρ
∇P+

1

ρ
∇ · τ + f, (2)

where v is the velocity field, ρ the density, P the pressure, f

are external forces and τ the viscosity coefficient. We can

ignore the mass conservation if we assume that the number

of particles in constant. Finally end with this expression:

ai =−
1

ρi

∇Pi+
1

ρi

∇ . τi+ fi = f
pressure
i + f stressi + f externali ,

(3)

where ai is the acceleration of a particle, f
pressure
i is the

pressure force, f stressi is the deviatoric stress (viscosity)

and f externali is the sum of external forces (e.g. gravity,

boundaries). The remaining equations are derivable from

previous equations or they can be found in [13, 11].

3.2 Discretization

The SPH can be used for any kind of fluid simulation.

This is an interpolation method for the particle systems.

In this method, the field quantities are only defined at dis-

crete particle locations and can be evaluated anywhere in

the space. For this purpose, the SPH distributes the prop-

erty quantities in the neighbourhood of any particle using

the smoothing kernel. In the SPH, a scalar quantity is in-

terpolated at a specific location by a weighted sum of the

contributions from all particles:

Ai (ri) = ∑
j

m j

A j

ρ j

W
(

ri− rj,h
)

, (4)

where j iterates over all particles, m j is the mass of the

particle, A j is the scalar property, r j is the position and h

is the radius of the smoothing kernel.

Figure 1: Lagrange particle-based fluid structure in 2D.

The particles are represented by the dots. The circles rep-

resent the volume of each particle.

The function W (r,h) is called the smoothing ker-

nel with the core radius h. The W must be even

(W (r,h) =W (−r,h)) and have finite support. If the W

is even and normalized, the interpolation is of second or-

der accuracy. The kernel is normalized if the following is

true:
∫

W (r)dr= 1. (5)

Each particle i represents a certain volume Vi =
mi
ρi
;

this means they have mass and density. The mass mi of

each particle i is constant throughout the full simulation

process. The density ρi needs to be evaluated at every

timestep. With the substitution we get the following equa-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: The smoothing distance h and the surrounding

particles within it.

tion for the density at a given position r:

ρi (r) = ∑
j

m jW
(

ri− rj,h
)

(6)

In the SPH, the derivatives of the field need not to be

evaluated. These derivatives only affect the smoothing

kernels. The gradient of A is:

∇Ai (ri) = ∑
j

m j

A j

ρ j

∇W
(

ri− rj,h
)

, (7)

while the laplacian of A is given by:

∇2Ai (ri) = ∑
j

m j

A j

ρ j

∇2W
(

ri− rj,h
)

. (8)

The main problem of the SPH is that to derive the fluid

equation it is not guaranteed to satisfy all the physical prin-

ciples such as symmetry of the forces and conservation

of the momentum. The problems are solved via different

types of smoothing kernels [13], which are discussed in

the next chapters, see Fig. 3, 4, and 5.

3.3 Pressure

The applications of the SPH rule described in Eq. (1)

yields:

f
pressure
i =−∇p(ri) =−∑

j

p j

ρ j

∇W
(

ri− rj,h
)

(9)

As we mentioned in the previous subsection the force

would not be symmetric. It can be seen simply when only

two particles interact. The first particle i only uses the

pressure at particle j to compute its pressure force. Since

the pressures at the location of the two particles are not

equal in general, the pressure forces will not be symmet-

ric between them. Newton’s 2nd law states that, to every

action there is always an equal and opposite reaction: or

the forces of two bodies on each other are always equal

and are directed in opposite directions. There are differ-

ent types of solutions for this symmetrization problem in

the literature. Gross, Müller and Charypar [12] described

a simple and fast solution of this problem:

f
pressure
i =−∑

j

pi+ p j

2ρ j

∇W
(

ri− rj,h
)

. (10)

Now the pressure force is symmetric because this equation

uses the aritmethic mean of the pressures of the interating

particles.

At first, the pressure need to be evaluated, which is done

in two steps. The first is density computation from Eq. (6).

Then the pressure can be computed via the ideal gas state

equation:

p= kρ , (11)

where k is the ideal gas constant that depends on the tem-

perature. Desbrun and Gascuel [10] suggest a modified

version of the pressure computation:

p= k (ρ −ρ0) , (12)

where ρ0 is the rest density. This modification does not

affect the pressure forces matematically. However, this

makes the simulation numerically more stable, because it

has influence only on the gradient field smoothed by the

SPH.

3.4 Viscosity

In the SPH, the viscosity yields:

f
viscosity
i = µ ∑

j

m j

v j

ρ j

∇2W
(

ri− rj,h
)

, (13)

where µ is the specific viscosity constant for the fluid.

The viscosity force is asymmetric, too. Since the viscosity

forces are only dependent on the velocity differences and

not on the absolute velocities, the solution of this prob-

lem is simple. It can be easily symmetrized by using the

velocity differences:

f
viscosity
i = µ ∑

j

m j

v j−vi

ρ j

∇2W
(

ri− rj,h
)

(14)

The particle is accelerated in the direction of the relative

speed of its environment.

3.5 Smoothing Kernels

The smoothing kernels used in the interpolations have a

great influence on speed, stability and physical plausibility

of the simulation and should be chosen wisely. Choosing

a good smoothing kernel can be important for several as-

pects of the simulation. The numerical accuracy is highly

dependent on the smoothing kernel and the research has

shown that certain kernels offer better results than oth-

ers [1]. The SPH uses different kernels for each calcula-

tion. Even though the Gaussian kernel has very nice math-

ematical properties, it is not always the best kernel to use.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Smoothing kernel Wpoly6 from [12]. The thick

lines show the kernels, the thin lines their gradients in

the direction towards the center and the dashed lines the

Laplacian.

It does not have compact support, and requires the eval-

uation of computally expensive exponential function. In-

stead of that, the 6th degree polynomial kernel can be used,

which was suggested in [12] for density computation:

Wpoly6 (r,h) =
315

64πh9

(

h2−|r|2
)3

(15)

An important feature of this kernel is that r appears only in

the squared form and can be evaluated without computing

square root in the distance calculations.

Figure 4: Smoothing kernel Wspiky from [12]. The thick

lines show the kernels, the thin lines their gradients in

the direction towards the center and the dashed lines the

Laplacian.

The gradient from the pressure field is used in the cal-

culation of the pressure force. For our pressure force eval-

uations between the particles we employ the spiky ker-

nel [12] as our pressure kernel, which yields:

Wspiky (r,h) =
15

πh6
(h−|r|)3 , (16)

which generates the necessary repulsion forces.

Figure 5: Smoothing kernelWvis from [12]. The thick lines

show the kernels, the thin lines their gradients in the direc-

tion towards the center and the dashed lines the Laplacian.

The viscosity of a fluid is a phenomenon which is

caused by the internal friction force between the particles.

It decreases the kinetic energy by converting it into heat.

This means that this force gives stability and smoothing

effect on the velocity field in fluids. The SPH variant at

the viscosity force term is:

Wvis (r,h) =
15

2πh3

(

−
|r|3

2h3
+

|r|2

h2
+

h

2 |r|
−1

)

(17)

The Laplacian of the smoothing kernel in Eq. (17) is con-

strained to be positive. This is required because the forces

due to viscosity to can increase the relative velocity, and

thereby introduce energy and instability into the system.

How to derive the remaining equation from the previ-

ous like the gradient and the laplacian of the smoothing

kernels, are discussed in [11, 16].

4 Surface Tracking and Visualization

An important part of the simulation process is rendering

and visualization its results. The choice of the rendering

method depends on many aspects. Two main types exist:

online (real-time) and offline rendering. Offline methods

provide more plausible results, but the computations take

longer time. In this case, a video is created from the ren-

dered frames. The biggest disadvantage is that the user

loses the interaction with the simulation system.

4.1 Point Sprites

Rendering particles with the point sprites method is an

easy, simple and fast solution comparing to the other ren-

dering methods, like the marching cubes or raycasting

method. The implementation is done in the GPU’s frag-

ment shader. Each particle is rendered as a square shaped

formation. The size of this square is dependent on the dis-

tance between the particle and the camera. In the frag-

ment shader, the pixels outside the computed radius are

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

discarded. Pixels that are not discarded are shaded to cre-

ate the fake 3D ball effect, see Fig. 12.

4.2 Marching Cubes

Marching cubes is a method for extraction of isosurfaces in

volumetric data. The method is based on the triangulation

of the isosurface. The volume is sampled by a marching

cube, which is traversing the volume. At each position the

corners of the cube are tested, whether they are above or

below the isosurface. By the configuration of the corners,

triagles are generated to cover the surface.

This method highly depends on the resolution of the

sampling grid, see Fig. 6. To eliminate the sharp edges,

tessellation can be used. The algorithm is easily paralelliz-

able; this means that, to speed up the rendering of the iso-

surface the GPU is used. The disadvantage of this method

is the need of the additional normal interpolation for better

shaded results.

5 Implementation

The aim of this work was to experiment with the meth-

ods described in the previous chapter and implement them

running in realtime on the GPU. Next, the implementation

details of simulation and rendering are described.

5.1 Uniform Grid

The uniform grid is used to track and search for the ad-

jacent particles in the grid cells while evaluating the field

quantities with the smoothing kernels. The implementa-

tion of this structure is inspired by the work of Green [17].

The space is divided into uniformly sized cells. A particle

is assigned to a cell by its position. The minimal possible

size of a cell can not be smaller than the size of the parti-

cles. A particle can potentially overlap several grid cells,

which means that when procesing the quantities, the parti-

cles in the neighbouring cells must also be examined. The

Figure 7: Particle mapping in uniform grid from [17].

assigned cell of a particle is known by its actual position,

so the neighbour cells can be found, too. Each cell has its

unique hash code and each particle has its unique index.

Two arrays are needed: the first one contains indices of

the particles and the second one contains the hash codes

of the containing cells of the particles. In the next step,

the two arrays are sorted using the array which contains

the hash codes, as the key for sorting. This process is il-

lustrated by figure 8. As seen in the figure, the cell with

the hash code 1 contains two particles with indices 1 and

3. Finally an iteration is needed over the hash array to find

the start and end positions of the cells and store them in an

extra array.

Figure 8: Sorting of particle indexes and hash codes.

5.2 Simulation

The simulation part has three main steps. The first step is

density and pressure evaluation. This step is sped up by

the precalculad parts of the smoothing kernels. Each ker-

nel has a constant part without the variable vector r. The

size of the vector represents the distance between the two

examined particles. The precalculated values are stored in

the constant memory of the GPU. This solution results in

an extremly fast access to the values and saves computa-

tional time.

In the second step, the internal forces are evaluated, like

the pressure force and the viscosity force. The details of

the computations are described in the previous sections.

The last step is the integration of the velocity and further

position update. At each integration step, the new veloc-

ities are computed. The velocity depends on the internal

(presurre, viscosity) and external forces (computed from

the particle–boundary interactions). The new position is

computed from the previous position and the actual veloc-

ity. To intergrate the velocity, the Leapfrog intergration [2]

is used. The name of this integrator is a result of the above

formulation of it; the velocities ”leap over” the positions.

The Leapfrog integration is a simple method to numeri-

cally integrate the differential equations. This method is a

fairly good compromise between the naive Euler method

and more advanced methods that require more than a sin-

gle evaluation for each force. The default scheme can also

be formulated in a form where all quantities are defined at

discrete times only:

xi+1 = xi+ vidt+
ai

2
dt (18)

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 6: This figure shows the dependence of the maching cubes method on the resolution of the sampling grid from [14].

The higher grid resolution allows courser or finer approximation of the isosurface.

Figure 9: The leapfrog integrator.

vi+1 = vi+
ai+ai+1

2
dt. (19)

5.3 Rendering

As we mentioned in section 4, two rendering methods

were used in this work. A simpler of them is the point

sprites method. This solution is computed in the GPU’s

fragment shader.

The second is the marching cubes method [14]. Com-

paring to the point sprites method, it can not be rendered

direcly using the particle positions. The marching cubes

method is based on the triangulation of the fluid surface.

The efficient implementation of the algorithm is done by

the lookup tables. Edges and corners of the cube are num-

bered. An 8-bit vector is used to store the configuration

of the cube. Each corner has a unique number which is

used as an index into the bit vector. If the corner is below

the iso–value, than the nth bit (where n is the unique num-

ber of the corner) is set to 0, or to 1 when it is above the

iso–value.

The lookup tables are in size of 256, because of the pos-

sible configurations (28). Three types of lookup tables are

used. The first contains 12-bit vectors. These vectors are

similar to the configuration vector of the cube, but this

vector stores the intersected edges for the specified con-

figuration. The next table contains the number of required

triangles for the configurations. The third and last table

contains the unique numbers of intersected edges for the

required triagles.

The first step is to evaluate the occupied voxels and

compute the number of the required triangles for each

voxel. The following step is to count the number of the

required triangles to cover the whole surface. It follows

the allocation of the vertex buffer for the vertices of the

triagles. In the final step the normals are interpolated. It is

very important for the additional tessellation. The tessel-

lation is used to get smoother surface. The details could

be also improved by using a higher resolution grid.

6 Results

By using the GPU, the SPH method, and the marching

cubes method, the goal of this work was achieved. The

SPH method is running in real-time with 60000 particles

when no rendering method is used. When using lower grid

resolutions, there is a performace drop compared to higher

resolutions, see tables 1, 2, 3, and 4. This effect is caused

by the high density of particles in the cells. Per cell com-

putations take longer time, because of the higher particle

count. The test results of the implemented simulation and

the rendering methods are summarized in tables 1, 2, 3,

and 4.

Figure 10: Fluid rendered with the marching cubes

method.

When using the marching cubes and/or the tessellation

there is a performace drop at higher grid resolutions, see

the test results.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 11: The fluid motion is simulated by 15,000 fluid particles with marching cubes rendering.

Number of particles: 15000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 6 5 4

MC 2 5 12

NI 8 11 15

Sum 16 21 31

Table 1: The benchmark shows the results measured in

milliseconds at different grid resolutions. SIM is the simu-

lation,MC is the Marching cubes rendering, and NI stands

for the normal interpolation. In each table, the upper row

contains the number of particles used in the benchmark.

Number of particles: 30000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 19 13 9

MC 2 5 12

NI 9 12 18

Sum 30 30 39

Table 2: Benchmark results for 30,000 particles.

The algorithms are implemented in the C++ program-

ming language. The sourcecodes for the GPU were imple-

mented for the CUDA runtime API 4.0. The API allows

high abstraction level and provides fine support for pro-

gramming the GPU. The final program was tested on the

NVidia GeForce 540M graphics card, with 96 cores.

7 Conclusions and Future Work

The SPH method is a very realistic and fast appoximation

of the real world fluids, but it has some limitations. One of

these limitations is the need of large number of particles

for the simulation to get realistic results.

Many experiments were made in this work to speed

Number of particles: 45000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 31 22 18

MC 3 5 13

NI 9 12 20

Sum 43 39 51

Table 3: Benchmark results for 45,000 particles.

Number of particles: 60000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 45 32 24

MC 3 5 13

NI 10 13 30

Sum 58 60 67

Table 4: Benchmark results for 60,000 particles.

up the SPH and its rendering methods. The uniform

grid helps the access to adjacent particles. This structure

speeds up the simulation, but it needs additional computa-

tions, which can be better optimized, like the radix sorting

of its arrays.

In the future more experiments can be done to speed up

the searching and sorting the particles. The additional sur-

face tension computation can improve the surface details

of the fluid and make it more realistic. Other experiments

can be done to improve the existing algorithms of ren-

dering, e.g. extract a better approximation of the surface

with marching cubes or implement the raycasting method,

which provides much more plausible results.

References

[1] A. J. C. Crespo. Application of the Smoothed Particle

Hydrodynamics model SPHysics to free-surface hy-

drodynamics. PhD thesis, University of Vigo, 2008.

[2] D. H. Eberly. Game Physics. Elsevier Science Inc.,

2003.

[3] G. K. Batchelor. An Introduction to Fluid Dynamics.

Cambridge University Press, 1967.

[4] R.A. Granger. Fluid Mechanics. Courier Dover Pub-

lications, 1995. ISBN 0486683567.

[5] M. J. Harris. Fast fluid dynamics simulations on the

gpu. In In GPU Gems, Programming Techniques,

Tips, and Tricks for Real-Time Graphics. Addision-

Wesley, 2004.

[6] J. J. Monaghan. Smoothed Particle Hydrodynamics.

Reports on Progress of Physics, 68:8, 2005.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 12: The fluid motion is simulated by 15,000 fluid particles with point sprites rendering. Colors indicate the velocity

field of particles, red is high and blue is the low.

[7] R. Westermann J. Krüger. Acceleration techniques

for gpu-based volume rendering. In Proceedings of

the 14th IEEE Visualization, 2003.

[8] K. Erleben, J. Sporring, K. Henriksen, H. Dohlmann.

Physics Based Animation. Charles River Media,

2005.

[9] L. B. Lucy. A numerical approach to the testing

of the fission hypothesis. Astronomical Journal,

82:1013–1024, 1977.

[10] M. Desbrun, M. Gascuel. Smoothed particles: A

new paradigm for animating highly deformable bod-

ies. Eurographics Workshop on Computer Animation

and Simulation (EGCAS), pages 61–76, 1996.

[11] M. Kelager. Lagrangian Fluid Dynamics Using

Smoothed Particle Hydrodynamics, 2006.

[12] M. Gross M. Müller, D. Charypar. Particle-based

fluid simulation for interactive applications. In Pro-

ceedings of 2003 ACM SIGGRAPH Symposium on

Computer Animation, 2003.

[13] O. E. Krog. GPU-based Real-Time Snow Avalanche

Simulations. PhD thesis, Norwegian University of

Science and Technology, 2010.

[14] P. Bourke. Polygonising a scalar field [online].

http://paulbourke.net/geometry/

polygonise/, 1994.

[15] J. J. Monaghan R. A. Gingold. Smoothed parti-

cle hydrodynamics: theory and application to non-

spherical stars. Royal Astronomical Society, Monthly

Notices, 181:375–389, 1977.

[16] S. Auer. Realtime particle-based fluid simulation.

PhD thesis, Technische Universität München, 2009.

[17] S. Green. Particle Simulation using CUDA [online].

NVidia Corporation, 2010.

[18] V. Springel. Smoothed particle hydrodynamics in as-

trophysics. Annual Review of Astronomy and Astro-

physics, 48:391–430, 2010.

[19] J. Stam. Stable fluids. In Proceedings of the 26th

annual conference on Computer graphics and inter-

active techniques, 1999.

[20] Y. Uralsky. Practical metaballs and implicit surfaces.

In Game Developers Conference 2006 Presentation,

2006.

[21] H. E. Cline W. E. Lorensen. Marching cubes: A

high resolution 3d surface construction algorithm. In

SIGGRAPH ’87 Proceedings of the 14th annual con-

ference on Computer graphics and interactive tech-

niques, 1987.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

