
Gaze-dependent Ambient Occlusion

Sebastian Janus∗

Supervised by: Radosław Mantiuk†

Faculty of Computer Science
West-Pomeranian University of Technology

Szczecin / Poland

Abstract

Ambient Occlusion is a method of creating shades on the
scene, due to occlusion. It is a good looking approxima-
tion of the light radiation, however it is very expensive
method. It needs a large number of samples to get fair ef-
fects. In this article we propose a speed increase of the
AO rendering, by using the eye tracker. Human cannot see
high frequency details in parafoveal, and we can render
this area with less accuracy. We decrease the number of
AO samples with distance from the observer gaze point.
The absence of AO shading in parafoveal is being rarely
noticed and reducing the samples gives us considerable
rendering speed boost.

Keywords: Ambient Occlusion, Eye tracking, Modern
computer graphics

1 Introduction

Ambient Occlusion (AO) is a shading algorithm, which
adds a reality to the rendered scene. It approximate how
the given point is occluded by other objects (surfaces).
However, it is fair complex and still it is hard to achieve a
real time AO performance on the nowadays GPUs. In this
work we provide a solution that speeds-up the AO render-
ing without significant decrease of the quality of the final
image.

We present a concept of rendering ambient occlusion
self-shadows affected by the information about the hu-
mans’ viewing direction and its limited region of interest
(ROI). Therefore, if we knew the point on which observer
has focus, we could render this point surroundings with
maximum precision and further regions with minor qual-
ity. We use the gaze-dependent Contrast Sensitivity Func-
tion to alter the influence of the AO factor and to model
decrease of rendering quality.

During experimental evaluation we evaluate whether the
humans are capable of seeing the difference of the render-
ing quality outside the ROI.

To achieve the interactive rendering, we base our AO

∗sebastian.janus@o2.pl
†rmantiuk@wi.zut.edu.pl

implementation on nVidia OptiX1 library, which operates
on CUDA2 for the supreme speed of the complicated cal-
culations. It computes ambient occlusion factors with dif-
ferential accuracy, depending on the location of human
gaze point captured by the eye tracker.

In Section 2 we describe the Ambient Occlusion algo-
rithm and discuss why the full Ambient Occlusion method
has been chosen instead of cheaper approximated meth-
ods. Then in Section 3 we present our concept of the gaze-
dependent ambient occlusion rendering. In Section 4 we
describe the implementation. The results are discussed in
Section 5, followed by conclusions and future work in Sec-
tion 6.

2 Background

Ambient occlusion is a shading model which is used to
increase scene realism in rendering systems based on the
local illumination models. It requires much less computa-
tion in comparison to the full global illumination solutions,
however it still needs demanding resources to achieve high
quality renderings.

2.1 Ambient Occlusion

In Phong reflection model, diffuse and specular reflections
are varying due to observer and lights position, but ambi-
ent reflections are constant. Having these assumptions we
miss the self shadows of the rendered objects - which is
a big lack of reality. Adding Ambient Occlusion [2] al-
gorithm for computing the ambient reflections factor cre-
ates very convincing soft shadows, which combined with
indirect lighting gives realistic results. The model does
not look flat - what often is happening with indirect light-
ing and multiple light sources. The result looks similar to
Global Illumination and it is possible to say that it simu-
lates it. Good point is, it is of course less complex than full
global illumination [1].

This method is an integration of visibility, computed
from each pixel on the rendering screen. This integration
is solved by Monte Carlo method, where we achieve the

1See: http://www.nvidia.com/object/optix.html
2See: http://www.nvidia.com/object/cuda home new.html

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



result by casting very large number of samples - counted
in hundreds. Sample rays are traced from every point into
random directions on the hemisphere:

ka =
1
π

∫
Ω

Vp(~ω)(N ·~ω)dω, (1)

where ka denotes the occlusion factor. V stands for the
binary visibility function from the certain point p, which
returns positive values when ray does not intersect any ge-
ometry until reaching some given distance (for the purpose
of ray tracing in closed scenes), and a negative value when
traced ray hits any object. p and its normal vector N define
the surrounding hemisphere Ω [5].

The ka factor is used in the Phong’s reflection equation:

Ip = kaia+ ∑
m ∈ lights

(kd(L̂m · N̂)im,d +ks(R̂m ·V̂ )α im,s), (2)

where id and is are defined as the intensities of the current
light source, ia is a constant value or a sum of ambient
light of all light sources, kd is a diffuse reflection constant
(lambertian reflectance, depending on the angle between
the direction L̂m toward current light source and the surface
normal vector N̂), and ks is a specular reflection constant
with R̂m being a light perfectly reflected ray.

The calculation of the ambient occlusion factor is de-
picted by the Algorithm 1.

Algorithm 1 Ambient occlusion algorithm
for i := 1→ screenWidth do

i← i+1
for j := 1→ screenHeight do

j← j+1
{Calculate ambient occlusion for every pixel}
occlusion:=0;
for k := 1→ aoRaysNumber do

k← k+1
{Cast rays in a random directions from the fol-
lowing pixel};
occlusion+= castAoRay(randomDirection)
{ castAoRay returns 1 if it hits something}

end for
occlusion = occlusion/aoRaysNumber
{ Calculate the ambient occlusion factor. }

end for
end for

2.2 ScreenSpace Ambient Occlusion

The idea of the Screen-Space Ambient Occlusion (SSAO)
was proposed by Crytek game studio in their Crysis game
as the fast alternative of the standard ambient occlusion
technique [4]. SSAO works in real time, although renders
effects of lower quality. The idea lies on using Z-buffer
data to compute visibility function for every pixel. It takes
a pixel surrounding points and analysis their Z value [4].

However, this method has some important disadvan-
tages, starting with self-occlusions. SSAO samples are
taken from the inside of a sphere around each pixel -
in non-occluded surfaces almost 50% comparisons return
’occluded’ result. This causes haloing around the objects
- where the self-occlusion effect disappears. These halos
are visible around the boxes in Figure 1. There are various
improvements to the original SSAO algorithms trying to
fix that haloing, but they are not universal - they simply do
not work for all cases.

Figure 1: Inaccuracy of the SSAO algorithm may cause
black and white halos on the screen [6].

This method is not precise because of the small samples
number and the idea of the algorithm - it produces some
noise [9]. Moreover, the only objects taken into the consid-
eration are the visible ones. Everything outside the frus-
tum is not interfering with rendered scene. Performance is
also depending on the scene - closer objects will require
larger radius of sampling.

All these cons made us to the decision for favouring the
standard ambient occlusion technique. The main problem
is that it requires a lot of computations - for every pixel
one should trace hundreds of rays to make satisfactory re-
sults. For example for 1680x1050 image resolution and
500 AO factor test rays, the AO algorithm requires tracing
of 882 million rays to render one frame. For the full HD
(1920x1080) and increased quality to 1000 rays, the sum
rises to 2,037 millions what makes the AO not possible
to render in real time based on the contemporary graphics
systems.

3 Gaze-dependent rendering of Am-
bient Occlusion

Gaze-dependent ambient occlusion is a solution of provid-
ing a full detailed ambient occlusion effect in a certain re-
gion of interest. The further from the gaze point, the less
detailed ambient factor is rendered, saving the computing
time and leaving observer with a feeling that the scene is
fully detailed.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



3.1 Rendering system

The main goal of this work is to track observers gaze, and
to use information about the gaze direction to render para-
foveal parts of the screen with less quality. The outline of
the gaze-dependent ambient occlusion system is presented
in Figure 2.

Figure 2: Gaze-dependent ambient occlusion rendering
system.

The input data is a 3D scene defined by *.obj file. We
have also an observer, whose eyes are tracked. From the
eye tracker library we receive the actual gaze points, which
are used to calculate the ROI shape and position. Then we
have the main lighting renderer, calculating final colour
from the Phong lighting equation, and AO renderer, calcu-
lating the ambient factor with use of the gaze-dependent
ambient occlusion algorithm. Finally, we blend these two
ambient factors depending on the distance from the centre
of the ROI and we display it.

3.2 Region of interest sampling

Changing the rendering scene by modifying the ambient
occlusion factor is rather subtle and it is treated as high
frequency information. Therefore, we can use a gaze de-
pendent Contrast Sensitivity Function (CSF) for a function
describing how the human eye treats contrast changes in a
given distance from a gaze point [15].

We will use drop-off of visual sensitivity across the vi-
sual field, for modelling the AO accuracy. We decrease
ambient occlusion for the constant ambient factor in light-
ing equation while we increase the distance from the ROI

Figure 3: Gaze-dependent ambient occlusion without
blending (visible noise).

centre. In the meantime, we decrease the number of the
AO sampling rays. We do not need high accuracy, when
the impact of this factor is getting more and more incon-
siderable [3].

In addition, with CSF we avoid visible noise (see Fig-
ure 3), which is adverse for the observer. It is noticeable
even in the parafoveal vision and it generates temporal
aliasing. The noise is produced by the ambient occlusion
when we use small samples number. In our work, that
noisy result is hidden by blending with the normal light-
ing equation ambient factor.

The precision downfall is given by the contrast sensitiv-
ity function:

Ct(E, f ) =Ct(0, f )∗ exp(k f E), (3)

where Ct denotes contrast sensitivity for spatial fre-
quency f at an eccentricity E, k determines how fast sen-
sitivity drops off with eccentricity (the k value is ranged
from 0.030 to 0.057). Based on the above equation, the
cut-off spatial frequency fc can be modelled as:

fc = min(max display cpd,43.1∗E2/(E2 +E)), (4)

with E2 = 3.118, which is retinal eccentricity at which
the spatial frequency cut-off drops to half its foveal max-
imum (from 43.1 cpd to 21.55 cpd, see details in [16]).
In this equation we flatten the contrast sensitivity with
min(max display cpd, ...) operator to take into considera-
tion the limited resolution of our display (see Section 5.1).
That flattening is represented on the Figure 4 as a magenta
line.

The plot of the contrast sensitivity function is presented
on the Figure 4. As we can see, it is quickly decreasing
and then staying around some low level. On the Figure 5
we can see a region of interest mask preview. The lighter
areas mean that AO is computed with maximum precision,
the darker areas mean lower precision. Blending factors
of AO ambient and ambient from Phong lighting equation

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



have the same distribution - the lighter areas means higher
weight of the AO ambient factor.

0 200 400 600 800 1000 1200 1400 1600 1800
0
5

10
15
20
25
30
35
40
45

eccentricity [screen pixels]

fre
qu

en
cy

 [c
pd

]

Gaze dependent Contrast Sensitivity Function

Figure 4: Gaze-dependent Contrast Sensitivity Function.
The magenta line denotes threshold frequency of the dis-
play used in the experiments.

Figure 5: ROI based on Contrast Sensitivity Function pre-
view.

3.3 Eye tracker fixations

Eye trackers capture two types of eye movement called
saccades and smooth pursuit. A smooth pursuit is active
when eyes track moving target and are capable of match-
ing its velocity. A saccade represents a rapid eye move-
ment used to reposition the fovea to a new location, which
lasts from 10 ms to 100 ms [12]. The main goal of the gaze
tracking is to capture a single location an observer intents
to look at. This process is known as a visual fixation. A
point of fixation can be estimated as a location where sac-
cades remain stable in space and time [13]. We approxi-
mate this mechanism by averaging a number of raw gaze
points. There are many fixation algorithms which are try-
ing to provide a gaze point from these samples, however
they are complicated and none of them had worked bet-
ter for our solution, where we expect a stable results, than
simple average of points [14].

Additional stabilisation of the gaze position is achieved
by rendering delay. There are about 5-10 frames per sec-
ond rendered, and we take gaze points array once before
rendering new frame. It means that we are averaging gaze
samples from about 100-200 ms period, which effects with
a lot of samples and in the outcome the mean value is not
affected by few different samples. In that case it is a fair
advantage.

Human field of view for one eye is about 130◦ in hor-
izontal plane and about 120◦ in vertical plane. What is
more, the second eye is extending the horizontal plane
to about 200◦. The binocular field of view then is about
60◦ [10]. Assuming that, for human angle of view the ra-
tio between horizontal and vertical planes is like 1.538 : 1.
That is why our region of interest shape would not be
a simple circle, but a widened ellipse (to take advantage
from the differing field sizes). This would not work if we
will look with single eye, but for binocular gaze it will
work perfect.

4 Implementation

In this section we provide a description of our implemen-
tation of the gaze-dependent AO system, proceeded by a
short introduction to the OptiX library. Our application is
based on the AO sample from the OptiX SDK package.
We extended this sample to the gaze-dependent technique
supported by the eye tracker library.

4.1 OptiX

Our software is implemented using OptiX engine [11].
It is developed by nVidia and it is described as pro-
grammable ray tracing framework, which can be used to
rapidly build ray tracing applications. Computing speed
of application based on that engine gives fast results across
nVidia GPUs with conventional C or C++ programming.

OptiX is helpful in detecting collisions, calculating
sound volume, radiation research, and other rendering pur-
poses. Developers can write their own single ray pro-
grams. These programs are divided into few categories:
closest hit, any hit, intersection, selection, ray generation,
miss and exception programs. Using an ensemble of these
programs gives us a rendering algorithm. Shading lan-
guage is based on C/C++ for CUDA, with all its features
like pointers, templates, and overloading. One is encour-
aged to use object model as well.

4.2 Ambient occlusion based on OptiX

Ambient occlusion based on OptiX is divided into a host
program (written in C++), and a few GPU shaders pro-
grams:

• Ray generation program - responsible for proper gen-
eration of the rays from the viewer towards the scene.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Whenever the camera has moved, different rays are
generated.

• Closest hit program - responsible for calculating
lighting radiance. This is main shader used for trac-
ing rays from the viewer - it looks for intersections
with scene objects, and if it finds any it starts comput-
ing the colour basing on the Phong lighting equation
and our gaze-dependent AO.

• Any hit program - responsible for calculating any hit
occlusion. It is used for tracing rays from the inter-
section points (pointed by the rays which are calcu-
lating radiance). We can call them secondary rays,
which are cast in a big number to obtain the ratio for
hit/miss rays - it gives us the ambient occlusion fac-
tor.

• Miss program - responsible for determining the back-
ground colour - it is used when our primary rays do
not hit anything.

• Exception program - responsible for exceptions -
used in case we get incorrect value of lighting.

Apart from the host program which is responsible for all
the input/output, communication with user and setting (or
changing) the parameters of the GPU programs, the main
code is in the closest hit program. There we are calculating
the number of the ambient occlusion rays to be cast, there
we cast these rays, and there we finally calculate the colour
of each pixel.

As it was said before our application is based on a am-
bient occlusion sample. The main differences instead of
main host program (another scene, controls and so on) are
in the closest hit shader. We had to provide ROI compu-
tation based on contrast sensitivity function, which gives
us varying ambient occlusion rays number. Because of
that information which pixel are we computing at the mo-
ment was significant. Then we had to implement blending
the AO ambient factor and Phong lighting equation ambi-
ent factor, and there comes gaze-dependent ambient occlu-
sion.

4.3 EyeTracker library

We use the ETlib library for the purpose of tracking ob-
servers’ gaze direction. This software is responsible for
managing communication between the eye tracker soft-
ware (which runs on another computer) and our applica-
tion. The eye tracking session starts with the calibration -
observer looks at on given point on the screen. The process
is finished after registration of 5 points. Precise calibration
is extremely important because it affects further accuracy
of captured data [7, 8].

Using ETlib we can receive last gaze point (which is not
stable - unfortunately, human eye is moving many times in
a very short period) or a set of gaze points since the last
request. We use the second approach, and with an array

of points we make an average point - then we proceed this
point as a variable which will be used then by the GPU
programs.

5 Experimental evaluation

Our objective is to present, that we can minimise the am-
bient occlusion sampling in parafoveal. What is more it
gives us a performance boost. We present a images for
different ROI position, and analyse rendering times.

5.1 Stimuli and hardware setup

The scene presents the fixed Stanford Dragon Model3, en-
closed in the 5 walls box. The scene consist of 50,008 ver-
tices and 100,005 faces, and gives us good performance
test object. We render this scene with full frame ambient
occlusion to obtain an ideal image, or we render it with use
of ROI (controlled by eye tracker) using gaze-dependent
AO.

In our experiment, we used the SMI RED250 eye
tracker, which gives us refresh rate 250 Hz and accuracy
0.5◦. The computer is equipped with 2.8 GHz Intel i7 930
CPU with 8 GB of RAM, Windows 7 64bit OS, and a
GPU nVidia GeForce 480 GTI 512MB - one of the fastest
nVidia graphic cards. The hardware setup is presented in
Figure 6.

Figure 6: Apparatus used during evaluation and experi-
ments. The RED250 eye tracker is located under the dis-
play screen.

The lab display is 22 inch Dell, with the 1680x1050 res-
olution (60 Hz). It is measuring 47.5 cm wide and 30 cm
high, what gives 43◦ horizontal, and 28◦ vertical. With
the screen resolution 1680x1050 that gives 40 pixels for
one degree, which is about 20 cpd. That is our maximum,

3http://www.mrbluesummers.com/3572/downloads/stanford-dragon-
model

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



which is marked as max display cpd in Equation 4 and as
a magenta line in Figure 4.

Eye tracker is connected to the remote computer. We
launch it using remote desktop, and the ETlib (See subsec-
tion 4.3) gives as the array of gaze points since last call.

5.2 Results

Quality of rendering

An example rendering with the full frame ambient occlu-
sion is presented in the Figure 7. We consider the full
frame rendering with 400 AO rays per pixel as image in
all quality comparisons.

Figure 7: Ideal, reference image with full frame ambient
occlusion

In Figure 8 one can see images rendered with gaze-
dependent ambient occlusion for various locations of the
ROI. Please, notice that shading caused by the AO factor
is stronger in the centre of the ROI and weakens with the
distance.

On the upper image in Figure 8 there is visible AO effect
in the upper corner of the box, and there is no shadow
below the dragon model. On the image where the position
of the ROI is on the dragon these shadow is visible very
well, and there are little shadow on the wall behind the
dragon. There are no shadows on the higher corners at all.

During the pilot study with the eye tracker, we assessed
the quality of the AO shadows as a very good in compari-
son to the reference image. The contrast sensitivity func-
tion was doing well, and smaller shades in a greater dis-
tance from a centre of ROI were rarely noticeable.

Rendering time

To compare timings for the full frame AO and the gaze-
dependent AO we measure the speed of rendering for three
different camera settings (called as Camera 1, 2, and 3, see
Figure 9).

We achieved 1.26 fps, 0.96 fps, and 0.62 fps for Cam-
era 1, 2, and 3 respectively for the resolution of 840x525

Figure 8: Image rendered with gaze-dependent ambient
occlusion. The red X points the centre of the ROI.

pixels and 400 AO rays (the resolution was reduced for
performance reasons).

The same images was rendered using eye tracker and
the gaze-dependent AO rendering technique. The ren-
dering speed depends on location of the ROI. There are
more computations (e.g. intersection tests) in regions of
the scene with more triangles so AO rendering time in-
creases. However, the overall rendering time using the
gaze-dependent technique is shorter in comparison with
the full screen AO, even by 276% in the best case (see
Table 1).

Generally, the results show significant performance in-
crease in a regions of a small triangles number (box walls
all around the screen). Worse outcome is when we take
the hardest to compute environment - middle of the screen
(the biggest samples number) and the dragon object (high
level of the triangles - ray tracer has harder work). How-
ever, even in that worse case, we get a noticeable rendering
speed-up.

5.3 Discussion

Using gaze-dependent ambient occlusion can increase ren-
dering speed without a noticeable quality loss. Better GPU

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 9: Locations of the ROIs depicted as the red letters.

would be useful, both for rendering smooth ambient occlu-
sion and for performing study concerning rating a visibil-
ity of AO in the parafoveal area. The faster reaction time
would also improve the gaze-dependent approach in con-
text of fast eyes movement.

For the time of writing this article, we did not use the
newest graphic card (nVidia GeForce GTX 580), which
has about 20% faster memory bandwidth, texel rate and
pixel rate. Probably, using two GPUs connected with
SLI4, would give us better times. With such hardware im-
provements, we would be closer to the smooth real time
rendering and the results would be even better.

4SLI stands for Scalable Link Interface, which is the name of technol-
ogy allowing to link two or more GPUs to perform parallel processing of
a computer graphic for single output.

Table 1: Rendering speeds for gaze-dependent AO. Speed-
up is ((FPS − OriginalFPS)/OriginalFPS) ∗ 100%,
where OriginalFPS means the rendering speed of full
frame rendering.

Camera Gaze-point Rendering speed Speed-up

Setting 1

A 4.10 fps 201%
B 4.21 fps 210%
C 4.06 fps 199%
D 1.68 fps 24%
E 2.11 fps 55%

Setting 2

F 2.36 fps 146%
G 2.65 fps 176%
H 2.19 fps 128%
I 1.30 fps 35%
J 1.40 fps 46%

Setting 3

K 1.82 fps 194%
L 2.33 fps 276%
M 2.24 fps 261%
N 1.00 fps 61%
O 1.17 fps 89%

6 Conclusions and future work

Summarising, we are capable of having significant render-
ing speed increase with the Ambient Occlusion shading.
Furthermore, the result of rendering worse shaded image
in the parafoveal is being skipped by the human eye.

The impression of the gaze-dependent image is received
as a bit worse, but mainly because of not perfect eye track-
ing. Sometimes, the ROI is quickly moving which could
be uncomfortable for the viewer, especially when suddenly
the gaze point escapes from the real gaze point for one an-
imation frame. However, there is a need to perform a ex-
periments on a frequent group of people to know in which
way should we improve our approach. Anyhow, with im-
provement of the fixation algorithm we could achieve bet-
ter results. Also, with the improvement of the hardware
we will have smoother animations.

References

[1] P. Berto. Occlusion tutorial. 2007.

[2] M. Bunnell. GPU Gems 2, Chapter 14, Dynamic
Ambient Occlusion and Indirect Lighting. Addison
Wesley, 2005.

[3] J. Yang E. Peli and R. B. Goldstein. Image invariance
with changes in size: the role of peripheral contrast
thesholds. JOSA A, Vol.8, Issue 11.

[4] M. Mittring14 Crytek GmbH. Finding next gen
cryengine 2. 2007.

[5] S. Hill. Hardware accelerating art production. 2004.

[6] M. Lagergren. Ssao. 2009.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



[7] R. Mantiuk, M. Kowalik, A. Nowosielski, and
B. Bazyluk. Do-it-yourself eye tracker: Low-cost
pupil-based eye tracker for computer graphics appli-
cations. Lecture Notes in Computer Science (Proc.
of MMM 2012), 7131:115–125, 2012.

[8] R. Mantiuk, A. Tomaszewska, and B. Bazyluk.
Gaze-dependent depth-of-field effect rendering in
virtual environments. Lecture Notes in Computer
Science (Proc. of SGDA 2011), 6944:1–12, 2011.

[9] J. M. Mendez. A simple and practical approach to
ssao. 2010.

[10] M. H. Nizankowska. Podstawy okulistyki. VOL-
UMED, 1992.

[11] S. Parker. Interactive ray tracing with the nvidia optix
engine, 2009.

[12] D. A. Robinson. The mechanics of human saccadic
eye movement. Journal of Physiology, 174:245–264,
1964.

[13] D. D. Salvucci and J. H. Goldberg. Identifying fix-
ations and saccades in eye-tracking protocols. In
Proceedings of the 2000 symposium on Eye tracking
research & applications (ETRA), pages 71–78, New
York, 2000.

[14] Frederick Shic, Brian Scassellati, and Katarzyna
Chawarska. The incomplete fixation measure. In
Proceedings of the 2008 symposium on Eye track-
ing research &#38; applications, ETRA ’08, pages
111–114, New York, NY, USA, 2008. ACM.

[15] P. Wenderoth. The contrast sensitivity function.

[16] Qi X. Makous W. Yang, J. Zero frequency masking
and a model of contrast sensitivity. Vision Research.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)


