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Abstract

In this paper we address the problem of content creation
for physical simulation of soft body objects. We aim to
optimize the process of modeling deformable bodies with
complex rigid-body skeletons which can be used to vi-
sualize realistic movement and animations. Currently no
efficient or standarized asset design and implementation
method exists for this type of models. We propose re-
organization of the present segregation of duties between
designer and developer, through a new specialized data in-
terchange file format and the use of extensible open-source
designing environment Blender. Simplification of pro-
gramming work is achieved without unnecessary workload
addition for the content creator. Blender is used for object
modeling as well as for physical properties and skeleton
specification. In result a crucial part of the design work-
flow is extracted outside of the game engine’s SDK toolkit
towards independent 3D modeling tools. To evaluate the
proposed method a real-time physically-based soft-body
character animation is created using Nvidia PhysX and
OpenGL.

Keywords: deformable objects, soft body physics, con-
tent creation, Blender, rigid skeletons.

1 Introduction

When rendering real-time computer-generated 3D scenes,
the goal is often to create as realistic-looking impression
as possible. Under the term of realism we understand 3D
models which first of all look life-like, but also behave in
a physically-correct manner [4].

Different types of objects behaviour of which can be
simulated exist and their simulation requires different ap-
proaches. Examples of such objects include:

• rigid bodies - firm, not changing their shape,

• soft bodies - deformable, elastic, fluids, simulating
substances like metal, rubber or water.

Depending on the type of given model, for proper sim-
ulation of its physical behaviour different kinds of meshes

∗klubiszewska@wi.zut.edu.pl

(a) (b)

Figure 1: Soft body with its tetrahedral volumetric mesh
(a) and its counterpart rigged with a skeleton (b).

are used. For very simple rigid objects it is enough to pro-
vide just the same polygon mesh as the one used for ren-
dering purposes. For more complex objects often a sim-
plified convex hull dedicated to collision detection is sup-
plied. Soft bodies, however, require two different kinds of
meshes: one built of planar polygons for rendering pur-
poses, and the other built of tetrahedra (Figure 1a) neces-
sary for the simulation of object’s volume.

In the paper we focus on models which consist of both
soft and rigid objects (Figure 1b). These are mainly elastic
bodies built over rigid-body skeletons. Such complex way
of composing and physically simulating objects is not yet
popular in video games and real-time virtual reality appli-
cations. This situation is mainly caused by the computa-
tional cost regarding non-rigid bodies. Every soft object is
represented by a number of tetrahedra, each of which has
its own position, physical properties and constantly influ-
ences the state of every adjacent element. Computations
such as the previously described are not required when
simulating rigid bodies as their shape is invariable, so is
their volume.

Until recently it was impossible to simultaneously sim-
ulate and visualize several such objects in real time. Cur-
rently thanks to the improving processing power of mod-
ern hardware and still improving software tools such as
physics and rendering engines, we can finally simulate
real soft bodies instead of using keyframe interpolation
for smooth animation of deformations [8]. This fact intro-
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duces completely new possibilities in depicting the reality
which surrounds us.

Today even for the simplest models their description is
divided into parts. Renderable mesh data and skeleton data
are exported to a different file than the tetrahedral mesh
necessary for soft body simulation. In addition some in-
formation has to be provided manually by the designer in
descriptive documents, which are then interpreted by the
programmer. A unified, universal and open format is miss-
ing.

We propose gathering all the data using an extensible
file format to automate and optimize the content creation
process and to simplify building simulations which make
use of deformable bodies. The goal is to reduce the de-
veloper’s workload without unnecessarily increasing the
number of artist’s, designer’s and animator’s responsibili-
ties by allowing them to work with a single, well-known
software suite. Such an optimization will lead to faster,
more efficient transferring of created models from design
software to end applications. It is most important for video
games asset creation, where artist’s fantasy is one of the
key aspects leading to success.

In the next chapter we provide a short survey of exist-
ing approaches to the simulation of soft bodies, or meth-
ods which can be used in replacement. The third chapter
covers the issues related to the current workflow and pro-
poses our solution to the outlined problems. In the fourth
chapter we present implementation-related details impor-
tant when using our method. We conclude the paper with
results gathered from building a test scene containing a
soft body with a rigid skeleton and we compare it with a
sole deformable body. In the end our future goals are de-
scribed.

2 Related work

The idea of soft body simulation for computer graphics
applications was proposed in the late ’80s [15]. The first
trials were conducted with non-real-time simulations only
as real-time visualization of complex objects was far out
of the scope for that time hardware.

There are many different approaches for simulating soft
bodies. They were comprehensively surveyed in [5] and
[10]. We have chosen the method which bases on us-
ing tetrahedral lattice mesh for representing the object’s
volume. The mesh consists of finite number of elements
which thoroughly fill the modeled object’s extent [14]. Its
vertices form the topology of a mass-spring system used
for simulating the body’s interaction and self collisions
[2]. Cost of this approach can be easily scaled to suit the
needs of a particular model, scene and hardware capabil-
ities. It makes the method useful for interactive simula-
tions.

To address the calculation complexity related issues,
a keyframe-based simplification can be used. The ac-
tual deformations are calculated off-line and only cer-

tain keyframes are exported for use in real time. These
keyframes are then interpolated to resemble smooth ani-
mation [8]. This solution lacks the freedom of interaction
as the object’s reactions are limited only to a strictly de-
fined set of previously prepared possibilities. To achieve
the true real-time simulation we decided to perform on-
line calculations for the whole object’s volume instead of
using the keyframes.

However, a body which only consists of a deformable
volume is hardly controllable and classic methods for e.g.
character animation cannot be used. To solve this prob-
lem a coupling between the soft body and a rigid skeleton
can be used. The skeleton can react to applied forces and
movement induced by methods such as reverse kinemat-
ics [7]. The use of a skeleton allows us to introduce limits
for bone joints which restrict the movement that could be
recognized as unnatural depending on the object’s charac-
teristics [6, 13].

The field for soft bodies application, including those
equipped with a rigid skeleton, is very broad. Apart from
the already mentioned character animation, deformable
objects are used for modeling destruction [12] and jelly-
like entities [3] in video games. Moreover physically-
correct simulation of soft tissues is pursued by the numer-
ous virtual reality applications aimed at training medical
personnel [1, 9].

Using a soft body in real-time graphics visualization
presents many benefits:

• preserves a consistent volume - as its finite elements
influence each other,

• smooth deformations can be applied,

• is elastic - retains its previous form,

• tearing can occur - in effect it breaks the former topol-
ogy and forms two or more objects.

3 Proposed content creation work-
flow

In order to simulate a soft body together with its rigid
skeleton, appropriate input data are needed. These include
not only the renderable mesh information, but purely phys-
ical properties as well. The following are necessary:

• coordinates of polygonal mesh vertices for rendering
purposes,

• coordinates of tetrahedral mesh vertices for volume
simulation,

• coordinates of rigid body vertices,

• information on joints and their types for coupling
rigid bodies,

• limitation and spring information for joints,
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• mass (for both body types),

• friction (for both body types),

• gravity response (for both body types),

• texture coordinates for renderable soft body mesh,

• information necessary for dynamic calculation of
normal vectors.

3.1 Current content creation workflow

On the diagram (Figure 2) the problem of current work-
flow for designing soft body with rigid skeleton is pic-
tured.
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Figure 2: Current content creation workflow for designing
soft body with rigid skeleton.

It can be seen that the pipeline is a multi-stage, complex
process which can result in numerous misunderstandings
between the design and development teams.

Currently the artist who designs the 3D model creates
a mesh for both soft body and rigid skeleton. Then the
parts are exported to appropriate files. Additionally he is
responsible for creation of volumetric tetrahedral mesh in
a separate, specialized program in order to allow the defor-
mation of soft body structure. The next step is the descrip-
tion of dependencies between certain objects, the physical
properties, joints etc. to achieve the desired object rigging.

For example, an elbow exposes a naturally limited free-
dom of swinging angle and direction. The joint prevents
the bones from moving away from each other (Figure 3).
These limitations have to be applied to simulated bones
as well. And because of no popular, cross-platform solu-
tion, the risk of misunderstandings between cooperating
persons is high.

The developer receives a set of files that have to be im-
ported one-by-one in the end application. The additional
provided information has to be implemented manually, the
joints need to be set up, the physical properties and the

Figure 3: Stanford Armadillo skeleton with joint limits vi-
sualized as cones.

joint limitations need to be introduced according to the de-
signer’s description.

The current workflow requires the developer to possess
knowledge about the model which he imports. He has
to perform numerous object-dependent actions manually.
The complexity of the workflow, its time-consuming as-
pect and proneness to mistakes does not allow for efficient
use in the creation of deformable assets for real-time com-
puter graphics applications.

3.2 Solution

The diagram (Figure 4) presents our proposed content cre-
ation pipeline for designing soft body with rigid skeleton.
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Figure 4: Proposed content creation workflow for design-
ing soft body with rigid skeleton.

The main aim of the improvements is to reduce the pro-
grammer’s workload. As the diagram pictures, the most
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of the stages are now controlled by the designer. How-
ever, despite controlling the major part of the workflow,
the designer is not overwhelmed with responsibilities. He
describes the object’s properties within the same software
suite he uses for modeling. The programmer’s only re-
maining duty is to import the resulting file to make the
object available for simulation and rendering.

During the first stage the 3D artist creates meshes for
objects: deformable one related to the body silhouette and
rigid ones for the skeleton. Then he is able to create joints
between the skeleton parts and set their limits to form the
object’s rigging. Physical properties are assigned to proper
parts of the model and other rendering-related data such as
the material and texture data can be applied as in regular
objects modeling pipeline. While exporting, the tetrahe-
dral mesh is generated automatically for the deformable
volume.

Differences between the proposed and current solution
are relatively insignificant from the designer’s point of
view, but at the same time the programmer is left with sig-
nificantly less responsibilities. Instead of descriptive doc-
umentation, the artist can configure properties already in
the design software (Figure 5). Finally a single file is ex-
ported for the complete complex model.

The programmer imports received data to the final ap-
plication using the importer described later in chapter 4.
He is not obliged to specify the parameters, join specific
objects and set the limits by himself. He does not need
to know anything specific about the particular model as
during the import procedure all the necessary data are pro-
cessed automatically. The imported model is ready-to-use.

Our solution helps the content creation automatization
and reduces the necessary workload. It also eliminates the
chance for misunderstandings resulting from descriptive
documents.

4 Technical details

In order to test our solution we created a simple applica-
tion which generates a real-time animation of Stanford Ar-
madillo model. Our object consists of a soft body rigged
with a rigid-body skeleton. Armadillo’s arms are attached
to invisible blocks floating in space. Bones of the skeleton
are coupled using 3-degrees-of-freedom spherical joints
with limited ability to swing so that the character cannot
hang limply. The model is influenced by gravity and ob-
jects which can be thrown at it to visualize the deforma-
tions.

For 3D object design purposes we use Blender 2.61
(Figure 5) software which is freely available and allows
us to create our own plug-in extensions. Visualization is
performed in real time by a simple OpenGL 2.1 and Glut
library-based rendering engine written in C++. NVIDIA
PhysX 2.8.1 engine is responsible for physics-related cal-
culations and soft body simulation.

Currently we use PhysX Viewer which is a part of the

NVIDIA PhysX SDK to create a tetrahedral mesh. How-
ever in the future the lattice is to be created automatically
during exporting procedure of the model from design en-
vironment. We plan to use the algorithm described in [14]
for this purpose.

Figure 5: Creating model skeleton of Stanford Armadillo
in Blender 2.61.
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Figure 6: Implementation schema using proposed tools.

Exemplary contents of an XML file are shown in Figure
8. They include the contents of both standard Wavefront
OBJ and native NVIDIA PhysX TET files. The file con-
tains skeleton’s polygon meshes, tetrahedral volumetric
lattice mesh, renderable soft body surface polygon mesh,
descriptions of skeleton joints and various physical prop-
erties of both rigid and soft parts. We use XML mainly
to depict the hierarchy of elements which are parts of the
proposed format. In the future a binary file format should
be considered for final implementation to reduce the file
size and improve the processing speed during import.

The whole structure is divided into parts which relate to
soft body and rigid bodies.

In the soft-body section there are:

• tetrahedral mesh which describes the volume:

– vertices

– configurations of consequent tetrahedra

• polygon mesh for rendering purposes:

– vertices

– texture coordinates

– configurations of consequent polygons
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• barycentric coordinates - mapping of renderable
mesh vertices into the volume of a specified tetrahe-
dron which includes the vertex in the initial pose

• physical attributes:

– mass

– volume stiffness

– stretching stiffness

– friction

– particle radius, solver iterations - scene-
dependent values important for simulation sta-
bility

The rigid-body-skeleton section consists of:

• convex polygon meshes for collision detection:

– vertices

– configurations of consequent polygons

• physical properties:

– mass

– friction

• joints between rigid bones:

– type-dependent values and limitations

When the model is imported, information chunks are
routed to appropriate application elements: the rendering
engine and physics engine.

(a) (b) (c)

Figure 7: Renderable surface mesh (a), tetrahedral lattice
mesh (b), tetrahedral mesh with rigid skeleton (c).

Polygon surface mesh for the soft body (Figure 7a) to-
gether with its texture coordinates is passed directly to
the rendering engine. The tetrahedral mesh (Figure 7b)
is passed to NVIDIA PhysX, same as the convex skeleton
meshes (Figure 7c). In our case the skeleton is intended
for physics simulation only, it is not intended for drawing.

For every rigid bone a separate actor is created in
PhysX. Each of them is coupled with other bones using
a joint according to the joints section of model file. The
joint can be any of the 10 types offered by NVIDIA PhysX
[11], e.g.:

• Spherical joint;

• Revolute joint;

• 6-degree-of-freedom joint;

• Distance joint.

Every joint can have different limitations depending on
its type. For example, the spherical joint can be restricted
to swing or twist only in a specified angle range.

For the soft body no actor is created. Instead, an in-
stance of a specialized PhysX soft body class is used. It
receives the necessary parameter values from the imported
model file, such as mass, stiffness and friction.

To visualize the simulation, during every animation
frame the position of each renderable surface mesh vertex
is updated according to the simulation results. The update
is performed with the help of four-dimensional barycen-
tric coordinates BVi , which are defined for every vertex Vi
of the polygon surface mesh:

Bvi = (v0,v1,v2,1− (v0 + v1 + v2))

Where the k-th element of the vector BVi we write as
B(Vi,k). The coordinates are calculated for the initial pose
of renderable mesh vertices in the volume built of tetra-
hedra. To obtain the current vertex position V ′i necessary
to visualize the soft body, we calculate an affine combina-
tion using current position P′ of vertex Tj of the tetrahedral
mesh:

V ′i =
4

∑
k=1

B(Vi,k)P
′
(Tj ,k)

In order to calculate correct lighting of the soft body, in
every frame we use the already updated positions of ver-
tices to calculate current normal vectors Nl for every l-th
face. It amounts to applying a cross product between two
edges E1 and E2 of a given triangle built from vertices V0,
V1 and V2.

E1 =V0−V1

E2 =V2−V1

Nl = E1×E2

The order of vertices depends on the order in which the
triangles were defined: clockwise or counter-clockwise.
To achieve smooth shading, per-vertex normal vectors
have to be averaged and normalized.

The soft body can be attached to its skeleton in two
ways:

• one-by-one explicitly specified rigid objects are at-
tached to the soft volume,

• every rigid object which collides with the volume is
automatically attached.
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Advantage of the first approach is that the coupling can
be strictly defined. In the second case the attachment pro-
cedure has to take place in a controlled space, where no
other object can appear by accident. Otherwise unwanted
attachment can occur. But when using this way no addi-
tional data and activity is necessary for creating the cou-
pling.

5 Results

The resulting visualization of rigid-skeleton-rigged soft
body which makes use of joint limits behaves much more
naturally than when not using the skeleton (Figures 9, 10).
It is worth noticing that the limbs of Stanford Armadillo
do not bend under angles which could look unrealistically.
Without the skeleton there is no such restriction and the
deformation can occur in a completely random manner.
The other advantage is the ability to control the soft body
with inverse kinematics, what is impossible in a pure-soft-
body solution. Also the ability to set different masses to
different bones in order to achieve non-uniform mass dis-
tribution improves the realism of character’s reactions.

In our example the volumetric lattice consisted of ap-
proximately 2750 tetrahedra. The renderable surface mesh
contained 1036 polygons. The low number of polygons
resulted from the necessity to recalculate vertex positions
and normal vectors every frame what makes achieving in-
teractive frame rate challenging. While rendering two such
models simultaneously on the scene we reach 18 frames
per second on an NVIDIA GeForce GTX 295 and AMD
Phenom II X4 965.

We observed during the implementation process that it
is important to match the soft body volume’s particle ra-
dius with the simulation conditions like the model’s size
and density of the lattice mesh. Otherwise skeleton attach-
ment can be problematic as some parts of the bones can
slip in-between the particles. It is also important not to
forget about setting friction high enough to avoid simula-
tion instability. The importance increases with the parti-
cle radii as the particles begin to constantly influence each
other.

6 Summary and future work

We presented a file format and workflow improvements
which can lead to enhanced work efficiency during design
phase of rigid-skeleton-rigged soft body simulations. Be-
haviour of the model which is simulated with a skeleton
proved to be closer to the expected and natural than when
using a sole soft body or a rigid body instead. We believe
that in the future video games will benefit from using this
approach for character animation instead of the currently
common unrealistic solutions.

One of our future goals is to create a Blender plug-in for
exporting models to our universal format (Figure 8). The

exporter should allow easy definition of different physical
properties and intuitive coupling of skeleton parts together
with setting their attributes and limits using the Blender
built-in armature interface. Also the automatic generation
of tetrahedral mesh should be introduced to the exporter.
Our file format should be extended to cover other impor-
tant rendering-related features such as materials and tex-
tures. Interesting soft-body features such as tearing and
heterogeneous materials stay in our field of interest as
well.
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<?xml version="1.0" encoding="utf-8"?>
<model>
  <soft_body>
    <tetrahedron_mesh target="volume">
      <vertices>
        <vertex id="1" x="8.4" y="2.3" z="9.5"/>
        <!-- ... -->
      </vertices>
      <tetrahedra>
        <tetrahedron>
          <node v="1"/>
          <!-- ... -->
        </tetrahedron>
      </tetrahedra>
    </tetrahedron_mesh>
    <polygon_mesh target="rendering">
      <vertices>
        <vertex id="1" x="8.4" y="2.3" z="9.5"/>
        <!-- ... -->
      </vertices>
      <texture_coords>
        <coord id="1" u="8.4" v="2.3"/>
        <!-- ... -->
      </texture_coords>
      <normals>
        <vector id="1" x="8.4" y="2.3" z="9.5"/>
        <!-- ... -->
      </normals>
      <faces>
        <face>
          <node v="1" n="44" t="45"/>
          <!-- ... -->
        </face>
      </faces>
    </polygon_mesh>
    <barycentric>
      <coord render_id="7" tetr_id="3" v0="0.2" 

v1="0.2" v2="0.1"/>
    </barycentric>
    <attributes>
      <mass>1.0</mass>
      <volume_stiffness>0.5</volume_stiffness>
      <stretching_stiffness>0.9</stretching_stiffness>
      <friction>0.9</friction>
      <particle_radius>0.4</particle_radius>
      <solver_iterations>10</solver_iterations>
    </attributes>
  </soft_body>
  <rigid_bodies>
    <rigid_body id="1">
      <polygon_mesh target="collision_detection">
        <vertices>
          <vertex id="1" x="8.4" y="2.3" z="9.5"/>
          <!-- ... -->
        </vertices>
        <faces>
          <face>
            <node v="1"/>
            <!-- ... -->
          </face>
        </faces>
      </polygon_mesh>
      <attributes>
        <mass>1.0</mass>
        <friction>0.9</friction>
      </attributes>
    </rigid_body>
    <!-- ... -->
    <joints>
      <spherical_joint r1="1" r2="2">
        <limits>
          <limit target="swing" angle="45"/>
        </limits>
      </spherical_joint>
      <!-- ... -->
    </joints>
  </rigid_bodies>
</model>

Figure 8: Exemplary model file contents for a soft-body
object with a rigid skeleton.
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(a) (b) (c) (d)

Figure 9: Frames from the animation depicting throwing balls at a pure skeleton-free soft body. Worth noticing is the
unnatural bending of limbs in images (b), (c), (d) and the overall inertia resulting from uniform mass distribution.

(a) (b) (c) (d)

Figure 10: Frames from the animation of a soft body rigged with a rigid skeleton. The shape is retained much more firmly
and the character does not expose unnatural behaviour.
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