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Abstract

This paper discusses the Isomap method for dimension-
ality reduction and studies its performance on both artifi-
cial and natural datasets. While linear methods for dimen-
sionality reduction such as Principle Component Analy-
sis (PCA) detect a linear subspace of the original domain
that represents the data with maximal accuracy, the Isomap
method detects the tangent space of a manifold embedded
in the original domain. PCA remains globally linear as it
simply transforms the data from one vector space into an-
other. Isomap is only locally linear; globally it maps a low-
dimensional manifold embedded in a high-dimensional
domain into a lower-dimensional vector space by globally
aligning the local manifold tangent spaces. The critical
precondition for its success is that the sampling frequency
of the data is sufficient to avoid ’short-circuits’ in the spa-
tial dissimilarity matrix. This is demonstrated by means
of artificial datasets with dimensionality ranging from two
(e.g. planar geometry) to several thousand (e.g. images of
geometrical models) since they allow absolute control over
the sampling frequency. The results of Isomap applied to
a natural dataset (pressure images from a foot scan) are
much more ambiguous. Since we have no prior knowl-
edge of the ’hidden’ dimensionality of the data we do not
know if the sampling frequency is sufficient. The difficulty
here lies in differentiating between classification outliers,
i.e. atypical samples, and ’unexpected’ degrees of free-
dom, that may initially seem ’wrong’ if they contradict our
expectations.

Keywords: Isomap, Principle Component Analysis, di-
mensionality reduction, non-linearity, sampling frequency

1 Introduction

Dimensionality reduction can be viewed as the process of
finding the domain best suited for embedding a set of high-
dimensional data samples [2]. Ideally, the dimensionality
of this domain is considerably lower (e.g. an order of mag-
nitude or more) than the dimensionality of the data sam-
ples, yet sufficient to reproduce them within a given mar-
gin of error. A highly useful byproduct of dimensionality
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reduction is an interpretation of the given data set within
the new domain [2] that is not possible in the original do-
main due to its high complexity. The purpose of this work
is to discuss the Isomap method for dimensionality reduc-
tion and to compare it to the classical method of Principal
Component Analysis (PCA) in terms of effectiveness with
particular emphasis on the quality of insight provided into
both geometrical and image data.

Human visual perception is capable of reducing com-
plex data to its underlying dimensionality in less than a
second (i. e. the lighting in a photograph), particularly
in the presence of prior knowledge or expectations [9, 3].
While during the first phases of object recognition linear
methods such as frequency decomposition play an impor-
tant role [9], in the latter stages of conscious search for yet
undiscovered interdependencies they might prove too re-
strictive. In this work the ability of the most commonly
used linear method (PCA) and one non-linear method
(Isomaps) to help a human observer gain new insight into
complex high-dimensional (visual) data is examined in de-
tail.

The next section provides a brief overview over the ex-
isting methods for dimensionality reduction. Section 3 re-
views Isomaps and PCA in detail. Section 4 compares the
results of the application of both Isomaps and PCA to ar-
tificially produced data sets. Section 5 performs the same
comparison on the basis of a natural data set. Section 6
discusses the results.

2 Methods for Dimensionality Re-
duction

All methods for dimensionality reduction can be divided
into two large classes - the classical linear techniques and
the more recently developed non-linear techniques.

As the term linear will be used extensively we provide
a definition. A linear map (A : X →Y with X and Y vector
spaces) or a linear operator (A : X→ X on the vector space
X) is a function with the following two properties:

additivity : A(~x+~y) = A(~x)+A(~y)
homogeneity of degree 1: A(~xα) = (A~x)α with α ∈ R

Whenever a reduction step is described as linear it is to
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be understood that it defines a linear map from the vector
space of the original data points X into a new vector space
Y.

2.1 Linear Methods for Dimensionality Re-
duction

The classical methods for dimensionality reduction in-
clude PCA, classical Multidimensional Scaling (MDS),
Factor Analysis (FA), and Independent Component Anal-
ysis (ICA). What is common to all of them is that they look
for a linear subspace in the sampled data [2, 5]. A com-
mon advantage of all linear methods is that the embedding
of new data samples in the already calculated subspace is
reduced to applying the linear mapping to the new sam-
ples. For most non-linear methods, however, only estima-
tion techniques exist [5].

2.2 Non-Linear Methods for Dimensionality
Reduction

Methods that can deal with non-linear cases can be sub-
divided in techniques that preserve global data proper-
ties in the low-dimensional representation - e.g. Ker-
nel PCA, Semidefinite Embedding (SDE), MDS with a
non-Euclidean distance function, Isomaps, and Maximum
Variance Unfolding (MVU), techniques that preserve lo-
cal properties in the low-dimensional representation - e.g.
Locally Linear Embedding (LLE), Laplacian Eigenmaps
(LEM), Hessian LLE, and techniques that calculate lo-
cal linear models and subsequently align them globally.
Markov processes and neural networks have also been
successfully used for non-linear dimensionality reduction.
Detailed discussion of the above methods can be found in
[2, 5, 8].

3 Mathematical Background of PCA
and Isomaps

In this section the mathematical theory behind PCA and
Isomaps is discussed in detail. The fundamental difference
between the two methods is presented in Figure 1.

3.1 PCA

Let us assume that there are N data samples of dimension-
ality D and let the i-th data point be represented as a D-
dimensional vector ~xi = (xi1,xi2, ...,xiD) with i = 1, ...,N.
The result of PCA is a linear map that projects the data
points from the original vector space into another while
retaining as much of the variability of the data as possi-
ble and orienting the coordinate axes (or principal compo-
nents) spanning the new vector space according to it. The
principal components are linear combinations of the exist-
ing data points. As they are orthogonal to each other there
can be at most D of them.

Figure 1: On the left PCA determines an optimal embedding
of the ’Swiss roll’ dataset in a 3-dimensional vector space. On
the right Isomap performs local linear fitting before mapping the
detected local vector spaces into a global vector space.

Let us assume that the axis aligned to the maximum
variability of the data is P1 = ∑

n
i=1(wi~xi).

If we combine the coefficients wi in a vector ~w =
(w1,w2, ...,wN) and the data points ~xi - column-wise in
a N×D matrix X we can write the previous equation as
P1 = wT ×X .

The variance along P1 can be calculated as VarP1 =
E[(P1−E[P1])2] where E[P1] is the expected value (mean)
of P1, which exists whenever P1 has a variance [7]. We
can assume E[P1] = 0 since this would only remove one
translation from the linear map that can be re-applied in
the very last step. Thus

VarP1 = E[P2
1 ] or

= (~wT ×X)× (~wT ×X)T

= ~wT × (X×XT )×~w

= ~wT ×S×~w

with S the (scaled) covariance matrix of the original data
points [7].

As VarP1 is not bounded above for an arbitrary ~w we
impose the restriction ‖~w‖= 1. We want to derive P1 from
the covariance of the data samples, not scale it to infinity.
In order to maximize ~wT ×S×~w with the constraint ~wT ×
~w = 1 we apply a Lagrange multiplier α1:

L(~w,α1) = ~wT ×S×~w−α1× (~wT ×~w−1).

After differentiating with respect to ~w we have S×~w =
α1×~w. Obviously, VarP1 is maximal for the biggest α1,
i.e. the largest eigenvalue of S corresponding to the eigen-
vector ~w.

Essentially, in its first step PCA calculates the D×D co-
variance matrix of the original data samples. Then the R
eigenvectors (R ≤ D) corresponding to the R largest non-
zero eigenvalues of the covariance matrix build the base
BR of the R-dimensional linear domain in which the data
samples can be projected by means of the map BRBT

R with
minimal loss of variability [2]. A significant difference
between the Rth and the (R + 1)th largest eigenvalue in-
dicates the existence of an R-dimensional linear subspace
’hidden’ in the original domain. In that case the remaining
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D−R Eigenvectors can be interpreted as noise obscuring
the true dimensionality of the data.

An obvious drawback of PCA is that the size of the co-
variance matrix depends on the dimensionality of the data
samples and becomes impractical for high-dimensional
domains such as image data. One way to avoid this, es-
pecially if N < D, is to apply dual PCA [5].

The projection calculated by PCA has the effect of min-
imizing the squared reconstruction error. Using this prop-
erty as a starting point, Ghodsi shows in [2] that the linear
map of PCA can be obtained as the matrix U in the singu-
lar value decomposition of X = U ×E×V T as it contains
the eigenvectors of XXT (V contains the eigenvectors of
XT X and E - the square roots of the non-zero eigenvalues
of both XXT and XT X in its diagonal). Once U , V and E
can be reduced in size according to the rank of E it follows
that E is invertible and U = XV E−1. This produces the lin-
ear map UTU of dual PCA (by solving the dual problem
to that of classical PCA).

3.2 Isomaps

In its first step Isomap uses a neighborhood criterion (k
nearest neighbors or an ε-neighborhood [4]) to build a
neighborhood graph of the data samples. Then it builds a
N×N spatial dissimilarity matrix by calculating the short-
est paths between each pair of data samples, which allows
non-linear subspaces to come into consideration [6]. The
goal is to use the shortest paths between data samples to
detect a manifold embedded in the vector space of the orig-
inal data points.

In its second step Isomap applies classical MDS. This
method takes the N × N dissimilarity matrix of N D-
dimensional data points produced in the previous step as
its input and calculates a linear transformation that pre-
serves the pair-wise shortest path distances between the
points while disregarding their coordinates in the original
domain entirely. In effect, instead of minimizing the re-
construction error relative to the the original coordinates
(which is what PCA does) MDS minimizes the reconstruc-
tion error relative to the dissimilarity matrix. Since it con-
tains only scalar values it does not depend on the original
dimensionality of the data points; in fact, it is the func-
tion of MDS to find the minimal suitable dimensionality
for data points with (nearly) the same dissimilarity matrix
(see Figure 2).

MDS uses the fact that the dissimilarity matrix, when
employing the Euclidean distance as a dissimilarity mea-
sure, is expressed by means of the inner product of the
N ×D data point matrix X (the Gram matrix [8]): G =
XT X = −1/2×H ×D2×H with H = I− 1/D×~e×~eT

where ~e = (1,1, ...,1) is a N - dimensional vector [5].
There exist multiple methods for recovering a data ma-
trix X when only the Gram matrix G is known [5, 8]. The
result corresponds to a ’flattening’ or linearization of the
tangent space of any manifold concealed in the original
domain.

Figure 2: A comparison of PCA, dual PCA and MDS. Both
PCA methods perform reconstruction with one component.
MDS detects two degrees of freedom.

Tennenbaum et. al. provide a proof in [1] that as the
number of data samples increases so does also the ac-
curacy of the approximation of the underlying manifold
performed by Isomap. Asymptotic convergence to the
’true’ underlying structure is guaranteed for smooth mani-
folds isometric to a convex domain of Euclidean space [4].
These dependencies will be demonstrated in the next sec-
tion.

4 PCA and Isomap Applied to Artifi-
cial Datasets

The experiments on artificial datasets documented in [5]
show that Isomap is significantly better than PCA in de-
tecting non-linear structures on the ’Swiss roll’ , the ’He-
lix’ (i.e. on smooth highly non-linear manifolds, the first
one Euclidean, the second one - non-Euclidean) as well
as on a discontinuous ’broken Swiss roll’ dataset. How-
ever, Isomap performs only slightly better than PCA on a
dataset with high intrinsic dimensionality.

4.1 Low-dimensional Data Sets

We start our experiments with a one-dimensional dataset
folded in two dimensions - a spiral. Applying Isomap with
4 nearest neighbors produces the mapping (represented by
the straight lines) shown in Figure 3.

The next experiment applies Isomap with 4 nearest
neighbors again to a one-dimensional set, but this time it

Figure 3: Isomap performed on a one-dimensional manifold
folded in two dimensions.
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Figure 4: Isomap performed on a one-dimensional manifold
folded in three dimensions.

is folded in three dimensions. As Figure 4 shows the result
is the same as in the previous case.

Figure 5 shows a region in the data samples that causes
the error in the mapping of the manifold into the one-
dimensional domain ( the loop in Figure 6 - the color gra-
dient corresponds to the ordering of the data samples ac-
cording to the first detected degree of freedom). Since the
underlying manifold is actually one-dimensional, the loop
represents the failure of Isomap to recognize this in the
vicinity of the ’short-circuit’.

These three examples demonstrate a key requirement
for the convergence of Isomaps [1]: the sampling condi-
tion. It states that arbitrarily close approximation of the
underlying manifold M is possible if the neighborhood
graph contains all edges connecting data samples at a dis-
tance less than a positive parameter ε , and for each point
m on M there exists a data sample that is at a distance
less than ε/4 from m. In other words, the sampling den-
sity must be sufficient for every point on the manifold. In
particular, it must be at most half of the shortest distance
between manifold ’folds’ (see Figure 5).

The next two experiments utilize the ’Swiss roll’ dataset

Figure 5: An example of insufficient sampling density.

Figure 6: The loop on the far left showcases the error resulting
from insufficient sampling density.

used in [4] and [5]. Figures 7 and 9 visualize the dif-
ference resulting from the choice of the number of near-
est neighbors k. For k = 7 Isomap manages to recognize
the underlying two-dimensionality of the dataset in spite
of the numerous ’short-circuits’ resulting from insufficient
data sampling (see Figure 7 - the change in color corre-
sponds to the ordering along one detected degree of free-
dom, the edges are those of the neighborhood graph). The
’unwrapped’ manifold is shown in Figure 8. For k = 20,
however, we obtain the same result as with PCA - there is
no meaningful dimensionality reduction, only a change in
the coordinate system. Since for all examples above PCA
cannot reduce the dimensionality of the data (as there is
no significant difference in the detected eigenvalues) its
results are not shown.

Figure 7: The ’Swiss roll’ dataset colored according to the first
and second degrees of freedom detected by Isomaps with k = 7.

Figure 8: The unwrapped ’Swiss roll’ dataset from Figure 7
shows a slight ’thickening’ in the third dimension due to ’short-
circuiting’ errors.

The ’Swiss roll’ examples showcase another important
condition for successful approximation: the neighborhood
condition. It requires that the neighborhood graph does not
contain edges connecting data samples whose Euclidean
distance is larger than certain parameters derived from the
minimum radius of curvature r0 and the minimum branch
separation s0 of M. The minimum branch separation is the
largest Euclidean distance between points on M that still
guarantees a geodesic distance of less than πr0 [1]. In
the case of 20 nearest neighbors this condition is clearly
violated and thus Isomap fails.
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Figure 9: The ’Swiss roll’ dataset colored according to the first
and second degrees of freedom detected by Isomaps with k = 20.

In [1] Bernstein et. al. provide a proof that a random
sampling of sufficient density can satisfy the two condi-
tions above with probability depending on the volume of
M and on the volume of the smallest metric ball in M.
However, while these conditions are easy to check in an
artificially generated data set with known degrees of free-
dom it is quite difficult to do so for natural datasets where
the prior knowledge is insufficient, as will be demonstrated
in Section 5.

4.2 High-dimensional Data Sets

We now move to a very high-dimensional domain - that of
image data. The generated images satisfy both the sam-
pling and the neighborhood conditions from Section 4.1.

We generate 300 images with resolution 64× 86 pix-
els of a glass ball illuminated by several light sources (as
shown in Figure 11), only one of which changes position
- it traverses one half of a circular trajectory from left to
right. The resulting data samples are 5504-dimensional
vectors (64× 86 = 5504) containing 8-bit integral inten-
sity values.

Figure 10 shows the residual variances after consecutive
data reconstruction with 1 to 6 components detected by
PCA and by Isomap (k = 2 nearest neighbors considered
in the neighborhood graph) respectively. Where PCA per-
forms a frequency decomposition of the data (first image
group) and the residuals diminish rather gradually, Isomap
(second image group) shows a sharper drop in the residu-
als after the first detected degree of freedom and correctly
identifies the main degree of freedom in the data as move-
ment.

Figure 11 shows in the first row the ordering of the
images along the first principal component calculated by
PCA. From the viewpoint of a human observer this order-
ing does not carry any meaningful insight. The ordering
in the second row on the other hand corresponds to a step-
by-step rotation of the mobile light source around the ball.

The next experiment introduces two degrees of freedom.
We generate 5000 images with resolution 100× 50 pix-
els of a statue (as shown in Figure 12). It is illuminated

Figure 10: The residual (unaccounted for by the currently used
model) variance along the first 6 degrees of freedom detected
by PCA and Isomap respectively. The sharp drop in the graph
indicates that PCA as well as Isomap has detected the intrinsic
dimensionality of the data.

Figure 11: The first group shows the ordering according to the
first principal component. The second group shows the ordering
according to the first degree of freedom detected by Isomap.

by two light sources, one of which traverses a similar tra-
jectory as in the previous experiment. What also changes
in these images is the camera position, which traverses a
one-dimensional path folded in three dimensions around
the statue.

Similar to the previous experiment, Figure 12 shows the
first 6 principal components detected by PCA and the re-
sulting ordering of the data; Figure 13 shows the variations
along the degrees of freedom with the 6 highest residuals
resulting from Isomap with k = 10 nearest neighbors con-
sidered in the neighborhood graph, again followed by the
resulting ordering of the data. The difference is less ob-
vious this time. For PCA the following observation can
be made: the smaller the corresponding eigenvalue, the
higher the frequency of the information carried by the prin-
cipal component. Again there is a significant drop after the

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (peer-reviewed)



largest residual to indicate a sub-space of the original do-
main well suited for representing the data, in this case - the
overall lightness of the scene. The behavior of Isomap is
also similar to that in the previous case with the difference
that the sharp drop in the residuals occurs after the second
detected degree of freedom and the result gives a human
observer information about the parameters responsible for
the variation in the image data.

Figure 12: The ordering of the statue images according to the
first principal component (highlighted in the top row) detected
by PCA.

Figure 13: The ordering of the statue images according to the
first and second degrees of freedom detected by Isomap: the cam-
era path and the light source path. The variation (gradient) along
the first 6 degrees of freedom is in the top row.

The orderings in Figure 13 show a step-by-step traversal
of the camera path, and a step-by-step change of the posi-
tion of the mobile light source. The second ordering is
remarkable in its independence from the camera position

- the ordering is correct regardless of the overall lightness
of the scene.

5 PCA and Isomap Applied to a Nat-
ural Dataset

The experiments on natural datasets documented in [5]
show that Isomap performs poorer than PCA in four out
of five cases. The first reason for that according to Maaten
et. al. is the ’curse of dimensionality’ - the fact that with
the rising of the dimensionality of the underlying mani-
fold the number of data samples needed for its proper de-
tection rises exponentially. The second reason is the pres-
ence of noise in the natural datasets that results in local
overfitting. On the other hand, outliers result in very sim-
ilar performances. While even a single outlier can cause a
’short-circuit’ in the neighborhood graph of Isomaps, the
more ’short-circuits’ Isomap produces the more the spatial
dissimilarity matrix approaches the squared Euclidean dis-
tances matrix for the data samples and consequently PCA
(see Section 3). Consequently, in the presence of enough
outliers Isomap fails to detect non-linear subspaces to the
same degree PCA does.

The natural dataset used in this last experiment consists
of 1298 archive images with resolution of 410× 230 pix-
els of the maximal walking pressure distribution over a hu-
man foot of volunteers aged 12 to 85, courtesy of Sandrina
Illes, MSc, TU Chemnitz, Department Forschungsmetho-
den und Analyseverfahren. The images were obtained by
means of a RSScan 0.5 Gait Scientific foot scanner with
spatial resolution of 4 sensors per cm2 and temporal reso-
lution of 300 Hz.

Figure 14: Dataset preparation. The second image from the
right represents dataset GS, the rightmost image - the dataset BW.

In the initial stage we prepared the images as illustrated
in Figure 14. First the color coded pressure distribution
was converted into intensity values. Subsequently all dis-
continuities were eliminated through linear interpolation
in order to improve the conditions for the application of
Isomaps (see Section 3). This was followed by the global
alignment of all images. The thus prepared grayscale im-
ages built dataset GS. The binary dataset BW was derived
from GS by employing thresholding followed by a low
pass filter to remove noise. In order to reduce dimension-
ality we scaled the images to a resolution of 64×36 pixels
(2304 dimensions). Tests with different did not produce
significant changes in the final result.
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Figure 15: The first row shows the variance along the first 6
degrees of freedom detected by Isomap. The second row shows
the first 6 principal components calculated by PCA.

Figure 15 shows the comparison between the first 6
principal components detected by PCA and the variations
along the degrees of freedom with the 6 highest residuals
resulting from Isomap with k = 20 nearest neighbors ap-
plied to dataset GS. We performed the Isomap algorithm
with values for k ranging from 2 to 50 and chose 20 as
it produced the least number of apparent ordering errors.
PCA failed to detect any sharp drop in the Eigenvalues cor-
responding to the first 20 principal components. Isomap
exhibited the same behavior in respect to the residuals cor-
responding to the first 20 detected degrees of freedom.

Figure 16 shows the ordering along the first, second, and
third degrees of freedom detected by Isomap respectively.
As opposed to the results in the previous section, the in-
terpretation here is difficult due to lack of prior knowledge
of the intrinsic dimensionality of the original domain. A
tentative interpretation of the results was attempted by an
expert in the field of gait analysis, Sandrina Illes, MSc.

The first degree of freedom seems to indicate the
amount of pressure on the joint of the big toe. The second
degree of freedom seems to correspond to the pressure dis-
tribution on the front of the foot, the foot arches, and the
heel. The third degree of freedom seems to relate to the
pressure on the base of the second and fifth metatarsals.
The forth degree of freedom seems very similar to the first
one. The fifth degree of freedom seems to indicate the
amount of pressure on the toes compared to the pressure
on the front of the foot, and the sixth degree of freedom
seem to give an ordering according to the presence of Hal-
lux Valgus (bunion).

Figure 17 shows the comparison between the first 6
principal components detected by PCA and the variations
along the degrees of freedom with the 6 highest residuals
resulting from Isomap with k = 20 nearest neighbors ap-
plied to dataset BW. We performed the Isomap algorithm
with values for k ranging from 2 to 50 and again chose
20 as it delivered the most consistent results. PCA failed
to detect any sharp drop in the Eigenvalues corresponding
to the first 20 principal components. Isomap exhibited the
same behavior with respect to the residuals corresponding
to the first 20 detected degrees of freedom.

Figure 18 shows the ordering along the first, second,
and third degrees of freedom detected by Isomap respec-
tively. A tentative interpretation of the results was again
attempted by Sandrina Illes, MSc.

Figure 16: The ordering of the GS foot images according to the
first three degrees of freedom detected by Isomap.

Figure 17: The first row shows the variance along the first 6
degrees of freedom detected by Isomap. The second row shows
the first 6 principal components calculated by PCA.

The first degree of freedom seems to produce an order-
ing from very high to completely collapsed foot arches.
The second degree of freedom seems to correspond to the
overall shape of the foot with an emphasis on the relation
between the length of the longitudinal arch and the foot
length. The third degree of freedom seems to relate to the
form of the front of the foot and the degree to which the
small toes are used. The forth degree of freedom seems
somewhat similar to the first one. The fifth degree of free-
dom seems to indicate the amount to which the transversal
arch touches down, and the sixth degree of freedom seems
to be in relation to the amount of pressure on the joint of
the big toe as well as the function of the other four toes.
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Figure 18: The ordering of the BW foot images according to
the first three degrees of freedom detected by Isomap.

6 Results

The results of our experiments in Sections 4 and 5 con-
firm the performance predictions in [1] and the findings
in [5]. Isomap delivers the best results in recognising
the intrinsic dimensionality of artificial datasets since they
can be sampled adequately due to our a priori knowl-
edge of their structure. The dimensionality of the origi-
nal data samples does not influence the results. The fail-
ure to satisfy the sampling condition (see Section 4.1) re-
sults in ’thickened’ manifolds [5] due to noise from ’short-
circuiting’. Nevertheless Isomap still delivers good re-
sults. The failure to satisfy the neighborhood condition
however causes convergence of the results from PCA and
Isomap - i.e. inability to detect non-linear subspaces in the
sampled data.

The main difficulty with natural datasets lies in our lack
of prior knowledge. Since we cannot determine if the data
samples satisfy the two conditions in Section 4.1 it is
highly likely that one or both of the problems described
in the paragraph above will occur, which in turn makes
interpretation of the result even more challenging.

For the low-dimensional examples in Section 4.1 both
PCA and Isomap required less than 1 min. to calculate
in MatLabT M on a dual core 1.8 GHz, 2 GB RAM 32-
bit Windows platform. For the image examples in Section
4.2 Isomap needed 4 min. for the ball, 10 min. for the foot
BW, 12 min. for the foot GS and 20 min. for the statue.

Classical PCA needed 6 min. for the ball, 5 min. for the
foot BW, 7 min. for the foot GS and 20 min. for the statue
datasets. Dual PCA needed less than 2 min. per example.

7 Conclusions

Isomaps is a non-linear method for dimensionality reduc-
tion that preserves the geodesic distances between the data
samples in their lower-dimensional representation, if such
representation can be found. When applied to sufficiently
densely sampled artificial datasets it outperforms PCA sig-
nificantly both in detecting underlying lower-dimensional
highly folded subspaces as well as in achieving readabil-
ity for human observers. On natural datasets PCA and
Isomaps deliver comparable results due to our inability to
ensure a satisfactory sampling density (at least half of the
smallest distance between manifold ’folds’) and an ade-
quate neighborhood definition. In order for a human ob-
server to glean new insight in a heretofore unknown do-
main by means of Isomap one needs to proceed iteratively,
adjusting the number of nearest neighbors to be considered
in the neighborhood graph and, even more importantly, the
data sampling density in each iteration.
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