
On Rendering with Complex Camera Models

Bohumı́r Zámečnı́k∗

Supervised by: Alexander Wilkie†

Faculty of Mathematics and Physics
Charles University

Prague / Czech Republic

Abstract

One of the areas of realistic image synthesis is in mod-
eling cameras. The goal is to provide a visual cue with
depth of field and to achieve a photographic look with
bokeh (out-of-focus highlights), tilt-shift and optical aber-
rations of real-world lenses. We provide a comparison of
existing methods and fundamental approaches for depth-
of-field rendering, including the recent methods, such as
the image-based ray tracing. We propose a novel repre-
sentation of ray transfer within complex lenses suitable for
optimizing the ray generation. The open problems in this
research area are presented along with sketches of possible
solutions.

Keywords: Depth of Field, Lens, Photorealistic Render-
ing

1 Introduction

One of the areas of photo-realistic image synthesis is the
image capture via camera models. Both human eyes and
photographic cameras naturally depict some parts of the
scene sharply while the rest is gradually blurred. It helps
the viewers perceive the spatial arrangement of the scene.
Simulating this depth of field as well as other effects
caused by more or less complex lens systems in a phys-
ically plausible way helps in achieving more realism in
rendering.

The paper is structured as follows: In chapter 2 we in-
troduce the desired effects and the camera models used in
photo-realistic rendering. Chapter 3 summarizes the most
important approaches and methods for depth-of-field ren-
dering and makes a comparison. In chapter 4 we propose
a novel representation of ray transfer within complex lens
systems. And finally the major open problems we found
in this area are presented in chapter 5.

∗bohumir.zamecnik@gmail.com
†alexander@wilkie.at

2 Camera models

In order to make useful images of a radiance field in the
scene we use models conceptually based on real-world
cameras. A camera consists of a sensor and an aperture
or a lens system. The sensor is usually a rectangular grid
of pixels which accumulate the incoming radiance to com-
pute the total radiant energy. The aperture or lens system
limits and/or transforms the rays of light going to the sen-
sor in order to make an image of a part of the scene.

The most basic and widespread is model of an ideal
pinhole with a point-sized aperture. It implements the
perspective projection and produces all-sharp images. In
practice a finite aperture is needed to pass enough light in.
The solution to provide sharp images is in using refrac-
tive lenses able to focus rays emanating from a point in
the scene to a point on the sensor so that a contribution of
multiple light paths can be integrated.

The idealized model of a refractive lens is the thin lens
model. It can be either described by a 1st order approxima-
tion of the Snell’s law of refraction or by a matrix transfor-
mation in homogeneous coordinates. Generally the lenses
trade off allowing more light paths for being unable to im-
age the whole scene sharply. In the thin lens model just
a single plane is sharp, the focus plane, the image of the
sensor plane via the lens transformation.

Basically the sensor plane is perpendicular to the view-
ing direction, the optical axis which intersects its center.
Focusing can be done by moving the sensor back and forth
in the optical axis. The sensor is called shifted in case it
is moved laterally (within the sensor plane) and tilted if it
is not oriented perpendicularly to the optical axis. We call
this the camera configuration.

In contrast to most consumer cameras the older view
cameras and some special or home-made lenses offer tilt-
shift configurations. This enables the photographers to fo-
cus on an arbitrary plane or change the perspective, which
can be useful for artistic purposes.

Points on the focus plane are projected at points on
the sensor, while the rest as sections of the cone of light
through the aperture with the sensor plane. For non-
tilt configurations of the thin lens model the out-of-focus
points are imaged as circles (also called circles of confu-
sion – CoC) which leads to blur.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



The perceived sharpness depends on the spatial resolu-
tion of the sensor. For a fixed camera configuration the
CoC radius as a function of position in the scene makes
up a 3D scalar field. The isosurfaces of this field mark
out the boundary of the depth of field (DoF). By limiting
the maximum blur amount we get a region bounded by the
corresponding isosurfaces and objects within such a region
can be considered in-focus.

The intensity of images of out-of-focus points quickly
decreases with the amount of defocus as the radiant power
is spread over a quadratically larger area. For a very bright
point light its out-of-focus image is clearly distinguishable
and is called bokeh in photographic jargon.

The thin lens model is not capable of producing all the
characteristic effects caused by physical design of real-
world complex lens systems. Due to physical reasons,
technological trade-offs and the usage of real-world ma-
terials such lenses might not be always capable of perfect
focusing. This leads to optical aberrations and geometric
distortions and it also has an impact on the imaging quality
including the bokeh quality.

In optical engineering as well as in computer graphics
the complex lens systems are described by a sequence of
analytical surfaces, their mutual position and materials af-
ter each surface [17, 28]. Predominantly are used spher-
ical caps for lens surfaces and circles or other shapes for
diaphragms. It is the diaphragm shape which affects the
bokeh quality the most.

Other lens properties such as coatings and lens ef-
fects such as lens flare (caused by internal reflections and
diffraction) are out of the scope of this paper. More infor-
mation can be found in [28, 15].

3 Methods of DoF rendering

In the ideal pinhole model the light goes through a sin-
gular center of projection. In contrast, other lens models
allow the light paths to pass through a finite area of the
aperture stop.Thus all depth-of-field rendering algorithms
when solving the rendering equation [16] or its approxi-
mation must additionally integrate the light transfer over
this area.

There are two main approaches how rendering algo-
rithms solve visibility, i.e. deciding which scene primitives
contribute to each pixel and vice versa. They differ in the
order of nested loops over scene objects and image pixels
[12]. Object-based algorithms compute the illumination
for each object for each pixel and image-based ones con-
versely. Scan-line rasterization is an example of the first
approach while ray tracing and its variants of the latter.

Another criterion to distinguish the rendering algo-
rithms lies in the scene representation. Distributed ray
tracing and rasterization belong to the group of rendering
algorithms which operate on geometrically represented
scenes. On the other hand post-processing methods (to-
gether with point-based rendering methods), such as filter-

ing and image-based ray tracing, operate on sample-based
representation of the scene [12], eg. layered depth images
[26].

Most methods make assumptions on the sensor orien-
tation so that it might be hard to extend them to support
tilt-shift configurations. The most flexible in those situa-
tions is the plain ray tracing.

For more detailed information on the various DoF ren-
dering methods and camera models used in computer
graphics the reader should also consult the existing sur-
veys [2, 3, 10, 4, 19].

3.1 Monte Carlo ray tracing

Ray tracing methods estimate the radiant energy going to
a pixel by sampling the radiance along incoming rays. In
general the light transfer is recursively evaluated at the
points of ray-scene intersection. Although the variants like
distribution ray tracing [7], path tracing [16] and others
differ in the strategy of tracing rays while evaluating the
incoming radiance the ray generation is usually similar.
Instead of a singular pinhole a more complex lens model
is added between the sensor and the scene [17, 28]. Since
the light paths have to pass the lens elements in a known
order the complex lens system can be put outside the or-
dinary acceleration structures. See fig. 1d for an example
image from our CPU implementation.

The important thing is that the lens model has a non-
zero area which has to be sampled as well. In theory it is
the image of the aperture stop, the exit resp. entrance pupil
(when looking from the back or from the front). Those two
pupils are defined only for on-axis rays. For off-axis rays
in ideal thin lenses the pupil remains the same and can be
sampled directly. However, in complex lens systems not
only the aperture stop can block the light passage which re-
sults in the view-dependent effective pupil – projection of
the visibility through the lens on a given plane. Sampling
the precomputed effective pupil or at least its bounding cir-
cle leads to decreasing the amount of rays blocked inside
the lens [28] and thus also the image variance. A simpler
but not as efficient technique is to sample the whole sur-
face of the outer lens element.

The circular pupils can be sampled by mapping sam-
ples from a unit square onto a unit circle with a suitable
square to circle mapping [27]. For more complicated aper-
ture shapes this can be combined with rejection sampling.

This approach can give the ground-truth results with no
artifacts other than noise and it is thus considered the ref-
erence one.

3.2 Multi-view accumulation

The multi-view accumulation method [13] is based on the
observation that each view through a single point on the
entrance pupil of a thin lens is equivalent to some pin-
hole projection with an off-axis frustum [6]. Those pin-
hole views can be then rasterized by the GPU as usual. By

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Example images from out implementation of various DoF rendering methods. Left to right: (a) image-based
ray tracing with tilt-shift thin lens model, (b) image-based ray tracing handling partial occlusion with bokeh, (c) bokeh in
multi-view accumulation, (d) sequential lens ray tracing with a biconvex lens.

sampling the entrance pupil and accumulating the raster-
ized views the image with depth of field is obtained. The
key for the off-axis frusta construction is that they must in-
tersect each other at the image of the sensor (on the focus
plane).

The original method used the hardware accumulation
buffer (with cca 12-bit integer precision). For accumulat-
ing thousands of views (to obtain correct bokeh) render-
ing to textures (eg. via OpenGL’s Frame Buffer Objects)
with at least 32-bit floating point precision and manual ac-
cumulation is needed [29]. This also allows incremental
rendering where the intermediate results are displayed in
real-time during the longer convergence. See fig. 1c.

The basic method is very simple but is limited to the
thin lens model. Tilted configurations were shown to be
supported in [5], unfortunately without any details, and
are discussed in section 5. An extension to approximate
complex lens systems is described in [14].

Advantages of this method compared to post-processing
methods are that it displays all parts of the scene visible
from the entrance pupil (not only from its center) and the
visibility is already solved (by the z-buffer). A disadvan-
tage is that the entrance pupil is sampled per-image, not
per-pixel, so the convergence is slow.

3.3 Layers and their extraction

Before we can describe the DoF post-processing methods
themselves we need to learn more about their input data.

In a pinhole image (perspective projection) only the
parts of the scene which are directly visible from the cen-
ter of projection can contribute to the output image. On
the other hand for a lens with a finite aperture even parts
of the scene which are occluded in the central pinhole view
can become visible in other views and thus take part in the
output image. Since both the directly visible and occluded
parts of the scene cannot be represented in a single image,
they must be stored in several layers.

Each image represents a 2D table of samples of the in-
cident radiance function from the scene to the center of
projection. Each sample might be then understood as a
single light source. Except that the sampled color (or pre-
cisely radiance) from the scene is not enough for depth of
field rendering since the effect of a light source on the im-
age also depends on its depth. Thus each layer consists

of a color image and a depth image. Usually the layers
store the results of frustum transformation normalized to
the [0.0;1.0]3 cube.

The sampled radiance is valid only for a single direc-
tion. Assuming that the exitant radiance of scene surfaces
does not vary too much when changing the viewing direc-
tion a little the sampled radiance can approximate the true
radiance from another viewpoint (on the front element of
the lens) quite well. This problem can be solved with de-
ferred shading [20] where surface properties are sampled
and radiance from given viewpoint is computed later.

There are two approaches in extracting layers from the
scene – depth interval layers [25, 1] and depth-peeled lay-
ers [11] – each with its pros and cons.

In depth-interval layer extraction the scene is divided
into disjoint intervals of depth and each layer contains the
surfaces visible in that layer. This results in that the whole
images are ordered by depth which could be exploited in
some methods.

On the other hand depth peeling [11] produces layers
where each pixel is ordered by depth independently. The
first layer contains what is visible directly, the second what
is hidden after the first layer and so on. This results in
fewer layers, since the number of layers is limited only by
the depth complexity of the scene. The difficulty is that a
patch of pixels from one surface might be interspersed in
many layers.

In general the depth peeled layers provide a more com-
pact representation than depth interval layers, since there
are fewer empty areas. Thus a lesser number of layers is
needed, saving some memory.

The layers can be rendered by a GPU scan-line raster-
izer or with a ray tracer modified with additional depth
checks, resp. taking k-th intersections instead of the first
ones.

For accurate rendering of strong bokeh it is necessary
that the color images in the layers are HDR images, eg.
represented with floating-point numbers. The resulting
output image might be then tone-mapped to LDR.

3.4 Image-based ray tracing

A recent technique to accelerate depth-of-field rendering
via a combination of rasterization and ray tracing is the

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



image-based ray tracing [20, 21]. The main idea is to ras-
terize a part of the scene visible from the lens and use it
as a sample-based representation of the scene for the ray
tracing stage. Shading of the visible scene objects is done
once and then reused for the views from the many lens
samples. Thus the time complexity of the ray tracing stage
depends on the image resolution not on the scene complex-
ity. From this point of view the method is most suitable for
very complex scenes.

Since the rasterization hardware only supports the ideal
pinhole model the view-dependent scene representation is
based on a single image from the center of the entrance
pupil with the field of view approximated from the original
lens model. From the other sample points on the entrance
pupil might be visible some parts of the scene ”around the
corner”, so that several layered depth images have to be
extracted. The layers contain both color and depth images
which are afterwards treated as height-fields and can be
intersected instead of the original scene objects.

The two methods differ in the kind of layered depth
images used, [20] works with depth-interval layers, while
[21] is based on depth-peeled layers. Properties of the lay-
ers further determine the algorithms such as height-field
intersection or layer extraction and possible camera mod-
els. We will describe the second approach. Example im-
ages from our GPU implementation of this method can be
seen in fig. 1a and fig. 1b.

First the perspective frustum from the entrance pupil
center needs to be found, which will be used for sampling
the scene into the rasterized layers. For non-tilt configura-
tions and the thin lens model the sensor image defines the
frustum shape. Similarly for a shifted sensor an off-axis
frustum is constructed. For a tilted sensor a technique ref-
erenced in chapter 5 might be used. More complex lenses
have to be approximated by thin or thick lens models for
this purpose.

Having the frustum matrix the layers can be extracted by
depth peeling [11]. Compared to the original method the
depth peeling process is easier on current hardware since it
is possible to utilize floating-point render textures and pro-
grammable shaders. In short, in each iteration the previous
layer’s depth image is utilized as a secondary z-buffer with
an additional depth test to discard the nearer geometry. In
practice the depth peeling code can be prefixed to ordinary
material shaders. OpenGL’s Array Textures can be used
for storing the layers. The depth images can be stored sep-
arately, packed by four channels into one image for more
efficient texture lookup later.

The ray tracing stage then consists of ray generation,
intersection with the height-field layers and color accumu-
lation. In case the GPU does not support random num-
ber generation we need to provide them in a texture. In
practice we tried a 3D texture of size 642 ×N samples
(where N is the number of samples of a single pixel) with-
out excessive artifacts from tiling. The chosen area on the
lens should be sampled and the ray transfer within the lens
model evaluated as in the ordinary Monte Carlo ray trac-

ing. The rays need to be transformed by the frustum matrix
to match the space of the height-field layers.

In the depth-peeled layers we cannot assume that the
height-fields are continuous or in disjoint depth intervals.
A robust technique for intersecting such height-fields is
per-pixel traversal of the ray footprint, ie. the pixels under
its orthographic 2D projection, along with a robust inter-
section test. The 2D version of the DDA algorithm for
voxel traversal can be used with some modifications for
more robustness in singular cases [29]. Since we treat
the height-fields with nearest-neighbor interpolation the
intersection tests must be extended by some epsilon tol-
erance. To reduce memory bandwidth the depth layers can
be packed and the intersection test must be modified to
work with 4-component vectors.

Several acceleration techniques have been proposed in
the original method [21]. First, some geometry does not
need be extracted into the layers since it can be shown that
it is not visible from any point on the entrance pupil. This
extended umbra depth peeling technique can lead to a high
speedup, but on the other hand it assumes the thin lens
model and makes the height-field treatment more compli-
cated due to the introduction of undefined values. Sec-
ond, the ray footprint traversal can be accelerated by it-
eratively clipping the ray extents with the knowledge of
minimal and maximal height-field values under the ray
footprint. Those values can be efficiently evaluated by N-
buffers [9] constructed from the depth layers. Also the
N-buffer queries can be done for multiple rays at once.

3.5 Filtering

The filtering approach is based on the concept of point
spreading function (PSF) known from Fourier optics
where the lens system is considered a linear system. The
PSF is an impulse response of the system to a point light.
Then the image on the sensor is given by the convolution
of the exitant radiance function of the scene with the PSF.
However, the model assumes no occlusion, so the visibil-
ity has to be solved by other means. Also the PSF is non-
constant and depends many factors. When neglecting the
wave-optics effects like diffraction the PSF is mostly af-
fected by the aperture stop shape and directly influences
the appearance of bokeh.

Most of the methods for interactive depth-of-field ren-
dering are based on the convolution of some PSF kernel
with a sample-based scene representation – a rasterized
pinhole view. Many of them lead to physically incorrect
results and artifacts. One reason is the lack of solving vis-
ibility, the other is in using some PSF kernels with an in-
appropriate convolution method.

It has been recently shown that for convolution with
spatially varying kernels there is a difference and duality
between gathering and spreading filters [19]. The image
formation corresponds to spreading filters and using those
PSF in the gathering context causes major artifacts (and
vice versa).

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



For some restricted classes of PSFs there exist accel-
eration techniques (fast spreading filters) for reducing the
convolution complexity from O(n2) to O(n) or even O(1)
with respect to the rasterized kernel radius [19].

The visibility in context of filtering is usually solved by
representing the visible part of the scene with multiple lay-
ers and alpha compositing them after being filtered. Since
the layers are rendered by another technique such as ras-
terization or ray tracing the filtering methods are denoted
as post-processing methods.

3.6 Comparison of ray tracing and filtering

We can compare the two approaches to DoF rendering.
Ray tracing methods solve visibility correctly but have
problems with optimal sampling. Filtering methods of-
fer optimal sampling but have difficulties with solving the
visibility within scene (occlusion).

Getting a large CoC sampled properly in ray tracing re-
quires many samples to reduce noise to tolerable levels,
while for in-focus areas a single sample might be suffi-
cient. Unfortunately, for a given pixel on the sensor we
are not aware of a method of efficiently generating lens
rays ordered by decreasing contribution of light intensity.
Eg. importance sampling successfully employed in image-
based lighting [24] cannot be readily used due to possibly
complex ray transformations within the lens and limited
scene visibility from a pixel.

On the other hand spreading filters can rasterize the PSF
according to the sensor resolution, spreading the light ex-
actly to the affected pixels without noise present in Monte
Carlo methods. The cost is that occlusion has to be solved
by other means.

Another view is on supported PSFs. Ray tracing meth-
ods can support arbitrary lens models with various PSFs,
but have to evaluate the propagation of rays in the lens sys-
tems which might be costly. Filtering methods are limited
by the complexity of PSFs and their efficient representa-
tion, evaluation and spreading.

Ray tracing of the original scene and multi-view accu-
mulation has also the advantage over image-based meth-
ods that they provide implicit anti-aliasing via multi-
sampling. Methods working with discretized images
eg. have no information of exact position of a highlight
smaller than a pixel. Thus a bokeh pattern from such a
highlight might be slightly translated in the image-based
methods compared to more accurate results of the multi-
sampling methods. Also CoCs from light sources outside
the pinhole field of view might be missing there.

4 Complex lens representation

An ideal thin lens can be fully described just by its fo-
cal length and its aperture stop (a circle, polygon, raster
bitmap, etc.). For real-world complex lens systems typi-
cally a simplified representation must be given. The tradi-

tional representation is followed in [17, 28] – a sequence
of spherical caps or planar stops and subsequent materials.
The ray transfer is evaluated by sequential ray tracing with
analytical intersections and refractions. The complexity is
O(n) with respect to the number of elements. Given an
incoming ray it is either transformed into an outgoing ray
or absorbed inside the lens.

We present a conceptually novel representation of ray
transfer behavior of lenses. Rays can pass through a lens
either from front to back (along the optical axis) or in the
opposite direction, this corresponds to forward and back-
ward ray tracing. The ray transfer in either of the two
directions can be treated as a mathematical function, a
lens ray transfer function (LRTF), which maps incoming
rays to outgoing rays and which is defined only for rays
that pass. A single lens system can be described by vari-
ous LRTFs depending on the particular parametrization of
rays.

An LRTF can be defined either implicitly and evaluated
procedurally as in sequential ray tracing or it can also be
sampled into a table and evaluated approximately by inter-
polation. The ray transfer can be then evaluated in O(1)
time with respect to the number of lens elements. Precom-
putation of the LRTF can be utilized for optimizing the ray
generation in both real-time and off-line rendering. An-
other benefit is the lack of need for specialized intersection
routines for different types of lens elements in the evalu-
ation stage. An interesting possibility is in measuring the
ray transfer function from real world lenses without being
aware of the internal design!

Given some assumptions we propose one of the LRTF
parametrizations which we find useful. A ray in the 3D
Euclidean space can be parametrized by a 3D position and
a 3D direction. For the direction there are in fact only two
degrees of freedom (eg. when using spheric coordinates).
Similarly the ray position can be related to the outer sur-
face of the lens which is assumed to be a smooth finite 2D
surface (rays that do not intersect it cannot pass through
the lens). The rays (both incoming and outgoing) can be
thus parametrized by four parameters in total.

From the many possible ways of parametrizing the ray
position we have chosen the hemispherical coordinates of
the ray intersection with the bounding hemisphere over the
aperture of the outer lens element surface (eg. the base cir-
cle of a hemispherical cap). It is independent on the exact
shape of the outer lens surface and can be constructed even
when only the aperture radius of the outer lens surface is
known. Rotation around the optical axis is simple. The po-
sitions of the front and back lens apertures on the optical
axis should be taken into account in the transformations
for the bounding hemispheres.

In this parametrization we assume the range of ray di-
rections is limited to a hemisphere pointing outwards from
the lens. This should be no problem for the majority of
lenses except for some fish-eye lenses. The obvious way
to represent ray directions would be spherical coordinates,
but their drawback is a singularity at the pole which results

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



in poor sampling of the most important region.
It is better to transform the point on the unit hemisphere

(direction) to a unit circle via stereographic projection [8].
The rotation around the optical axis is still easy and the
projection is without a singularity.

We define the ray direction to be represented relatively
to the intersection position (the position on the unit circle
is merely rotated). We can then denote the parametrized
ray as (θ ,φ ,sx,sy), where θ and φ are declination and
azimuth of the position and (sx,sy) are stereographic co-
ordinates of the direction; θ ∈ [0; π

2 ];φ ∈ [0;2π];sx,sy ∈
[−1,1].

It can be shown that for lenses rotationally symmetric
around the optical axis the LRTF in this parametrization
is also rotationally symmetric. In particular if we denote
the LRTF as L it holds L(θ ,φ ,sx,sy) = L(θ ,0,sx,sy) +
(0,φ ,0,0). This can be exploited to reduce the sampled
table dimension to three, with the values remaining a 4-
vector.

For the purposes of evaluating the function values from
3D texture we can rescale the parameter ranges to [0;1]. In
case of ray absorption the LRTF is undefined and this can
be represented with a special value; to minimize disconti-
nuities (1,0,0,0) might be a good candidate.

In summary, the ray transfer through a complex lens
system might be described by a sampled LRTF table, radii
of the front and back lens element apertures and their dis-
tance along the optical axis. The LRTF table can be pre-
computed and then utilized to speed up the ray generation
phase of ray tracing. A ray has to be procedurally trans-
formed to the parametric form before the LRTF evaluation
and back to the standard form afterwards. The concept
maps well to the current GPU architectures as each sam-
pled function value can be precomputed in parallel and the
evaluation is based on texture lookup and interpolation, the
most optimized operations on a GPU.

5 Open problems

Depth of field How to define blur amount and depth of
field for tilt-shift configurations? For thin lenses the CoC
might be of an arbitrary conic section shape (including
infinite-size hyperbolas).

Multi-view accumulation Although it was shown that
this method can be extended to support tilt-shift config-
urations [5] no details were provided. We found the key
is still that the frusta from the lens sample point intersect
at the image of the sensor which is a general quadrilateral.
In order to obtain a rectangular frustum for rasterization
a proper orientation of the near plane must be found. A
promising way of finding the correct transformation ma-
trices is described in a method from the computer vision
area [23].

The method approximating the image from a complex
lens system with many blended pinhole views [14] should

be tested again on the modern hardware and compared
with the other methods. Anyway, it would probably have
similar limitations as the original multi-view accumula-
tion.

Image-based ray tracing A single pinhole frustum
might not contain all parts of the scene visible from other
viewpoints on the lens. This might be a problem especially
for very wide angle lenses and also for near objects. The
conditions when the error is significant should be exam-
ined.

The depth-interval layer decomposition is dependent on
the CoC size which is well-defined only for non-tilt con-
figurations. Given a blur metric for tilt-shift configurations
could the method with this kind of layers produce correct
results?

Obtaining layered depth images via ray tracing instead
of rasterization in the depth-peeling phase should be ex-
plored. The sampled scene representation would still al-
low cheaper intersections for large scenes and rendering
the layered depth images would be simpler for tilted con-
figurations as there would be no need for computing suit-
able frustum matrices.

Lens ray transfer function Better parametrizations of
the LRTF should be given. The one proposed here is lim-
ited by the range of ray directions and might waste some
memory with larger undefined areas. As for the range of
directions on a spherical cap larger than a hemisphere the
stereographic projection is general enough to produce just
a larger circle which can be rescaled to the unit size.

Also the practical LRTF application to accelerate ray
generation in a ray tracer should be measured for accuracy
and performance.

The LRTF might be measured from real-world lenses
for which a method and an apparatus need be constructed.
This could allow eg. to match the lens characteristics of a
real film footage with synthesized images without know-
ing the exact internal lens design.

By changing the aperture stop size or shape only the
domain of the LRTF is affected not the values. Thus a
variable-sized diaphragm even with an asymmetric shape
could be represented outside the LRTF table. Also the
properties of the LRTF domain might be exploited for a
more compact representation (eg. a boundary of a compact
region).

Does the LRTF provide enough information for lens
flare rendering or what additional information is needed
to produce correct results without having the original lens
design?

Can the LRTF model be extended to support movable
element groups (zoom lenses, focusing by group move-
ments) without an excessive memory usage?

Currently, this LRTF parametrization assumes ray trans-
fer at a single wavelength which would lead to a lack of
chromatic aberration. Would it be possible to exploit some

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



coherence to support wavelength dependence without in-
creasing the dimensionality of the precomputed LRTF ta-
ble?

Rendering with wavefront aberrations was shown in the
filtering approach [1]. Could they be used to represent ray
transfer in complex lenses? As the list of Zernike polyno-
mial coefficients directly represents the amount of the var-
ious optical aberrations this representation might enable
modifying the behavior of existing lenses and synthesizing
new ones without the need to have a geometrical design.
Also the memory consumption could be quite low.

Lens sampling Sampling of the effective pupil of com-
plex lenses should be revised for real-time rendering. In
[28] the pupil is precomputed for each pixel on the sensor
which is valid only for a single sensor plane. A more com-
pact representation of an approximate effective pupil func-
tion for an arbitrary sensor plane should be explored, along
with its precomputation and usage for sampling. The as-
sumption of rotation symmetry can again be used for di-
mension reduction.

Filtering and PSFs The usage of PSFs of complex lens
systems with filtering methods (representation, precompu-
tation, evaluation, etc.) should be further explored.

The comparison of the fundamental approaches leads to
a question for a hybrid method of ray tracing and filter-
ing which would offer optimal sampling while computing
visibility easily. One of the possibilities might be in mod-
ifying the PSF kernel on the fly – invisible parts (decided
by ray tracing) would be ”cut off” from the rasterized PSF
kernel, then it would be differentiated and spread.

Is it possible to modify spreading filters to work with
physically correct PSFs of tilt-shift configurations? Note
that the rotated sensor plane may result in infinite conic
section PSFs even for a simple thin lens and also the ra-
diometric situation with natural vignetting is more com-
plicated.

Can PSFs in polynomial spreading filters be represented
by orthogonal polynomials (eg. Zernike polynomials) with
strictly limited values in order to suppress numerical pre-
cision problems?

It should be verified whether fast spreading filters are
really compatible with solving visibility by per-pixel lay-
ers using depth-peeled image layers. Their advantage is in
requiring fewer layers compared to depth-interval layers.
Per-pixel layers [22] seem to be suitable for spreading fil-
ters since in the original method a kind of spreading was
done, albeit by different means. Unfortunately, [18] only
mention per-pixel layers without providing details whether
they in fact used per-image or per-pixel layers.

Per-pixel layers do not seem to be fully compatible with
precomputed rasterized PSF differences since some per-
pixel computations has to be made. Note that for decid-
ing the output for a pixel of the rasterized CoC we need
to know the source and destination pixel depths. The in-

formation on source pixels cannot be restored during the
phase of spreading of PSF differences. A way to combine
those two methods which seems to be possible is the fol-
lowing procedure:

1. take the original rasterized PSF

2. for each of its pixels make decision to which output
layer it should go, which produces three clipped PSFs

3. differentiate each of them

4. spread each of them into the corresponding layer

Ie. spreading could be done after deciding the output layer
and for each part of the PSF separately.

6 Conclusion

In this paper we have presented the various approaches to
interactive physically-based depth-of-field rendering and
compared them in several aspects. We have proposed an
alternative representation of the ray transfer behavior of
complex lens systems which might be useful for accelerat-
ing the ray generation in ray tracing methods. Most impor-
tantly we have shown many open problems in the area of
rendering with complex camera models which could serve
as a basis for further research.

7 Acknowledgments

I would like to thank to Alexander Wilkie and Josef Pe-
likán for their support.

References

[1] Brian A. Barsky. Vision-realistic rendering: simu-
lation of the scanned foveal image from wavefront
data of human subjects. In Proceedings of the 1st
Symposium on Applied perception in graphics and
visualization, APGV ’04, pages 73–81, New York,
NY, USA, 2004. ACM.

[2] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein,
Jeffrey A. Pang, and Meng Yu. Camera models and
optical systems used in computer graphics: part i,
object-based techniques. In ICCSA’03: Proceedings
of the 2003 international conference on Computa-
tional science and its applications, pages 246–255,
Berlin, Heidelberg, 2003. Springer-Verlag.

[3] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein,
Jeffrey A. Pang, and Meng Yu. Camera models and
optical systems used in computer graphics: part ii,
image-based techniques. In ICCSA’03: Proceedings
of the 2003 international conference on Computa-
tional science and its applications, pages 256–265,
Berlin, Heidelberg, 2003. Springer-Verlag.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



[4] Brian A. Barsky and Todd Kosloff. Algorithms for
rendering depth of field effects in computer graph-
ics. Proceedings of the 12th WSEAS international
conference on Computers 2008, 2008.

[5] Brian A. Barsky and Egon Pasztor. Rendering
skewed plane of sharp focus and associated depth of
field. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Sketches, page 92, New York, NY, USA, 2004. ACM.

[6] Paul Bourke. Offaxis frustums - opengl. July 2007.

[7] Robert L. Cook, Thomas Porter, and Loren Carpen-
ter. Distributed ray tracing. SIGGRAPH Comput.
Graph., 18:137–145, January 1984.

[8] H.S.M. Coxeter and H.S.M. Coxeter. Introduction to
geometry. Wiley Classics Library. Wiley, 1989.

[9] Xavier Décoret. N-buffers for efficient depth map
query. Computer Graphics Forum, 24(3), 2005.

[10] Joe Demers. GPU Gems, chapter Depth of Field: A
Survey of Techniques. Addison-Wesley, 2004.

[11] Cass Everitt. Interactive order-independent trans-
parency, 2001.

[12] Markus Gross and Hanspeter Pfister. Point-Based
Graphics (The Morgan Kaufmann Series in Com-
puter Graphics). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2007.

[13] Paul Haeberli and Kurt Akeley. The accumulation
buffer: hardware support for high-quality render-
ing. In SIGGRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics and inter-
active techniques, pages 309–318, New York, NY,
USA, 1990. ACM.

[14] Wolfgang Heidrich, Philipp Slusallek, and Hans-
Peter Seidel. An image-based model for realistic
lens systems in interactive computer graphics. In
Proceedings of the conference on Graphics interface
’97, pages 68–75, Toronto, Ont., Canada, Canada,
1997. Canadian Information Processing Society.

[15] Matthias Hullin, Elmar Eisemann, Hans-Peter Sei-
del, and Sungkil Lee. Physically-based real-time lens
flare rendering. SIGGRAPH 2011, 2011.

[16] James T. Kajiya. The rendering equation. SIG-
GRAPH Comput. Graph., 20:143–150, August 1986.

[17] Craig Kolb, Don Mitchell, and Pat Hanrahan. A re-
alistic camera model for computer graphics. 2002.

[18] Todd Kosloff, Michael Tao, and Brian A. Barsky.
Depth of field postprocessing for layered scenes us-
ing constant-time rectangle spreading. Graphics In-
terface 2009, 2009.

[19] Todd Jerome Kosloff. Fast Image Filters for Depth
of Field Post-Processing. PhD thesis, EECS Depart-
ment, University of California, Berkeley, May 2010.

[20] Sungkil Lee, Elmar Eisemann, and Hans-Peter Sei-
del. Depth-of-field rendering with multiview syn-
thesis. ACM Transactions on Graphics (Proc. ACM
SIGGRAPH ASIA), 28(5):1–6, 2009.

[21] Sungkil Lee, Elmar Eisemann, and Hans-Peter Sei-
del. Real-time lens blur effects and focus control.
ACM Transactions on Graphics (Proc. ACM SIG-
GRAPH’10), 29(4):65:1–7, 2010.

[22] Sungkil Lee, Gerard Jounghyun Kim, and Seung-
moon Choi. Real-time depth-of-field rendering using
point splatting on per-pixel layers. Computer Graph-
ics Forum (Proc. Pacific Graphics’08), 27(7):1955–
1962, 2008.

[23] Kok-Lim Low and Adrian Ilie. View frustum opti-
mization to maximize object’s image area, 2001.

[24] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and
Paul Debevec. High Dynamic Range Imaging: Ac-
quisition, Display, and Image-Based Lighting (The
Morgan Kaufmann Series in Computer Graphics).
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

[25] Cary Scofield. 2 1/2—d depth-of-field simulation for
computer animation. pages 36–38, 1992.

[26] Jonathan Shade, Steven Gortler, Li-wei He, and
Richard Szeliski. Layered depth images. In Pro-
ceedings of the 25th annual conference on Computer
graphics and interactive techniques, SIGGRAPH
’98, pages 231–242, New York, NY, USA, 1998.
ACM.

[27] Peter Shirley and Kenneth Chiu. A low distortion
map between disk and square. journal of graphics,
gpu, and game tools, 2(3):45–52, 1997.

[28] Benjamin Steinert. Simulation of real photographic
phenomena in computer graphics. Master’s thesis,
Universitat Ulm, 2009.

[29] Bohumir Zamecnik. Interactive preview renderer for
complex camera models. Master’s thesis, Charles
University in Prague, Faculty of Mathematics and
Physics, December 2011.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)


