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Welcome to CESCG 2012!

This book contains the proceedings of the 16th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars. Again this year, CESCG proceedings have an ISBN (978-3-9502533-4-4)
and will therefore remain retrievable as long as there are libraries!

The long history of CESCG has started in 1997 in a medium-sized lecture room
in Bratislava, bringing together students from Bratislava, Brno, Budapest, Graz,
Prague, and Vienna. The idea found wide appraisal and the seminar moved to the
beautiful castle of Budmerice, where it was held for 8 consecutive years, constantly
growing in size and attraction. It was just in the 10th anniversary year 2006 that
CESCG had to take a detour to move to Častá-Papiernička Centre, while it was
back in Budmerice castle since 2007. Unfortunately, since 2011 the Budmerice
castle is not available for scientific activities. After spending the previous year in
Viničné, for this year we are moving to the beautiful castle in Smolenice.

Who are the CESCG heroes who made this year’s seminar happen? In no
particular order – because many people were involved equally – we would like to
thank the organizers from Vienna: Michael Wimmer, Anita Mayerhofer, Werner
Purgathofer, and especially Martin Ilč́ık for taking care of the complete reviewing
process and scientific program preparation. We are very thankful to the CESCG
organizers from Bratislava, mainly Andrej Ferko, always an inspiration to CESCG;
and Matej Novotný, Ela Šikudová, David Běhal, Janka Dadová, Roman Ďurikovič,
and Ján Lacko for the excellent preparations and on-site organization.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. Therefore we are proud to state
that we have achieved again a very high number of 15 participating institutions
and a very tight time schedule of 27 valuable student works and two invited talks.
We welcome groups from Bratislava, Slovakia; Brno (VUT and MU), Plzeň and
Prague (CTU and KU), Czech Republic; Budapest, Hungary; Bonn, Germany;
Graz and Vienna, Austria; Szczecin, Poland; Bergen, Norway; Maribor, Slovenia;
and Sarajevo (Univ. and SSST), Bosnia and Herzegovina.

We assembled a large International Program Committee of 21 members, allow-
ing us to have each paper reviewed by three IPC members during the informal
reviewing process. We would like to thank the members of the IPC for their con-
tribution to the reviewing process. The IPC of CESCG 2012 consists of:

Jǐŕı Bittner Ivana Kolingerová Marc Streit
Alan Chalmers Radoslaw Mantiuk László Szirmay-Kalos
Silvester Czanner Stephan Mantler Veronika Šoltészová
Andrej Ferko Jozef Pelikán Ania Tomaszewska
Jasminka Hasić Selma Rizvić Michael Wimmer
Helwig Hauser Jǐŕı Sochor Pavel Zemč́ık
Reinhard Klein Markus Steinberger Borut Žalik



The first invited talk “Having Fun With Tables: Research into novel interfaces –
two dimensions and above” will be held by Joaquim A. Jorge from Departamento
de Engenharia Informática of Instituto Superior Técnico, Portugal. The second
invited talk by Carol O’Sullivan from School of Computer Science and Statistics
of Trinity College Dublin, Ireland, will be about “Perceiving Realism in Virtual
Worlds”.

The seminar is held under the auspices of the Austrian Ambassador to Slovakia,
His Excellency Dr. Josef Marcus Wuketich, and is co-organized with the Spring
Conference on Computer Graphics (SCCG), which takes place right after the
seminar.

The organization of a seminar where there are only low expenses for the stu-
dents requires funding. We are very thankful to the sponsors of CESCG 2012:

– VRVis, a research center for virtual reality and visualization in Vienna
– OCG, the Austrian Computer Association
– SISp, Slovak Society for Computer Science
– Sféra, graphical information systems
– Eurographics, the European Association for Computer Graphics
– The Ministry of Education, Science, Research and Sport of the Slovak Republic
– PC Revue, a slovak computer magazine

Please note that the electronic version of these proceedings is also available at
http://www.cescg.org/CESCG-2012/.

Vienna, April 2012 Michael Wimmer
Jǐŕı Hlad̊uvka

Martin Ilč́ık
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Having Fun With Tables: Research into novel interfaces – two
dimensions and above

Joaquim A. Jorge

Instituto Superior Técnico
Portugal

Abstract

Work on interactive tabletops and surfaces has focused mostly on two-dimensional issues, such as
multi-finger gestures and tangible interaction. Interesting as it is, however this picture is missing
several dimensions. I will describe work on 2D and 3D semi-immersive environments and present
novel on-and-above-the-surface techniques based on bi-manual models to take advantage of the
continuous interaction space for creating and editing 3D models in stereoscopic environments. I
will also discuss means to allow for more expressive interactions, including novel uses of sound
and combining hand and finger tracking in the space above the table with multitouch gestures on its
surface continuously. These combinations can provide alternative design environments and allow
novel interaction modalities.

Bibliographical Details Joaquim Jorge is a Professor at Instituto Superior Técnico (IST/UTL),
the School of Engineering of the Technical University of Lisboa, Portugal, where he teaches User
Interfaces and Computer Graphics. He received PhD and MSc degrees in Computer Science from
Rensselaer Polytechnic Institute, Troy, NY, in 1995. He is Editor in Chief of Computers & Graphics
Journal and a member of the ERCIM Editorial Board. He is a member of ACM/SIGGRAPH, IEEE
Computer Society, IFIP TC13 (Human Computer Interaction). He has also served on the EG Ed-
ucation Board since its inception in 2001 until 2011. Joaquim Jorge’s interests are in Calligraphic
and Multimodal User Interfaces, Visual Languages and Pattern Recognition techniques applied to
Human-Computer Interaction. He was elected Fellow of the Eurographics Association in 2010.
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Perceiving Realism in Virtual Worlds

Carol O’Sullivan

Trinity College Dublin
Ireland

Abstract

We may not even realise it, but Virtual Worlds are becoming more and more a part of our lives.
We see them in movies, video games, online communities and even in serious applications, such as
health and education. Research in the field of Visual Computing has contributed greatly to increas-
ing the realism of virtual objects, scenes and characters, by drawing on fundamental mathematical,
scientific and technical principles to create stunning visual effects. Ultimately, however, the realism
of a virtual world is in the eye of the beholder, so human perception must also be considered as
an integral part of the creative process. In this talk, I will discuss some of the challenges of creat-
ing compelling dynamic scenes, from simple colliding spheres to a complex populated Metropolis.
Bibliographical Details

Bibliographical Details Carol O’Sullivan is the Professor of Visual Computing in the school of
Computer Science in Trinity, where she leads the Graphics, Vision and Visualisation group (GV2)
and is the Director of the newly established Centre for Creative Technologies. After receiving a B.A.
in Mathematics from Trinity College in 1988, she worked for several years as a software engineer in
industry (mainly in Germany), followed by a Masters degree from Dublin City University in 1996
and a PhD in computer graphics from TCD in 1999. She has published over 120 peer-reviewed
papers and supervised over 20 PhD students since then. She was elected as the first Irish Fellow of
the European Association for Computer Graphics (Eurographics) in 2007, and as a Fellow of Trinity
College in 2003. She is the co-Editor in Chief of the ACM Transactions on Applied Perception,
and the Associate Editor in Chief for Special Issues of IEEE Computer Graphics and Applications.
She has chaired several international conferences, including Eurographics 2005, and has been a
member of many international program committees, including the SIGGRAPH and Eurographics
papers committees.
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Progressive Hulls: Application on Biomedical Data

David Cholt∗

Supervised by: Josef Kohout†

Department of Computer Science and Engineering
University of West Bohemia

Pilsen / Czech Republic

Abstract

A coarse outer hull of a mesh is a good tool used in com-
puter graphics to reduce algorithm complexity, especially,
in applications such as collision detection or ray-tracing.
It is often required that the hull has some very specific pa-
rameters concerning its shape and quality since these in-
fluence general flexibility and numerical stability of the
algorithms. This paper overviews existing problem ap-
proaches, their downsides for coarse outer hull creation,
and describes Progressive Hull algorithm, which produces
coarse hulls that maintain the general shape of the origi-
nal triangulated mesh while containing the original mesh
inside its interior. However, when this algorithm is used
on a biomedical mesh extracted from volumetric data, one
can observe frequent artifacts in the produced hull caused
by local imperfections in the meshes. In this paper, we,
therefore, present a few modifications to the original Pro-
gressive Hull algorithm that result not only in a suppres-
sion of hull artifacts and a better overall hull quality but
also in a shorter execution time.

Keywords: Progressive Hull, Coarse Hull, Outer Hull,
Mesh Decimation, Progressive Hull Application

1 Introduction

A coarse outer hull of a mesh is any hull that encapsulates
the mesh completely and has a lower number of primitives
(vertices, triangles) and, if possible, preserves the shape of
the mesh. It can be used in many applications, for example
in ray-tracing where one can detect the possibility of a ray
intersecting the mesh by finding the intersection with the
hull first. Given that the hull contains less polygons than
the original mesh, the hull intersection test is faster. Fur-
thermore it is more precise than tests using bounding box
or convex hull, since the shape of the coarse outer hull is
more similar to the shape of the mesh.

In our case we exploited the properties of the hull in in
our project aiming at a simulation of human musculoskele-
tal system. Every muscle in this system is represented by a
triangulated surface mesh which is wrapped around bones

∗cholt@students.zcu.cz
†besoft@kiv.zcu.cz

and gets deformed as these bones move. The deforma-
tion method, which is based on gradient domain deforma-
tion technique and described in [4], requires a very specific
coarse outer hull of the muscle mesh as its input in order to
speed up the deformation process. The deformation is per-
formed on the hull and projected on the muscle mesh using
barycentric coordinates that were previously constructed.
This allows the method to be more numerically stable and
faster. The coarse hull of the mesh therefore must meet
following criteria:

• Low primitive count compared to original mesh - the
hull has to be simple enough, so that later complex
computations can be performed on a limited number
of primitives. Less than 1

10 of the original primitive
count is desired

• Outer hull - all primitives of the hull must be outside
of the mesh, leaving some spacing between the mesh
and the hull. This is due to barycentric coordinates
requirements

• Shape preservation - the hull has to ”trace” the shape
of the original mesh. In other words, the spacing be-
tween the original mesh and the hull has to be consis-
tent

• Non-self-intersecting hull - edges and triangles of the
hull may not intersect the hull as this would cause
instability in deformation computation

• The hull has to be manifold and should be smooth
(depending on the muscle data), otherwise this would
cause deformation instability as well

Outline of this paper follows. Section 2 describes exam-
ples of methods used to obtain coarse outer hulls and their
disadvantages, Section 3 describes Progressive Hull algo-
rithm, which should produce hulls that meet the criteria
above, Section 4 introduces our modifications of the algo-
rithm for better results on our biomedical data, followed by
Sections 5 presenting experimental results, a hull quality
comparison and execution time measurements. Our paper
is concluded in Section 6.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 State of the art

In this section we briefly describe the methods, that can be
used to obtain a coarse outer hull of a triangulated mesh.
Since we use the coarse hull in the deformation method de-
scribed in [4], here we discuss some possible approaches
to obtain a specific hull that meets all the criteria described
in Section 1. This paper does not provide an overview of
methods used in collision detection, raytracing, silhouette
clipping or another methods that use the coarse outer hull
as we did not use it for those purposes.

Bounding box, as an example of a very simple coarse
hull, does not preserve the shape of the original mesh.
Convex hull meets more of the criteria specified, but the
spacing between the mesh and the hull varies significantly,
especially if the mesh is rugged.

Better approach to the problem is to create an alpha
shape [2], which is an object created from a finite set of
vertices, in our case the mesh vertices. For the sake of
simplicity, we will describe the construction and problems
of an alpha shape in two dimensions. The method has
one tuning parameter α that defines a radius of an abstract
disc. The method finds such discs that have the property
that two of the vertices lie on their boundary and they
do not contain any other vertices. Vertices of the alpha
shape are generated at the intersection of two neighboring
discs. The situation is similar for three-dimensional space,
only one has to use spheres instead of discs and search for
intersections of three neighboring spheres. We can addi-
tionally implement a restriction that the intersection must
lie outside of the original mesh in order to achieve outer
hull. This method for finding an ”alpha hull” from a set of
points allows one to create an object, that is not necessar-
ily convex and therefore, to certain extent, resembles the
shape of the original mesh. However, this approach has
four main problems:

1. If the α parameter is too large, the resulting hull suf-
fers from the same problem as convex hull, i.e. the
spacing between the alpha hull and the mesh varies
significantly (for α → ∞ the alpha hull is equal to
convex hull; see Fig. 1a)

2. If the α parameter is too small, the hull would in-
tersect the original mesh (see Fig. 1b). Very small
α parameter also causes the hull to be divided into
number of components that can not form the hull of
the original mesh by definition.

3. Some (arguably important) details in the original
mesh may be lost in the process (Fig. 1a)

4. Even if we would be able find an optimal α param-
eter that ensures the alpha hull is a coarse outer hull
of the object, the primitive count of the hull would
be too high, approximately the same as the primitive
count of the original mesh. In general, the number of
primitives in resulting hull cannot be controlled well
enough in alpha shapes

(a) (b)

Figure 1: (a) alpha shape with too large α parameter. (b) alpha
shape with too small α parameter.

Another possible approach is to decimate the mesh and
therefore obtain a coarse mesh directly from the original
mesh. Decimated mesh maintains the shape of the mesh
by definition and has desired lower primitive count. One
can assume that enlarging the mesh by moving its vertices
outwards in the direction of their surface normal would
create a coarse outer hull.

The problem is how much we need to enlarge the dec-
imated mesh. If we enlarge the mesh too much, self-
intersections may occur (see Fig. 2 for example). How-
ever, if we do not enlarge it enough, the decimated mesh
would intersect the original mesh, as many decimation al-
gorithms are based on volume preservation.

(a) (b)

Figure 2: (a) Decimated mesh. (b) Enlarged decimated mesh
with self-intersection introduced.

Nevertheless, this approach is simple to implement and
has a sufficient shape and primitive count control, though
it may give inconsistent results. We need an algorithm
that creates an outer hull of the mesh by decimating and
enlarging it at the same time, with a better control of how
the decimation is performed.

3 Progressive hull

Progressive Hull [7] is a generalized mesh simplification
process that meets all the criteria described in Section 1.
The method is based on decimation of the mesh by a se-
quence of edge collapses, that ensures that progressively
created hull contains the whole original mesh in its inte-
rior volume.

Figure 3 shows how the edge e, surrounded by faces
{ f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2} and defined by ver-
tices Ve1 and Ve2 collapses. Vertices Ve1 and Ve2 are joined

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
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Figure 3: Edge collapse

by this operation to form a new vertex Vnew and affected
primitives are adjusted accordingly. Note that faces fd1
and fd2 are removed from the mesh and therefore every
collapse reduces the number of faces in the mesh by two.

In order for the sequence of such collapses to result in
a progressive hull, we need to calculate a specific position
for the vertex Vnew. Paper [7] shows that in order for the
mesh Mi (after one edge collapse) in every iteration i to
be an outer hull of the mesh Mi−1 (before the collapse),
the volume of the mesh Mi must be greater or equal to the
volume of the mesh Mi−1. This can be achieved by placing
the vertex Vnew inside the intersection of half spaces above
faces { f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2} (see Fig. 4 for
simplified two-dimensional case).

Figure 4: Position of vertex V constrained to lie in intersection
of half spaces defined by planes with normals n1 and n2

The volumes of the meshes Mi−1 and Mi are computed
as a sum of the tetrahedral volumes defined by each mesh
triangle’s vertices and the origin point. Since we need the
hull to be similar to the original mesh as much as possible,
we place the vertex Vnew in a way that it causes the smallest
possible volume gain. That is a linear programming prob-
lem with an objective of mesh volume gain minimization
and constrains defined by equations of half spaces above
faces { f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2}.

Every mesh edge enters a priority queue with a priority
based on the volume gain introduced by its collapse.
The lower is the change, the higher is the priority. The
algorithm follows:

1. For every edge in the mesh, compute the
volume change that would be introduced
by collapsing the edge. That requires
solving linear programming problem. Store
the solution for later use.

2. Insert the edge to a priority queue, low
mesh volume gain represents a high priority
in the queue

3. While the queue is not empty and the target
primitive count is not reached:

(a) Remove the edge from the priority
queue and collapse it

(b) Recalculate priority of every edge
that was affected by this collapse
and update their position in the
priority queue by solving the linear
programming problem again

One can see that this algorithm can be quite slow. Many
of the linear programming problem solutions are redun-
dant, as they are invalidated by a later nearby edge col-
lapse. Additionally, a time-consuming solution of the lin-
ear programming problem is required for every edge pri-
ority update.

Platis and Theoharis [6] suggested using a faster ap-
proach to priority computation. Instead of using vertex
Vnew computed by solving the linear programming prob-
lem to determine the volume of the mesh Mi after the edge
collapses, they proposed using an arithmetic average of
the vertices in the one ring area surrounding the collapsing
edge, Vavg.

The volume computed using this average scales simi-
larly to the volume originally computed using vertex Vnew,
i.e. in relatively flat area adjacent to the edge e, the volume
gain caused by imaginary collapse into the vertex Vavg is
lower than in rugged area and therefore the induced pri-
ority is higher. This approach is considerably faster than
solving the linear programming problem.

4 Modified progressive hull

Papers [7] and [6] do not mention any major problems
regarding the quality of the resulting progressive hulls.
However, our implementation of described methods per-
formed irregular hull construction, showed significant nu-
merical instability and produced low quality triangles in
the hull. This was caused by imperfections in our meshes,
presence of nearly or fully parallel triangles, local non-
manifold areas in the mesh and other problems, which
were probably not considered in [7] and [6]. Therefore, we
introduced several modifications to the algorithm in order
to resolve these issues.

4.1 Volume increase computation

The original paper [7] suggests the volume of object
formed by faces { f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2} be-
fore and after a single edge collapse (see Fig. 3) to be used

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
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as collapse priority. Note that faces fd1 and fd2 become
singular after the collapse and therefore their contribution
to the volume after the collapse is zero.

(a) (b)

Figure 5: Sphere decimation from 480 to 250 triangles. (a) Ir-
regular decimation (b) Regular decimation after priority compu-
tation fix

However, a priority computed from this volume gain
makes the algorithm to process the shorter edges first,
since their smaller adjacent triangles are more likely to
introduce a smaller volume change. The areas formed by
small triangles are progressively decimated into areas with
presumably a bit larger, but still small enough triangles,
forcing the algorithm to process them early again. As a
result, the decimation runs irregularly around the mesh.
Example can be seen in Figure 5a. One can see that the
area around the sphere equator remains untouched as the
caps of the sphere contain smaller areas with smaller local
volumes.

To address this issue, we use global mesh volume gain
to compute the priority. The volume gain caused by the
edge collapse is computed relatively to the volume of the
original mesh, not to the collapse area, i.e. as the sum of
volume gains caused by all previous edge collapses and
the volume gain caused by the edge collapse1. When
the area with small triangles is progressively decimated,
it grows outwards, the global volume gain increases and
the computed priority decreases. Consequently the prior-
ity gets lower than the priority in unchanged areas with
larger triangles, resulting in regularly performed decima-
tion around the whole mesh (see Fig. 5b) and limiting the
undesired variation of spacing between the hull and the
original mesh.

4.2 Algorithm stability

The mesh deformation method, which is described in [4],
uses a hull of the mesh to speed up the computation. The
vertices of the mesh are linked using barycentric coordi-
nates to the near vertices of the hull, the deformation is
then computed on the hull and the results are projected
back to the mesh, deforming it accordingly. Because of
this, the hull has to preserve the shape of the original mesh
closely. Ideally, the spacing between the hull and the mesh
is constant and the computed deformation is distributed

1The collapse of the edge for which the priority is computed

evenly to the vertices of the original mesh. Note that one
vertex of the hull represents a number of vertices of the
original mesh and therefore any artifact present on the hull
can cause the deformation projection to behave very unex-
pectedly.

When we used the original algorithm on the surface
biomedical data extracted from volumetric data, we ob-
served its high instability, artifacts resembling ”spikes”
were often present on the produced hull.

If there are two nearly parallel triangles in the edge col-
lapse area (see Figure 6a), the optimal solution to the linear
programming problem is a very distant vertex. Provided
that the collapsing edge is short, the volume gain caused
by the collapse is relatively small, the collapse priority is
high and the edge is collapsed, resulting in a ”spike” on
the surface of the hull (see Figure 6b).

As the number of iterations rises, the artifacts are more
common and accumulate. The resulting hull is then unus-
able for any later use. In order to prevent these artifacts
from developing, we added a test that disallows the edge
collapses causing them.

(a) (b)

Figure 6: Algorithm instability. (a) Cause of the problem (b)
Spikes on the hull

Our test is inspired by Platis and Theoharis [6].
They proposed using Gueziec’s [3] test of triangle de-
viation in progressive hulls to prevent creases on the
hull. They test the angle between normals of triangles
{ f0, f1, ..., fm, fm+1, ..., fn} before and after collapsing the
edge they are adjacent to (again, see Fig. 6a). However,
as these normals are often unchanged, the spikes may still
occur.

We use a slightly different method of checking the dec-
imation quality. We compute angles αn between normals
of triangles { f0, f1, ..., fm, fm+1, ..., fn} adjacent to the ver-
tex Vnew in pairs. If any angle αn is larger than the user-
specified threshold αt , we disallow the collapse, because a
large angle between the normals of the triangles implies a
small angle between the triangles. This small angle be-
tween two neighboring triangles indicates an undesired
spike on the hull. Figure 7 shows, how are the angles the
situation illustrated in Fig. 6a evaluated and since αn >αt ,
the collapse is therefore disallowed.

Since our biomedical data mainly consists of smooth
surfaces (such as bones and muscles), any local decima-
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Figure 7: Triangle normal angle check

tion has to be relatively smooth, without any spikes. If
some spikes are already present in the original mesh and
would result in spike-like area on the hull, they are simply
skipped. Experimental results show that these artifacts in
the mesh are later ”absorbed” by the hull as the surround-
ing areas are decimated. Therefore, these artifacts do not
occur on the hull and the method becomes very stable in
the required (and usually large) number of iterations.

4.3 Vertex and triangle quality

Many decimation methods (e.g. [5, 3, 6]) perform ver-
tex valence test. Due to our better priority computation
(see Section 4.1), our algorithm creates a regular hull of
the mesh. Experimental results show that this test is not
needed and the vertex valence is balanced automatically.

The shape of the triangles is also important. Generally,
any computations are more stable if performed on compact
triangles. Platis and Theoharis [6] suggest performing a
triangle compactness test analogically to the test used by
Gueziec [3]:

c =
4
√

3a
l2
0 + l2

1 + l2
2

where a is a positive area of the triangle and l0, l1 and l2
are the lengths of its three sides. This number represents
a quality of a triangle, smaller for ”sliver” triangles that
cause numerical instability in later use. Therefore, dis-
allowing the edge collapse if the triangle compactness of
any of the faces { f0, f1, ..., fm, fm+1, ..., fn} is lower than
an user-specified threshold results in a hull, which con-
tains only sufficient quality triangles.

We use a different simple test. We check the largest in-
ner angle of each triangle (based on the largest dot product
of two of the three triangle sides’ vectors). If this angle
is larger than the user-specified value, the triangle is con-
sidered to be narrow, and therefore undesired. If such an
angle is present already in the original mesh, we check, if
it gets smaller by the planned edge collapse. If the out-
come of this test is negative, naturally, we disallow the
collapse. This method is slightly more simple to imple-
ment and does not require additional triangle area compu-
tation, while the results are sufficiently good enough. On
the other hand, if the mesh contains many narrow trian-
gles, the algorithm disallows most of the edge collapses
and desired number if primitives in the hull is not reached.

4.4 Self-intersection

Sander et al. [7] hypothesize that self-intersection preven-
tion may be unnecessary. In our tests we did not observe
any self-intersections caused by our algorithm.

Nevertheless, a self-intersection in the hull is caused by
introducing a sharp crease in the mesh. This type of self-
intersection may be introduced by possible local imper-
fections in our data. Figure 8 illustrates an example of this
situation. One can see that by adjusting the αt parameter
(see Section 4.2), we can define what constitutes a sharp
crease and therefore prevent the possible self-intersection.

This adjustment however globally affects the whole dec-
imation process. Using a very small αt parameter forces
the algorithm to limit the degree of decimation in rough
and creased mesh areas. This behavior can be desired (pre-
serving subtle details in the mesh), but results in an uneven
mesh decimation.

Figure 8: Possible introduction of hull self-intersection.

The self-intersection can also be caused by the very
shape of the original mesh, where two mesh surfaces, even
without any creases, are close together, resulting in a self-
intersection in the hull. In this case, additional set of con-
strains defined by triangles that could be intersected by the
edge collapse has to be added to the linear programming
problem, as described in paper [7]. Our algorithm does not
prevent this type of self-intersections, since our biomedi-
cal data consists mainly of convex and smooth surfaces.

5 Experiments and Results

The method described above was implemented in C++
(MS Visual Studio 2010) and integrated into the Mus-
cleWrapping application2, which is a part of LHPBuilder
software being developed within the VPHOP project [1].
The algorithm was tested on data sets included with this
software. The software uses the Multimod Application
Framework (MAF) [9], a rapid development visualiza-
tion system mainly based on Visualization Toolkit (VTK)
[8]. For our experiments, a Dell Precision 470 desktop
computer (2x Intel Xeon 3.4 GHz, 2 GB DDR2 400MHz
RAM, 2x HDD 137 GB SCSI with 10,000rpm, Windows
XP Pro) was used.

2http://graphics.zcu.cz/Projects/Muskuloskeletal-Modeling
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5.1 Hull quality and spike prevention

In this section we visually compare the stability of our al-
gorithm to the stability of algorithms based on the Pro-
gressive Hull method described in this paper. The spike
artifacts are commonly present on the hulls created by the
original method [7] (see Figure 9a) and the method with a
fast priority computation described in Section 3 (see Fig-
ure 9b). Hulls created by our implementation of these
methods are obviously unusable for later use. Results of
the method with a triangle deviation test used by Platis et
al. [6] (see Section 4.2, Figure 9c) are slightly better, but
the spikes are still present on hull. As we prevent the form-
ing of the spikes specifically, the hull constructed by our
algorithm does not contain any (see Figure 9d) and there-
fore is safely usable for later computations.

(a) Sander et al

(b) Faster priority computation

(c) Platis et al

(d) Our method

Figure 9: Comparison of hull quality across the different Pro-
gressive Hull based methods

The tests shown in Figure 9 were performed on a
biomedical mesh of the left Piriformis (again extracted
from volumetric muscle data) that contains 15000 trian-
gles. The target mesh decimation was set to 90% (90% of
the primitives removed), the resulting hull in all four tests
contained 1496 triangles.

5.2 Triangle quality improvement

Using the method described in Section 4.3, we achieved a
reduction of narrow and sliver triangles on the hull. Visual
example can be seen in Figure (see Fig. 10). One can
observe a significant triangle shape quality increase.

(a)

(b)

Figure 10: Comparison of triangle quality (a) before triangle an-
gle check (b) after triangle angle check

To confirm this observation, we analyzed the mesh and
computed each triangle’s compactness using the formula
by Gueziec [3] described in Section 4.3. Histograms in
Figure 11 show that the most of the low compactness and
therefore low quality triangles are removed from the hull.

Figure 11: Triangle compactness histograms

In both tests, 90% target decimation was used. The Fe-
mur mesh was decimated from 13946 to 697 triangles.

5.3 Time consumption

In this section we compare the time consumption of our
implementation of the original method [7], the modi-
fied method using faster priority computation [6] and our
method. We performed tests on 3 meshes with the same
setting of 90% decimation.

The results in Table 1 show that our method is ap-
proximately nine times faster than the original method by
Sander et al. and it may be a couple of seconds slower
than the method by Platis et al. [6], however, the addi-
tional time consumption is an acceptable trade-off for high
quality hulls. Furthermore, considering that the method is
typically used in pre-processing, we came to a conclusion
that the slowdown of our algorithm in comparison with
Platis et al. [6] is insignificant.
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Mesh Method execution time [s]
Sander et al. Platis et al. Our method

Gluteus Minimus
104,3 8,6 14,7Mesh: 79804

Hull: 7764
Femur

215,6 17,9 19,9Mesh: 139464
Hull: 13844
Left Piriformis

193,4 28,6 23,6Mesh: 150004
Hull: 14964

Table 1: Method execution time comparison

5.4 Execution time dependency on the tar-
get decimation level

Figure 12 shows the execution time of the algorithm as a
variable of a target decimation level. This test was per-
formed on high polygon mesh representation of a Pelvis
bone. The decimation level denotes how many primitives
were removed from the mesh, for example 10% decima-
tion level means that 1

10 of the original primitive count
is removed from the mesh. For this test and default set-
tings, the maximum decimation level was 99.4% (1130 tri-
angles). Note that the preparation time is constant as the
measurements were performed using the same mesh and
therefore the number of edges entering the priority queue
is constant.

Figure 12: Execution time dependency on target decimation level

In the preparation phase, the priority queue is con-
structed. Since the priority queue is implemented using
a heap data structure, the queue construction is equiva-
lent to a sorting problem and therefore the complexity of
the preparation phase is O(Cp ∗N ∗ log(N)), where N de-
notes a number of edges in the mesh and Cp denotes a time
needed to compute the priority.

The decimation itself performs edge collapse on every
edge in the queue. The number of the edges in the queue
decreases by three with every successful edge collapse.
One edge is removed for the collapse itself and two are
removed during the area reconstruction process (edges of
the triangles, that become singular by this operation, see
Section 3). The priorities of the affected edges are up-
dated after every collapse, and the heap property is re-

stored. Since we use a data structure that maintains the
neighbors of every primitive in the mesh, the edges that
need to be updated in the queue are found in constant time.
If we presume that the number of primitives in collapse
area is constant, the overall decimation phase complexity
is O(Cc ∗Cp ∗ N

3 ∗ log(N
3 )), where N denotes a number of

edges in the mesh, Cp denotes a time needed to compute
the priority and Cc denotes a time needed to collapse the
edge. Note that Cc�Cp, as collapsing the edge requires a
linear programming problem solution.

5.5 Additional hull results

In figures 13-17 we present the results of our algorithm on
several other biomedical meshes.

Figure 13: Vastus Lateralis, 199704; 19804 in the hull

Figure 14: Vastus Medialis, 199864; 19824 in the hull

Figure 15: Psoas, 99884; 9844 in the hull

Figure 16: Iliacus, 99684; 9644 in the hull
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Figure 17: Pelvis, 1799944; 11304 in the hull

6 Conclusion and future work

The proposed method constructs coarse outer hulls that
do not contain artifacts that may appear when using the
original Progressive Hull method [7]. It also offers a bet-
ter overall quality results. Our algorithm was successfully
used in a mesh deformation technique [4] and allowed it to
be more precise, due to the fact that the Progressive Hull
shape preservation is very high and consistent.

Time consumption of the algorithm is a problem that
remains unsolved. The method, though it is nine times
faster than the original one (see Section 5.3), is still time
consuming. For many applications (including ours) this is
not a serious drawback, since the method runs only once
in the pre-processing.

The future and current work includes usage of a graph-
ics processing unit (GPU) for a faster hull construction as
well as further triangle quality enhancement using a better
triangle compactness test in order to allow the algorithm to
always perform enough iterations to create a coarse outer
hull, that contains the desired number of primitives.
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Abstract

This paper considers a ray-casting point-in polyhedron
test. Although it is conceptually the simple extension of a
well-known point-in-polygon ray-casting algorithm, vari-
ous practical problems appear in 3D, especially, when the
boundary of a geometric object is represented as a trian-
gulated surface. When a larger number of points have to
be tested regarding their positions on the considered ge-
ometric object, preprocessing may drastically reduce the
testing time. This paper considers comparisons between
three such methods: The first uses a k-dimensional tree
(kd-tree), the second an octree, and the last is based on a
three-dimensional uniform grid (3D grid). The core op-
eration for all three methods is the ray-casting, by which
the odd-even rule can be efficiently applied. Ray-casting
can be susceptible to the rounding errors, which are also
considered in this paper.

Keywords: 3D inclusion test, spatial subdivision, kd-
tree, 3D uniform grid, octree

1 Introduction

Knowing whether a certain point lies inside a given poly-
hedron can be beneficial within a wide-range of computer
graphic applications. This test is often called the inclusion
test and is usually used as a base operation in conjunction
with more complex ones, so it is essential that it satisfies
certain criteria. These usually involve speed, robustness,
and memory usage. The inclusion test has its well-known
usages in the field of collision detection, where it helps
to ensure that objects do not fall through the ground or
go through walls. It can also be found in physics simu-
lation and artificial intelligence. Many efficient methods
regarding the inclusion test were presented [15, 7, 3, 1]
that all have their advantages and disadvantages, depend-
ing on the tested object. They can be divided into two basic
groups: methods that require a data preprocessing phase,
and those that do not. The latter includes ray-crossing

∗denis.horvat@uni-mb.si
†zalik@uni-mb.si

methods [4, 3], the angular method [7], barycentric coordi-
nates [1], the winding number method [7], and others. The
time-complexity for a single tested point in those methods
without preprocessing is O(n) [15, 10], with n being the
number of vertices. Whilst these methods are suitable for
small a number of tested points, they become less and less
appropriate when the number of tested points increases. At
that stage it might be better to consider methods that per-
form data preprocessing before executing the actual inclu-
sion test. During the preprocessing phase, data is system-
atically organized, and is later used as input for the inclu-
sion test. Data preprocessing is usually the most intensive
operation, but is only performed once. Many structures
can be used for data preprocessing, such as uniform grids
[15, 12]. The expected time complexity of a inclusion test
for methods that use data preprocessing is O(log(n)) or
even O(1). In this paper, the advantages and drawbacks
of three data structures that can be used for the inclusion
test are analized, described, and compared with each other.
The problem of inclusion is solved for the boundary repre-
sentation (B-rep) of a polyhedra that consist of triangular
meshes.

The paper is organized in 7 sections. Section 2 briefly
describes the related works that have already success-
fully solved the problem of inclusion. Section 3 describes
how to find an intersection between a point and triangular
plane. Section 4 describes how to subdivide space using
a kd-tree and an octree. Solutions for how to traverse the
mentioned tree structures are also given. Section 5 ex-
plains how to voxelise a scene and use it for the inclusion
test. Section 6 tackles those problems that may arise from
rounding errors when using rays. Section 7 describes and
compares the results of experiments conducted on a single
workstation using the preprocessing methods described in
sections 4 and 5. Section 8 summarises the paper.

2 Related work

Very few original methods seem to have been developed
for the inclusion test in three-dimensional space. Most of
them are just extensions of their two-dimensional counter-
parts. Feito and Torres [2] solved the problem of inclusion
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without the usage of trigonometric functions, and without
solving any equations. In [16], a layer-based structure was
used for scene preprocessing, where the occlusion relation
between faces and edges were calculated, and the faces
were then projected on sequentially arranged layers. Later,
a binary search algorithm was used on the preprocessing
data. The storage-space used during preprocessing was
greatly reduced because much of the information for the
polyhedrons is represented implicitly. Other various meth-
ods can be used by algorithms that are popular in computer
graphics. The inclusion test using rays is closely related to
ray-tracing, as each ray must be processed by a ray tracing-
algorithm in order to determine the intersection points (if
they exist) with the tested object. In his PhD thesis [6], V.
Havran conducted a comprehensive comparison between
twelve commonly used ray-tracing algorithms for a set of
thirty test scenes. His findings were, that ray-tracing algo-
rithms based on a kd-tree achieved the best results in com-
parison with other tested algorithms. Octrees were placed
second.

3 Inclusion test using ray-casting

Methods that involve ray-casting follow a simple principle
when it comes to the inclusion tests. The basic primitive
in ray-casting is a ray

−→
R , which is defined by its origin O

and a normalized direction vector
−→
D . The ray is cast from

a tested point p, that serves as its origin, in any direction.
Next, the number of intersections is determined between
the polyhedron and the ray. If this is an odd number, p lies
inside the polyhedron, otherwise it is outside (odd-even
rule). Each individual triangle that is a part of triangular
mesh is tested with the casted-ray in order to count the
number of intersections for a single point p. This is done
by first finding the intersection of a ray with a triangular
plane. Any point P lying on

−→
R can be defined by a para-

metric representation (1) of that ray, where t is the signed
distance.

P = O+ t
−→
D (1)

The signed distance t can be calculated from (2), where
d is the distance of the plane from the origin and

−→
N the

plane normal vector.

t =
−(O−→N +d)
−→
D
−→
N

(2)

If t < 0, then the triangular plane lies behind the vector
origin any tests for that particular triangle can be aborted
(figure 1a). This also happens when the ray and triangular
plane are parallel to each other (figure 1b), or in geome-
try terms, when a dot product between the triangular plane
and
−→
D equals zero. In the case of a positive t, intersection

P with a triangular plane is calculated (figure 1c) using (1).
This intersection point is then tested with one of the point
in polygon tests without preprocessing mentioned in sec-
tion 1. As already stated, this part can be susceptible to

rounding errors, which are addressed in section 6.
Thus, the basic inclusion test is already possible, but

every triangle is tested for each point, which leads to un-
desirable results regarding speed. Consequently, data pre-
processing is introduced to ensure that the minimal num-
ber of triangles is tested. There are many structures that
can be used for spatial subdivision that all have their ad-
vantages and disadvantages depending on the given scene
[6, 1]. The next two sections explore three of these struc-
tures: kd-tree, octree, and uniform grid.

It is also important to mention, that in order for the
described methods to provide valid results, the polyhedra
should not contain missing triangles or cracks, as the ray
could go through that hole and consequentially the point
would be classified incorrectly. This problem can be tack-
led by testing each point using more rays, and selecting
the result with the majority.

4 Using tree structures for spatial
subdivision

One of the ways to minimise the number of tested trian-
gles for each individual ray, is to recursively subdivide the
space by constructing a tree structure. The divided space
volume is presented in the form of axis-aligned bounding
boxes (AABB). Each node is associated with his AABB,
whiles the bounding box of the root node covers the whole
of scene S. Nodes that have no child nodes are called
leaves. Leaves that contain at least one object of S are
called full leaves, otherwise they are empty leaves.

4.1 Kd-trees

Space can be subdivided by a k dimensional tree (kd-tree).
Here, the number of dimensions k is limited to three. A kd-
tree is a binary tree, which recursively divides space into
two new AABB. The division stops after a given criteria
is reached. What makes the kd-tree unique is that AABB
is divided by a splitting plane, which can be positioned
anywhere as long it is perpendicular to its dividing axis.
One of the ways to choose the dividing axis is to change
it in the cyclic order x,y,z one axis per each depth, usually
starting with x. The method of always splitting the longest
axis can also be considered. An example of a simple sub-
division within a two-dimensional space using a kd-tree,
is shown in Figure 2.

At this stage, two important questions regarding the tree
construction need to be answered [6]:

• Where to position the splitting plane?

• When to stop dividing?

The answer regarding the first question is very important
as it can improve the overall speed of the tree-traversing
step. Several methods are known for the positioning of the
splitting plane:

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
18



(a) Plane lies behind ray origin (b) Ray and plane are parallel to ea-
chother

(c) Ray intersects plane in P

Figure 1: Different cases of ray-plane intersection

Figure 2: Example of a non-balanced kd tree

• Spatial Median: Existing AABB is always divided
into two halves by its splitting plane.

• Object Median: The splitting plane is positioned in
such a way, that the number of objects on each side
is roughly the same. This is generally a bad idea [6],
because no leaf in the kd-tree will be an empty leaf,
meaning that when the tree is traversed, all the objects
would need to be checked for each leaf the ray passes
through.

• Cost Model: This method determines the optimal
splitting plane position by calculating the splitting
cost using a heuristic for each considered plane. The
heuristics used is called the surface area heuristic or
SAH, as described in [6, 11]. SAH uses the idea that
the chance of a ray hitting an AABB is proportional
with its surface area. This means that it is best to iso-
late the bigger empty nodes, so that the ray has the
highest chance of passing through them unhindered.
The cost is calculated using (3), where Ct is the cost
of traversal, pl , pr the probability of a ray intersecting
the left or right node, and Cl ,Cr the estimated cost of
the left and right sub-node.

Cn =Ct + pl ·Cl + pr ·Cr (3)

Next, a termination criteria is determined for when to stop
dividing and classifying the current node as a leaf. The cri-
teria used is called ad hoc termination criteria, where the

current node Cn becomes a leaf when a tree depth reaches
a certain threshold Tmax, or the number of objects in Cn is
less than the constant Omin. Both constants are determined
by the user.

After space has been partitioned using a kd-tree, the data
obtained can be used when an inclusion test is performed.
Only those leaves that the ray intersects are examined in-
stead of the whole scene. This is done with the tree traver-
sal. The recursive ray traversal algorithm TAA

rec [6, 5] was
used to traverse the kd-tree. Intersections with a polyhedra
are determined by testing all the objects from intersected
leaves using the method described in Section 3. The algo-
rithm was published by [8] and uses near-far node classifi-
cation based on the ray’s origin. When a node is traversed,
it is calculated which one of his child nodes must be tra-
versed, and which can be skipped. Three cases of traversal
are possible: traverse near, traverse far, traverse near and
then far. The algorithm uses a stack structure to keep track
of the nodes that need to be traversed. The result of the
traversal can be seen in Figure 3.

Figure 3: Result after kd-tree traversal using Tmax = 21 and
Omin = 4 and SAH split division criteria.

4.2 Octrees

Octrees are usually used to partition three dimensional
space by dividing it into eight octants. Another difference
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compared with the kd-tree is that all three planes are di-
vided per each depth, instead of just one. Each node has
its own AABB and the leaf nodes have a list of objects that
are contained within that AABB. Triangle-cube intersec-
tion algorithm [9] was used to classify objects to their in-
dividual AABB. The space is subdivided until the ad-hoc
termination criteria described in subsection 4.1 is reached.
Simple subdivision of the three-dimensional space using
octree, can be seen in Figure 4.

Figure 4: Example of an non-balanced octree.

The traversal step is performed by using an efficient
parametric algorithm for octree traversal as published in
[13]. Similarly to section 3, this algorithm leans on the fact
that any point lying on ray can be defined by a parametric
representation (1) of that ray

−→
R , where t is the signed dis-

tance. Let bmax be the AABB maximum boundary point
and bmin its minimum. If at least one positive distance t
exists on

−→
R that is between the AABB boundaries, then−→

R intersects that AABB. The algorithm works with dis-
tances from the ray origin O to the nodes limits bmax and
bmin. These distances tmaxi and tmini are calculated using
the equations (4), where

−→
D is the ray orientation and i one

of the coordinate.

tmaxi =
bmaxi −Oi
−→
Di

tmini =
bmini −Oi
−→
Di

(4)

This calculation is only done for the root node. Distances
for child nodes are incrementally calculated from parent
nodes using three additions and three shifts as the algo-
rithm recursively progresses. For each voxel, the first
crossed node is determined (if it exists). Based on the first
node, the next nodes can be found until ray exists the cur-
rent voxel. The algorithm recursively progresses until the
leaf nodes are reached. The result can be seen in Figure 5.

5 Uniform grids

For the inclusion test using uniform grids, the algorithm
from [12] was implemented. The mentioned algorithm
is a three-dimensional extension of the two-dimensional
cell-based containment algorithm (CBCA) [15]. During

Figure 5: Result of octree traversal for one ray using Tmax
= 20 and Omin = 50

the preprocessing phase, CBCA constructs a raster and
places it onto a given scene. Each cell is marked as: in-
side, outside, or as a border cell. Flood fill algorithm is
used in order to determine whether a cell is located inside
of a polygon. When the actual inclusion test is performed,
the algorithm calculates in which cell the tested point is lo-
cated, and then checks the cell’s status. In the case of a cell
being marked as inside, the point is declared to be inside,
otherwise it is outside. When it is marked as a border cell,
additional testing is performed, depending on whether a
detailed inclusion test is requested.

In a three-dimensional space, a grid of uniform voxels
is used instead of a raster, and ray casting is performed in-
stead of the flood fill algorithm. The object is voxelised,
but similarly to CBCA, not all the cells (here voxels) lie
completely inside or outside. If the approximation test suf-
fices, then the voxels are marked as inside if 50% of their
volume lies inside the tested object, and vice versa. When
a detailed test is required, then those voxels that contain
the object surface are marked with one more additional
bit. Additional tests are performed for those points that lie
inside such voxels.

5.1 Voxelisation

Voxelisation is done by an algorithm described in [14],
but the idea for uniform voxelisation of three-dimensional
polygonal objects or polyhedra comes from [17]. So-
called optimised ray-casting is used to determine whether
a voxel lies inside or outside of a given object. Voxelisa-
tion is performed in two steps:

• In the first step, the initial AABB of the scene is
calculated and its xy plane is partitioned using a
quadtree. Partitioning stops when the ad hoc termina-
tion criteria described in section 4.1 is reached. Each
leaf in the quadtree corresponds to an AABB with its
deph equal to the initial AABB. Each leaf keeps track
of all objects that are contained within its AABB. A
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Cohen-Sutherland line clipping algorithm [3] is used
for determining the containment of an object to the
specific AABB. Once the space is partitioned and the
tree is built, the next step can commence.

• The second step begins by covering the scene with a
uniform grid, containing m×n× p voxels. The ques-
tion regarding the grid resolution must be answered,
as it influences the preprocessing speed, memory us-
age, and accuracy. In 2D, an equation can be used
to determine the grid’s size [15]. Here, three meth-
ods are considered [12]: The first method has a fixed
voxel size that is applied to all scenes. The voxel
size can also be determined by the user, which gives
him/her more control over each individual scene. The
third method calculates the voxel size in relation to
the scene’s extent. After the grid has been con-
structed, m× n rays are cast parallel to the positive
z axis. One of the m× n voxel’s center then serves
as the origin for each ray. The z value of each indi-
vidual origin is equal to the minimal z value of the
initial AABB. For each individual ray, an AABB is
found by recursively looking into the quadtree, ob-
tained during the previous step, and finding the leaf
that corresponds to the x,y coordinate of the ray’s ori-
gin. All objects in this AABB are checked for inter-
sections and for each intersection found, its z coordi-
nate value is stored inside a linked list. A new list is
always generated for each ray. This list is then sorted
in ascending order. For each voxel that is traversed
by a ray, the number of values in the list are counted
that are smaller than the current voxel center z value.
The odd-even rule is applied, which means that if the
number of values is odd, then the voxel lies inside of
the object, or outside if it is even. The result can be
seen in Figure 6.

Figure 6: Voxelisation using 1283 voxels.

5.2 Inclusion test

After the object has been fully voxelised and state of each
voxel is known, inclusion test is as simple as reading the
voxel’s state in which the tested point is contained. The
coordinates of a voxel v(mv, nv, pv) for a tested point p(xp,
yp, zp) can simply be calculated [12] using the following
equations (5):

mv =
xp− xmin

sizem
nv =

yp− ymin

sizen
pv =

zp− zmin

sizep
(5)

Problems occurs when the objects’ boundaries are passing
through the voxel. Part of the voxel may be located inside
and the other part outside the object, but the voxel can only
have one of the two states. This can cause that the result of
the inclusion test is incorrect. When the voxel is marked
as a boundary, a ray parallel to its z axis is cast from the
tested point. The ray stops after a non-boundary voxel is
encountered. Intersections are determined (as described in
subsection 5.1) and if their number is odd, the status of the
tested point is opposite to that of the voxel status in which
it is contained.

6 Numeric stability

Sadly computer arithmetic is finite. This causes rounding
errors to occur and consequently, inclusion tests can return
false results.

As shown in section 3, the intersection between a ray
and triangular plane is calculated. This intersection point
is then tested using one of the basic point-in-triangle tests
and if it is located inside, then intersection occurs. The
biggest occurs when this intersection point is located just
on the triangle’s edge (or very near). Rounding errors can
cause the calculated point to be slightly shifted and can
now be falsely located in one of the neighbouring trian-
gles. This means, no intersection with that triangle will be
found and the result from the inclusion test will be incor-
rect because the methods used rely on the fact that number
of intersections is calculated correctly, so that the odd-even
rule can be applied. Robustness was achieved through
shared calculations [1] between triangles that share a com-
mon edge, using the triple scalar product. All the float-
ing point numbers were compared using relative tolerance
comparison. It is important to say, that although the men-
tioned test improves the robustness when checking for in-
tersections, it is still not 100% accurate.

7 Results

The solutions were tested and compared on a desktop
workstation running on Windows 7 using the following
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hardware: an Intel i5 processor with a clock speed of
3300 MHz and 4 GB (DDR3) of RAM. All the algorithms
were implemented in C++ using the Qt framework. The
OpenGL graphical library was used for visual presenta-
tion. The structure for storing the model data consisted of
a list of triangles and vertices. Normal vectors for each
of the triangles were precalculated, when the model was
loaded into the memory. Data about the models used for
testing, are shown in Table 1 and their thumbnails can be
seen in Figure 10. For each result, the average from three
measurements was used.

Table 1: Model data

model: num. vertices num. triangles
pumpkin 5002 10000
cat 7335 14634
owl 19884 39764
bust 47516 95028
gren1 122227 134016
isis 93823 187642
tiger 309403 618786
gren2 957507 1072128

Total of three methods were implemented for the point-
in-triangle test: the angle sum method, the winding num-
ber method and a method that uses barycentric coordi-
nates. In the presented tests the method using barycentric
coordinates came out on top as it was about 155% quicker
compared to the winding number method and more than
223% than the angle sum method. Consequently, the
method using barycentric coordinates was used in all the
future tests.

Table 2 shows the results for each method implemented.
The inclusion test was executed on 300,000 points that
were randomly placed on the scene. For the kd-tree (Kd
HS represents a tree built using the object median criteria,
whiles kd SAH uses the surface area heuristic) and the oc-
tree, ad-hoc termination criteria was used where Tmax = 16
and Omin = 6. The object was voxelised using a grid size
of 2563 voxels for approximate testing, where the results
were about 99.3% accurate. An accurate grid test was not
used for comparison because classification of the bound-
ary voxels took too long. If antialiasing is used during
voxelisation, as described in [14], some voxels can still be
missed and are not classified as boundaries. Consequently,
each voxel must be tested using the triangle-cube intersec-
tion algorithm [9] for all triangles that are contained within
the quadtree node that correspond to the current ray. As
soon as only one triangle is found, the boundary test for
that voxel can be aborted and the voxel classified as bound-
ary. For example, the preprocessing for the model cat took
more than 2.5 minutes, which is not even remotely com-
parable with other methods.

The preprocessing phase Tp and the executing phase Te
were measured for each method. The results for prepro-
cessing Tp are shown in Figure 7. Time required for pre-

Table 2: CPU(s) for times used for preprocessing and ex-
ecuting for all the tested models, using the implemented
methods.

model Kd HS Kd SAH Octree Grid AP
Tp Te Tp Te Tp Te Tp Te

pumpkin 0.02 2.19 0.12 2.01 0.12 3.18 2.29 0.05
cat 0.05 1.76 0.12 1.51 0.19 2.2 2.28 0.03
owl 0.06 2.90 0.28 2.70 0.45 4.01 4.07 0.06
gren1 0.08 5.26 0.70 1.95 2.72 2.26 8.85 0.05
bust 0.08 4.32 0.53 3.33 1.12 4.15 7.27 0.03
isis 0.13 7.98 1.33 5.28 2.46 5.51 14.6 0.05
tiger 0.20 11.1 2.95 4.92 10.9 4.31 36.7 0.05
gren2 0.29 21.7 4.49 11.85 20.3 2.84 62.3 0.05

processing rises with number of triangles on the scene.
Preprocessing for kd-trees executes faster than for octrees.
This happens because the algorithm for octree must clas-
sify each individual triangle to its octant by using the
triangle-cube intersection test, for each triangle. Classi-
fication for a kd-tree only consists of a test that simply
determines which side of the splitting plane the triangle is
located.

Figure 7: Tp for each model and using all the implemented
methods

The results featured in Figure 8 show the execution
times Te after the preprocessing has already been done.
The expected execution time for three-dimensional grids
is O(1) so it is constant and executed the fastest, but the
result is only a approximation. The kd-tree build with the
SAH heuristic performed best in almost all tested cases
when the results were expected to be accurate. It was out-
performed by octree in gren2 where the scene was heavily
divided.

Figure 9 shows the results, where each column repre-
sents the sum of Tp and Te for each method implemented
on the tested scenes. The kd-tree using the SAH heuristic
KD SAH perfomed the best in all scenes. The kd-tree build
with the half split criteria KD HS performed better than the
octree in almost all cases except on the gren1 scene where
it was outperformed by a small margin. Even if octree
traversal is sometimes done even faster than the traversal
of kd-trees, the preprocessing phase is always slower and
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Figure 8: Te for each model and using all the implemented
methods

Figure 9: Tp + Te for each model using all the implemented
methods

that is why the total performance of kd-trees is usually bet-
ter.

8 Conclusion

In this paper, three different methods were used for solv-
ing the problem of inclusion using spatial subdivision as
preprocessing. Our conclusions support the ones of [6],
namely that for a small number of rays cast, data pre-
processing does not pay off. After testing the mentioned
scenes, the kd-tree using the SAH heuristic gave the best
results, except for densely occupied scenes where SAH
could not be fully utilized. There is still much that can be
done regarding preprocessing, such as cutting off empty
space in kd-trees or the usage of an octree special vari-
ant called octree-R. Therefore no final answer can yet be
given regarding the fastest method for the inclusion test
within three-dimensional spaces.
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(a) pumpkin (b) cat (c) owl (d) gren1

(e) bust (f) isis (g) tiger (h) gren2

Figure 10: Thumbnails of the used models
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Abstract

We present a new algorithm for a molecular pass planning
through a circle. Our algorithm can solve the given prob-
lem with the significant improvement of accuracy for ar-
bitrary shaped molecules in comparison with the method
using a minimal bounding sphere. This accuracy is gained
by eliminating the overestimation of the substrate size by
the bounding volume approaches. Our approach is partic-
ularly beneficial in cases where the bounding volume fits
poorly to the substrate geometry as is the case with oblong
shaped substrates. We are using a sampling-based version
of the motion path planning and the Delaunay triangula-
tion to arrange the substrate for the space search. The
successor configurations are then computed incrementally
from the already known configurations until we find a con-
nected path of the substrate through a circle or we can
claim that such path does not exist.

Keywords: motion path planing, Delaunay triangulation,
computational chemistry

1 Introduction

Proteins are irreplaceable parts of every life form. They
are involved in many vital processes, for instance they cat-
alyze various chemical reactions, work as antibodies or
even transfer signals between distant cells. The detailed
analysis of the complex protein structures using methods
of computational geometry can significantly help under-
standing the purpose and chemical principles of specific
protein molecules.

One of the most researched properties of the protein
molecule is the existence of a protein channel. The chan-
nel represents an empty space connecting the inner part of
the protein, called active site, with its surface. They al-
low, upon certain conditions, other molecules (substrates
or ligands) to reach the active site, where the reaction be-
tween protein amino acids and the substrate can undergo.
For biochemists, the knowledge, whether the substrate can
enter the protein or not, is important for instance in the
process of drug design.

∗xbyska@fi.muni.cz
†sochor@fi.muni.cz

As was shown by Petr Medek et al. [3], protein channels
can be represented as circular-profile shaped tunnels. The
current methods use a minimal bounding sphere (MBS) ap-
proach to compute whether a substrate can pass through
the protein channel. This method is simple because we
only need to compute the MBS enclosing all atoms of
the substrate and then compare its radius with the nar-
rowest cross-section radius of the channel. However, it
is not suitable in cases where the substrate has an oblong
or polymer-like shape. In these cases the protein channel
has to be significantly bigger to let through the overesti-
mated MBS in comparison with the real scenario, where
the oblong substrate can pass through a narrower channel.

The method could be improved by using different types
of bounding volumes. The real molecules, however, have
often very complicated structures and therefore this solu-
tion will not suffice in general cases. We decided to de-
velop a new algorithm based on the motion path planning.
Our algorithm can solve the given problem for arbitrary
shaped molecules since it is not using any bounding vol-
ume but the substrate geometry itself. It computes a path
of a set of spheres (which represent atoms of a substrate)
through a gap approximated by a circle. Moreover, the al-
gorithm can be generalized to use a cross-section of the
arbitrary shape.

As such it can be used in the process of detection
whether the ligand can pass through the protein channel.
If we make an assumption that these channels consist of
large and wide corridors connected by narrow gaps we can
then, without loss of generality, anticipate that these wide
channel segments are large enough for the substrate to pass
through in an arbitrary configuration. Hence, we can use
previous inaccurate but fast algorithms for these parts of
the channel and focus rather on the narrow holes connect-
ing them. The narrow parts of the protein channel can be,
for instance, sampled by a set of circles and our algorithm
can handle each circle individually.

The goal of this paper is to present the new algorithm
that can detect whether a given substrate can pass through
a circle. In the section 3 we briefly remind some of the
basic terms of motion planning theory. In the section 4
we focus on the detail description of the algorithm. The
evaluation of the complexity of the algorithm is presented
in the section 5 and we conclude with the section 6.
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2 Previous work

One of the most important task in the computational chem-
istry is called a channel detection. The approach based on
the computational geometry that uses the Voronoi diagram
and the Delaunay triangulation to compute a protein chan-
nel as a set of spheres, was described by Petr Medek et
al. [3]. The connected channel can be created from this
set by an interpolation. The problem of a substrate passing
through the protein channel can then be solved by compar-
ing the bounding sphere of the substrate with the smallest
radius of the channel.

Another method for solving this problem was presented
by Haranczyk and Sethian [1]. They sampled the high-
dimensional configuration space to find a path through a
protein.

There are generally two possible approaches to handle
the motion path planning problem. The combinatorial ap-
proach [2] or the sampling-based approach [2]. We will
describe them in detail in the next section, after the neces-
sary background is given. The motion path planning the-
ory was initially developed for the navigation of the robot
through the complex environment. In molecular chem-
istry, however, several major problems were successfully
solved by motion planning approaches, such as protein
folding or ligand docking.

The protein folding is the process when a polypeptide is
folded and connected into a final protein structure. It was
solved by the motion planning by Song and Amato [5].
The second problem – the ligand docking – refers to the
issue of a substrate inserting itself into a protein cavity
while satisfying other constraints, such as maintaining the
low energy. An algorithm using the probabilistic motion
planning to compute the most energetically favorable path
between any initial and goal ligand shape was presented
by Singh et al. [4].

3 Motion planning concept

Since the motion planning theory was initially developed
for the navigation of a robot through a complex environ-
ment, it is using terms such as a robot or a path. In this sec-
tion we briefly remind some of this basic terms and show
how to adapt them for a substrate passing through a pro-
tein channel (for more information about motion planning
see LaValle 2006 [2]).

The basic element of the motion planning theory is a
state. Each state represents a specific transformation that
can by applied to the robot and thus defines a specific po-
sition and orientation of the robot in a world space W .
In our case, the world space is three-dimensional and the
robotR ⊂ W represents the substrate moving in it. There-
fore the state representing the substrate will be actually
a six-dimensional vector ~q(xt, yt, zt, ut, vt, wt) with three
positional and three rotational coordinates.

The set of all states is called the configuration space

and it is often denoted as C. Formally, for each state holds
~q ∈ C and the configuration space of a fixed robot in three-
dimensional space creates a six-dimensional manifold.

Since C contains all possible configurations of the sub-
strate (robotR) inW it as well contains the states that rep-
resent situations in which the substrate will collide with
a channel wall. The motion planning theory divides the
configuration space into two subspaces, which are called
the obstacle space and the free space denoted as Cobs and
Cfree respectively. The obstacle space contains all states
that represent cases when the robot have a collision with
an obstacle and the free space contains the rest of them.

Formally, let the O ⊂ W be an obstacle; R ⊂ W be a
substrate and ~q ∈ C. If the substrate position in the world
space is denoted by R(~q) then the Cobs and Cfree can be
defined as:

Cobs = {~q ∈ C | R(~q) ∩ O 6= ∅} (1)
Cfree = C \ Cobs (2)

To solve the motion path planning problem it is essen-
tial to find a connected path P from a starting state ~qs
to a goal state ~qg . Furthermore, the path has to satisfy
∀~p ∈ P | ~p ∈ Cfree otherwise the solution would not
be valid (see Figure 1).

Cobs

Cfree

Cobs

Cobs

Cobs

Cobs

qs

qg

Figure 1: The connected path from ~qs to ~qg .

Generally, there are two possible approaches to solve
this problem. The combinatorial approach solves the
problem without any approximations. The basic idea is
to evaluate the whole free and obstacle space and then
find a connected path P from ~qs to ~qg that lies completely
in Cfree. Unfortunately this method has a high computa-
tional complexity and therefore is not sufficient for solving
practical problems.

Most of the current algorithms are therefore using the
sampling-based approaches. The configuration space is
sampled (usually in a deterministic way) into a finite set
of samples. The main concept of this approach is to find
only a limited set of points on the path P instead of the ex-
plicit construction of the whole configuration space. The
connected path is computed by an interpolation between
the nearby samples. On one hand, the complexity of this
method is lower but on the other hand the accuracy is lower
as well. Both factors usually depend on the number of
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samples – the lower number produces more errors while
the higher number increases the computational time.

4 Algorithm

In this section we present a new algorithm based on the
motion path planning that alleviates the need for a bound-
ing volume approximation of a substrate.We will first de-
scribe the algorithm background, then provide an overview
of the algorithm after which the necessary conditions for
boundary configurations and three running modes of the
algorithm will be described. The primary goal of the al-
gorithm is to detect whether a given substrate can pass
through a circle. The input of the algorithm is a set of
spheres defining the substrate geometry and the radius of
the circle through which the substrate should pass.

4.1 Algorithm Background

As shown in Figure 2, the radius of a protein channel varies
over its length. Our measurements indicate that some parts
of the channel will be wide enough for the substrate to pass
through in an arbitrary configuration R(~q). However, in
the real scenario this does not hold for the whole length of
the channel. The narrower parts of channel (gaps) create
channel bottlenecks where the substrate will collide with
the channel ”wall” (the atoms of the protein) in some con-
figurations or will not pass through them at all. This basi-
cally means that if the molecule can pass through all these
gaps it can as well pass through the whole channel.

gaps

Figure 2: Gaps in the protein channel (adapted from [3]).

Hence we can approximate the problem of substrate
passing through the whole channel to the problem of sub-
strate passing through a set of gaps. Moreover, the pro-
tein channel can be approximated as a circle-profile shaped
tunnel [3] and we can simplify the previous problem to the
problem of the substrate passing through a set of circles.

Our algorithm solves the passing problem for each cir-
cle individually. The basic idea is to find a sequence of ro-
tations and shifts that will result in the successful passing
of the given substrate through the circle, from one side to
the other. In this section, we will show that it can be done
by using the motion path planning. Note, that if there are

two or more circles close enough, we can generalize the
problem and for the second circle start in the middle of the
passage provided that we have appropriately modified the
collision detection and marked all already passed atoms.

The problem of passing substrate through the circle,
however, can be inverted to a problem of pulling the cir-
cular ring over the static substrate, from one side to the
other. Both concepts are almost identical except that the
transformations will be inverted. The second view is eas-
ier for explanation of the algorithm and therefore will be
used in this paper.

Note that R from now on will denote the new circle
robot and the obstacles set O refers to the spheres defin-
ing the substrate geometry. We can also use the fact that
the circle robot R is invariant under the rotation around
one of the axis. Hence, the state defining the circle po-
sition R(~q) in the space can be actually reduced to five-
dimensional vector ~q(xt, yt, zt, ut, vt). Obviously, the re-
duction of the state-space dimensionality leads to the sig-
nificant speedups.

4.2 Molecular Pass Planning

We will start with an overview of the algorithm and de-
scribe it in detail later. The main idea of this algorithm is
to incrementally compute the continuous path of the circle
over the substrate from already known configurations.

Pseudocode 1 Molecular pass planning algorithm.
Input: a set of spheres (connected by red and green lines),

the circle radius
Output: a connected path of the circle over the substrate

1: find the starting configurationR(~qs)
2: S ← R(~qs) {S is a stack}
3: loop
4: if S is empty then
5: exit −→ fail: the circle is to small
6: else
7: R ← S.top()
8: R.markAsUsed()
9: R.previous.successor ← R

10: ifR satisfy conditions forR(~qg) then
11: end loop −→ success: there is a path P
12: else
13: find the next possible configurations N from

R according to the mode and put each n ∈ N
onto the stack S

14: end if
15: end if
16: end loop
17: create a connected path P using .successor attributes

We have observed that: If there is a connected collision-
free path P of the circle R from one side of the substrate
O to the other we can cut the substrate at any time by the
hyperplane containing R. The cut will then produce a set
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of additional circles, which represent the crosscuts of the
atoms lying in the cut plane. These circles must not col-
lide with the circle R otherwise the path P would not be
collision-free (see Figure 3).

R(qi)R(qi)

Figure 3: The crosscuts of atoms lying in the hyperplane
containingR.

We utilize the fact that all atoms of the substrate have
to pass through the circle. In other words each atom has
to cross the hyperplane containing the circleR. Therefore
we can sample the path P at this moments which with the
previous observation allows us to use the sampling-based
version of the motion path planning.

To create a connected path P of the circle R over the
substrate we need to find a sufficient number of samples
and then interpolate between them. The interpolation be-
tween two configurations has to be collision-free as well.
To achieve that we need to test whether the computed path
of the circle will not collide with any atom of the substrate.

This can be done either by the continuous collision de-
tection or by using the sampling-based approach. The
continuous collision detection is very computationally de-
manding in this case because we have to compute the inter-
sections of a collapsed torus with a set of spheres. Hence,
we decided to use the sampling approach based on colli-
sion detection between the circle and a set of spheres.

Additionally, for a valid detection whether the substrate
can pass through the protein channel we need to test it for
collisions with the atoms of the protein as well.

Figure 4: Left: The substrate molecule as a set of spheres
connected by red (solid) lines. Right: The ball-and-
stick model with the Delaunay triangulation represented
by green (dashed) lines.

The approximation of the substrate as a set of spheres
is simple enough for computing all collisions during the
interpolation process. However, this model is not suitable
for the other part of the algorithm. To be able to compute

all samples efficiently we need to consider the structure of
the substrate, namely bonds between atoms. The appro-
priate data structure is based on the ball-and-stick model
with additional information stored in green lines (see Fig-
ure 4). The extra lines represent the edges of the Delaunay
triangulation computed on the atoms of the substrate and
are used for the samples computing.

Our algorithm employs the sample-based approach. As
we are only interested in the knowledge whether the sub-
strate can pass through the circle, we can use an incre-
mental sampling. In other words, we do not compute all
samples in advance but we compute the first configura-
tionR(~qs) and then compute a next possible configuration
R(~qs+1). If there are more then one successor configu-
rations we will pick one randomly and push the rest onto
the stack for further processing. The whole process is then
repeated until we reach the goal configuration R(~qg) that
represents the case when the substrate had passed through
the circle, or we end if there is no valid successor of the
previous configuration.

The algorithm is similar to a depth-first search for
traversing a tree structure. However, the algorithm does
not need the tree structure itself. The only two needed
structures are the stack S and the hash table for remem-
bering already visited configurations, to avoid cycling.

The successor configurations are computed incremen-
tally from the known configurations. The successor con-
figuration R(~qi+1) can be created from the previous con-
figuration R(~qi) by replacing one of it’s atoms. The con-
figuration can be represented either by one, two or three
atoms, see section 4.4. The conditions for the replaced
atom in R(~qi) and for the new one in R(~qi+1) are as fol-
lows:

For the atom that will be replaced, there is no limita-
tion at all. In other words we can replace any atom in
the set. From practical point of view, however, the choice
can influence whether the incrementally built path P will
lead to the successful passing of the circle over the sub-
strate. Therefore, during the search, we need to compute
the whole set of successor configurations for every atom.
Then we randomly pick one and store the remaining con-
figurations for eventual processing in the future.

The new atom has to be connected by either red or green
line with the atom which will be replaced. This condition
will assure that we will not try to make too long jumps.
The short steps are necessary because between two dis-
tant configurations we cannot easily interpolate to create a
connected path.

4.3 Boundary configurations

The motion path planning solves the problem of finding a
connected path from ~qs to ~qg . The starting configuration
R(~qs) has to satisfy two conditions. Firstly, the plane con-
taining the circle in starting configuration R(~qs) should
cut only one atom. This condition is not compulsory, its
purpose is to simplify the problem of correct orientation of
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the first configuration in the space. Secondly, all remain-
ing atoms of the substrate have to lie on the same side from
the plane defined by the circle.

The problem, that can occur when violating the second
condition, is illustrated in Figure 5. If we select the red
atomA as a starting point, the configuration would assume
that some atoms had already passed through the gap. To
avoid this, we reduce the set of possible starting atoms to
atoms lying on the convex hull of the substrate (see Figure
5 right).

A

Figure 5: Left: The unappropriate atom choice. Right:
The convex hull of the substrate.

However this will not solve the problem completely. We
also have to be careful about the size of the circle. Because
even though that we choose the starting atom at the con-
vex hull a problem can occurs. There can be another atom
B such that the intersection of its connection line and the
hyperplane containing the circle R will lie inside the cir-
cle R (see Figure 6). This is the case where the second
condition will be violated.

A

B

Figure 6: The problem with the convex hull.

In this case, we have to explicitly check whether all
atoms of the substrate are lying on one side of the circle
defined by the configurationR(~qs).

Similar to the starting configuration there can be more
than one end configuration. The conditions and rules that
affect the end configuration are almost the same. The dif-
ference is that all atoms have to be on the other side of the
circle than at the beginning.

4.4 Modes

The algorithm has to deal with all types of molecules.
Therefore we propose to use it in three modes, 1D, 2D and
3D, each named by a number of atoms they are using for
a configuration representation. The 4D or higher modes
are not necessary because in real scenarios there are only
rare occasions when four or more nearby atoms are lying
in one plane and if they do, the situation can be handled
by two or more subsequent 3D configurations. Algorithm
selects the current mode according to the complexity of
the substrate in the specific area. It is possible to switch
between modes by adding/removing one atom to/from the
current configuration. In one algorithmic step, it is possi-
ble to switch between 1D and 2D, or 2D and 3D modes
only.

4.4.1 1D Mode

The first mode is responsible for handling polymer-like
molecules or parts of complex molecules where atom
bonds can be represented as a polygonal chain (Figure 7).

There is always at least one starting configuration rep-
resented by a single atom (see section 4.3). Let the current
configurationR1D(~qi) be such configuration. At this point
the algorithm has two basic possibilities how to compute
the successor configuration. It can be another configura-
tion represented by one atom R1D(~qi+1) or the algorithm
can switch from the 1D mode to the 2D mode. The 2D
configuration R2D(~qi+1) is then created by adding an ad-
ditional atom into the current configurationR1D(~qi).

Pseudocode 2 The 1D mode traversing.
Input: Ci – current configurationR1D(~qi) from stack S
Output: a successor configuration Ci+1

1: A ← Ci.getAtom()
2: N ← A.getAllNeighbours()
3: for all B in N do
4: if B is a complex atom then
5: Ci+1 ← the new 2D configuration represented by

the atoms A and B
6: else
7: Ci+1 ← the new 1D configuration placed in B
8: end if
9: if Ci+1 was not used and a collision-free path from

Ci to Ci+1 exists then
10: Ci+1.previous← Ci
11: put Ci+1 onto the stack S for further processing
12: end if
13: end for

In this mode the configuration R(~qi) is represented by
one atom A. It is clear that one atom (or rather one point)
cannot define the orientation of the circle R in the three-
dimensional space. Hence, we need to define normal vec-
tor ~n of the circle R. We utilize the fact that atoms of the
substrate’s molecule are connected. This mean that every
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atomA has at least one neighborB and we denote this con-
nection by the red line. We call the vector −→AB a segment.
The normal vector ~n of the circle R then corresponds to
the segment originating from the atom by which the con-
figuration is represented – in this case atom A (see Fig-
ure 7).

A

B

Figure 7: The 1D mode traversing.

As shown in Figure 7, the interpolation between two 1D
configurations is a simple translation along the segment
and a rotation at the end. The rotation is necessary to orient
the circle properly before traversing to the next segment of
the polynomial curve defining the substrate.

Whether the successor configuration will be 1D or 2D
is determined by the complexity of the molecular structure
in the specific part of the substrate. More precisely, if the
current atom A has more then two neighbors or there is at
least one green line connecting A with another atom, then
our algorithm will switch to the 2D mode. In this case we
call the atom A a complex atom (see Figure 8). Other-
wise the algorithm will stay in the current mode and will
compute another 1D configuration. The switch from 1D to
2D is done simply by including one of the neighbor atoms
connected to A with red (solid) or green line (dashed).

Figure 8: Complex atoms in substrate model.

4.4.2 2D Mode

While in the 1D mode the circle moves from one config-
uration to another by translation, in the 2D mode the path
is built by rotations. The example of such rotational move

is shown in Figure 9. The algorithm proceeds from the
state ~qi that represents the position R2D(~qi) of the cir-
cle in space and searches for a configuration R2D(~qi+1).
The successor configuration in the 2D mode can be com-
puted by replacing one of the atomsA or B by a new atom
C. If the smallest circle containing the triangle 4ABC is
smaller thanR, the algorithm will switch to the 3D mode.

R2D(qi)

B

A

C C

A

B

R2D(qi+1) R2D(qi+1)

R2D(qi)

Figure 9: The 2D mode traversing.

Obviously, in 2D mode there may be more then one suc-
cessor configuration R2D(~qi+1) If such situation occurs,
the algorithm randomly selects one of the possible config-
urations and others are stored for later processing.

Pseudocode 3 The 2D mode traversing.
Input: Ci – current configurationR2D(~qi) from stack S
Output: a set of successor configurations Ci+1

1: Atoms← Ci.getAllAtoms()
2: for all A in Atoms do
3: {note that the second atom in Ci is denoted B}
4: N ← A.getAllNeighbours()
5: for all C in N do
6: if the smallest circle containing4ABC is smaller

thenR then
7: Ci+1 ← the new 3D configuration represented

by the atoms A, B and C
8: else
9: Ci+1 ← the new 2D configuration represented

by the atoms B and C
10: end if
11: if Ci+1 was not used and a collision-free path

from Ci to Ci+1 exists then
12: Ci+1.previous← Ci
13: put Ci+1 onto the stack S
14: end if
15: end for
16: end for

The 2D configuration R2D(~qi) is represented by two
atoms A and B. The center is situated in the middle of the
line connecting the atoms. To represent a circle orientation
in the three-dimensional space, we need to compute the
normal vector ~n.

Let the current configurationR2D(~qi) be defined by two
atoms A and C and the previous configurationR2D(~qi−1)
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be defined by atoms A and B. The normal vector ~n of
the circle R2D(~qi) can be then computed as a cross prod-
uct −→AC × ~R, where ~R is a vector of the rotation from
R2D(~qi−1) toR2D(~qi) and can be computed as−→AB×−→AC.
That gives us the equation for the normal vector:

~n =
−→AC × (

−→AB ×−→AC) (3)

Note that the orientation of this normal depends on the
order of the vectors in the equation. However, if we as-
sume that the rotation fromR2D(~qi−1) toR2D(~qi) is done
with the smallest possible angle then the correct orienta-
tion of the ~n can than be ensured by a simple rule. We
denote the half-spaces induced by the plane containing R
according to Figure 10 and let a point p be the center of
the line connecting the centers of both configurations. In
order to ensure the correct orientation of the normal ~n the
point p has to lie in a differently signed half space.

A

C

B
+

+

ni

half-space signed +,-

ni+1

p

I

I

half-space signed: -, -

half-space signed: +, +

R2D(qi)

R2D(qi+1)

Figure 10: Space divided by two configurations.

Similarly to the 1D mode, it is necessary to apply a
small position correction between each step. While in the
1D mode we needed a rotation to put the circle into the
right orientation before we could traverse the next seg-
ment, here it is a shift which solves the problem of differ-
ent emplacement of the circle centers. If we simply rotate
from R2D(~qi) to R2D(~qi+1) we would get a different cir-
cle center than we have originally computed by replacing
atom B by atom C (see Figure 11). Hence, before we rotate
or after rotation we have to shift the appropriate configu-
ration into the right position.

A

C

B

I

I

center gained
from the rotation

I

computed center

necessary shift

R2D(qi+1)

R2D(qi)

Figure 11: The position correction between each step.

4.4.3 3D Mode

The difference of the 3D mode compared to the previous
is that circle in this mode is represented by three atoms A,
B and C. This mode provides more degrees of freedom
for the rotations between configurations then the previous
ones. Additionaly, we do not need to compute the nor-
mal vector ~n. The center of the circle is defined as a cen-
ter of the smallest circle containing the triangle 4ABC.
The problem caused by center difference during the pass-
ing from R3D(~qi) to R3D(~qi+1) is the same as in the 2D
mode and it may be also solved by applying translation
before the rotation.

Pseudocode 4 The 3D mode traversing.
Input: Ci – current configurationR3D(~qi) from stack S
Output: a set of successor configurations Ci+1

1: Atoms← Ci.getAllAtoms()
2: for all A in Atoms do
3: {the remaining atoms in Ci are denoted B and C}
4: N ← A.getAllNeighbours()
5: for all D in N do
6: if the smallest circle containing4BCD is smaller

then radius ofR then
7: Ci+1 ← the new 3D configuration represented

by the atoms B, C and D
8: end if
9: if Ci+1 was not used and a collision-free path

from Ci to Ci+1 exists then
10: Ci+1.previous← Ci
11: put Ci+1 onto the stack S
12: end if
13: end for
14: end for

5 Results

The algorithm was tested nearly on the 250 real ligands
downloaded from the protein database1. The number of
atoms in ligands used for the testing varied from 5 to 168.
The starting point for each ligand was chosen by a user
to satisfy conditions described in the section 4.3. Using
binomial search we determined the smallest circle for
which the algorithm would still return positive answer on
question whether the ligand would pass through it or not.
The radius of the smallest circle was then compared with
the radius of the bounding sphere. The final results are
shown in Figure 12. According to these results we are
able to find a path through a 40% (in average) narrower
channel in comparison with the bounding sphere approach.

The number of steps needed to compute the path of a
ligand from one side of the circle to the other one is shown
in the next graph (Figure 13). Our experiments show that

1http://www.rcsb.org/pdb/home/home.do
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Figure 12: The improvement of the channel radius in com-
parison to the bounding sphere method.

the average time complexity for the ligands used for test-
ing tends to be between O(n ln n) and O(n ln2 n) where
n denotes the number of atoms in ligand.

Algorithm results
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Figure 13: The number of steps needed to compute the
path of the ligand through the smallest possible gap repre-
sented by a circle.

As it can be seen in Figure 12, our algorithm has some
limitations. In some cases the method provides the worse
solution than the bounding sphere method (see the points
with negative values). These cases occur due to the fact
that in our implementation the circle is using only a simple
hard-coded sequence of a translation followed by a rota-
tion. The collision detection on the molecule structure can
then, in particular cases, prevent the circle from switching
from one configuration to another even though the differ-
ent sequence of movements would allow it.

We believe that this problem can be removed entirely by
implementing a more complex system of movements. The
proposed algorithm, however, would still not be optimal
in the sense of minimizing the circle radius. The radius of
the minimal circle found by our algorithm is limited by the
distance of the connected atoms (see Figure 14).
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Figure 14: The limitations of the presented algorithm.

6 Conclusion

We have described a simple and fast algorithm based on
the motion path planning that computes a path of a set
of spheres through a circular-profile shaped gap. Three
modes of the algorithm was purposed. Each of them solv-
ing part of the given problem according to the complex-
ity of the substrate in the specific area. It was shown that
the purposed algorithm has the average time complexity
somewhere between O(n ln n) and O(n ln2 n) where n
denotes the number of atoms in ligand and can find a path
through a 40% (in average) narrower channel in compari-
son with the bounding sphere approach.
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Abstract

In recent years, biochemistry is gaining more and more at-
tention. The research involves analysis of large molecules,
such as proteins. One of many properties we can study are
molecular cavities, where cavity is understood as a free
space inside a molecule. As we are usually interested only
in a certain subset of cavities, the common approach is to
use a spherical probe of a given radius to find the cavities.
The probe can be imagined as a sphere which we try to
slip through the molecule.

In this paper we discuss an algorithm to find inner cav-
ities in a molecule for a given size of the probe. The
algorithm has a preprocessing stage where an additively
weighted Voronoi diagram of a molecule is computed.
This diagram is then used to accomplish the task of finding
cavities for varying probe sizes.

The algorithm presented proved to be very fast for a
probe with a variable size. The implementation shows it
is able to operate in real-time even on large structures,
such as the Thermus Thermophilus 70S ribosome (PDB
ID 3OH5, approximately 87 000 atoms).

Keywords: molecular cavity, molecule analysis, addi-
tively weighted Voronoi diagram

1 Introduction

A protein structure can be very complicated. This includes
depressions on the molecular surface (often called pock-
ets) and empty space inside the molecule. This empty
space can form tunnels and cavities which are not con-
nected to the surface (inner cavities). It can be represented
as a union of spheres (Figure 1). When searching cavities,
we usually introduce a spherical probe which we try to slip
through the molecule. This is useful, because it allows us
to specify the minimal radius of the cavity (the radius is
usually measured in angstroms [Å], where 1Å = 10−10 m).

The protein structure affects the behavior of protein in-
teractions. These interactions are a part of biological pro-
cesses. This has led to the study of protein structures
and using the knowledge of these structures to design new
drugs. A lot of research has been done on so-called active
sites, which are the places where the proteins can mutually

Figure 1: Cavity formed by gray atoms.

interact. These sites are generally found on the surface of
a protein. However, as protein molecules are not perfectly
stationary, some of the inner cavities may become acces-
sible from the outside at some point of time and become a
part of an active site. Therefore, it is desirable to identify
these cavities.

The inner cavities can also hold buried residui of other
molecules, such as water [21, 23]. This is important as it
can influence the stability of protein structure [23].

The existing cavity searching algorithms are proficient
in searching the cavities, however, they are slow when it
comes to a variable probe size, because they need to re-
run all computations when the probe size changes. Our
method improves the run time when different radii of
probe are used by moving some of the computational
complexity into the preprocessing stage. The preprocess-
ing allows the algorithm to operate very quickly on large
molecules (about 100 000 atoms).

Our algorithm has been implemented as a Java library,
because in the future we would like to use it as a plugin in
CAVER [2], a software tool for protein analysis and visu-
alization.

In Section 2 the current methods used for finding inner
cavities will be presented. In Section 3 the necessary the-
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oretical background of the ordinary Voronoi diagram and
the additively weighted Voronoi diagram with its dual rep-
resentation will be given. In Section 4 the algorithm using
the additively weighted Voronoi diagram for finding inner
cavities will be described. In Section 5 we will present
results of our implementation. Finally, Section 6 summa-
rizes our findings.

2 State of the Art

The algorithm to find cavities in a molecule using alpha-
shape [6] has been presented by Liang et al [15, 16]. First,
the radii of all atoms are increased by the radius of probe to
obtain the “solvent accessible” model [14, 15] – the model
which is accessible by the given probe. Then a regular
triangulation of atom centers is computed and the cavities
are searched within the weighted alpha shape.

The weighted alpha shape is a subset of the regular tri-
angulation. This subset is determined by the parameter α ,
which can be imagined as the radius of a probe is rolling
over the molecular surface. This probe removes edges and
thus collapses some of the tetrahedra.

The weighted alpha shape used in this algorithm is con-
structed by removing edges which are dual to Voronoi
vertices (see Section 3) outside of the enlarged molecule
atoms. This corresponds to using a probe of a zero radius.
It has been shown [5] that voids in the alpha shape corre-
spond to cavities in a molecule. The cavities are identified
by searching the tetrahedra that were removed when the
alpha-shape was constructed. Only the tetrahedra which
were completely enclosed in the alpha shape are consid-
ered. The downside of this algorithm is that the alpha-
shape has to be rebuilt whenever the probe size is changed.

Several algorithms using a regular grid exist [7, 8, 22].
The first step of these algorithms is construction of a reg-
ular grid, where each grid cell stores information whether
it lies inside or outside of the molecular surface. The grid
is then processed to identify cavities. The processing de-
pends on the algorithm.

The algorithm described in [7] identifies cavities by
checking the neighboring cells of an empty cell in the di-
rection of each axis. The algorithm described in [8] iden-
tifies cavities by scanning the grid in the direction of each
axis and diagonals. Another approach was presented by
Tripathi and Kellogg [22] as the VICE algorithm (Vecto-
rial Identification of Cavity Extents). This algorithm con-
structs a set of vectors from every empty grid cell. The
visibility of the molecular surface for each vector is de-
termined. The visibility describes how much the grid cell
is enclosed within the molecule. The inner cavities are
formed by points fully enclosed within the molecule.

Our algorithm uses the additively weighted Voronoi di-
agram in the preprocessing stage. This diagram has many
other uses apart from searching cavities, such as finding
pockets [9] or determining how spherical the molecule is
[13]. The algorithm for the construction of the diagram

has been described in [11, 12, 18]. To improve the speed
of the edge-tracing algorithms for the diagram construc-
tion, spatial filtering is often used [17, 24, 3].

3 Geometric Background

To fully understand the idea of the algorithm, some of the
properties of Voronoi diagrams need to be mentioned first.
We will begin with the description of an ordinary Voronoi
diagram. Then a basics of the additively weighted diagram
and its dual representation called quasi-triangulation will
be given.

3.1 Voronoi Diagram

A Voronoi diagram [19] is a decomposition of the space
determined by a set of points. These points are often called
generators. We can describe the Voronoi diagram as a tes-
sellation of space, such that for every generator we define
a Voronoi region, consisting of all points in space which
have the smallest Euclidean distance to its generator. That
means for each generator pi there exists a Voronoi region
Ri, such that:

Ri = {x : ‖pi− x‖ ≤ ‖p j− x‖,∀ j 6= i}

where i, j ∈ {1,2, . . .n} and n is the number of generators.
For an example of a two-dimensional Voronoi diagram see
Figure 2.

Figure 2: Two-dimensional Voronoi diagram.

Region boundaries are called Voronoi edges. It can be
seen that in the two-dimensional Voronoi diagram each
edge is shared among neighboring regions. In the three-
dimensional Voronoi diagram the Voronoi edge is shared
among three regions. Each point of an edge is equidis-
tant to the edge generators, because the points lying on the
edge have to meet the definition of Voronoi region for all
regions containing the edge.

The point where multiple edges meet is called a Voronoi
vertex. A Voronoi vertex can be also defined as the end-
point of the Voronoi edge. In two dimensions we can
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also say that the Voronoi vertex is the point shared among
three Voronoi regions. Similarly, in the three-dimensional
Voronoi diagram the Voronoi vertex is a point shared by
four regions.

The Voronoi diagram is usually seen as a graph of the
Voronoi edges and the Voronoi vertices. The diagram is
often stored in its dual representation, called the Delau-
nay triangulation. Edges in the triangulation are created
by connecting the closest pair of generators, i.e., genera-
tors that share an edge. As a result we obtain a triangle in
the Delaunay triangulation for each Voronoi vertex in two
dimensions and a tetrahedron in three dimensions.

3.2 Additively Weighted Voronoi Diagram

It can be seen that all generators affect the resulting
Voronoi diagram equally when the Euclidean metric is
used. However, this is not always desired, consequently
many variations exist. One of these variations is the ad-
ditively weighted Voronoi diagram, also known as the
Apollonius diagram or the Euclidean Voronoi diagram of
spheres.

Each generator in the additively weighted Voronoi dia-
gram has a weight. Unlike the ordinary Voronoi diagram,
where generators are imagined as points, generators in the
additively weighted Voronoi diagram are imagined as cir-
cles in 2D or spheres in 3D with the radius equal to their
weight.

An additively weighted distance, which is defined as
the Euclidean distance minus the weight of the generator
[19, 11], is used instead of the Euclidean distance. Let
i, j ∈ {1,2, . . .n}, where n is the number of generators.
We define the Voronoi region Ri for a generator pi with
a weight wi as:

Ri = {x : ‖pi− x‖−wi ≤ ‖p j− x‖−w j,∀ j 6= i}

Due to the used distance, the Voronoi region can be inter-
preted as a set of points closest to the sphere pi with the ra-
dius wi. This has a few important implications. The edges
are no longer necessarily line segments or half-lines. For
an example of the additively weighted Voronoi diagram in
two dimensions, see Figure 3.

Unfortunately, some anomalies can occur in the addi-
tively weighted Voronoi diagram. It is possible that two
generators define more than one edge if there is a gener-
ator with a small weight among the generators with a big
weight assigned (e.g., a small sphere among three large
spheres). This small generator can split the edge into two
parts which are connected by the edges generated by the
small generator and the big generators. The generator with
a small weight can also generate an elliptic edge (Figure
4). For more details about these anomalies see [12].

Similarly to the ordinary Voronoi diagram, a dual rep-
resentation exists. This representation is called a quasi-
triangulation [12]. This dual representation is not a valid
triangulation (hence quasi-), because the anomalies break

Figure 3: 2D additively weighted Voronoi diagram.

Figure 4: Eliptic edges in the 3D additively weighted
Voronoi diagram.

the validity of the triangulation. For example, if an elliptic
edge exists in the three-dimensional additively weighted
Voronoi diagram, it may not be possible to construct a
tetrahedron, because no Voronoi vertex lies on the edge.
A triangle is stored in this case. Another example of an
anomaly is that a split edge in three dimensions is repre-
sented by multiple tetrahedra with two or more common
triangles.

4 Proposed method

Our method finds inner cavities in a molecule. Its input is
a set of molecule atoms, which are represented as spheres.
The output is a set of subgraphs of the graph representing
the additively weighted Voronoi diagram. Each subgraph
forms a connected cavity, as the probe can be slipped along
the subgraph.

We can leverage the additively weighted Voronoi dia-
gram for computing a diagram of molecules. The addi-
tively weighted Voronoi diagram, where the generators are
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atoms of a molecule with the weight given by their radius,
has an important feature, which can be used to quickly find
cavities using a probe of a given size. It is the fact that an
edge in such a diagram can be considered as an optimal
path among the generators.

A very simple proof is that if we moved away from one
generator, we would always get nearer to at least one other
generator. We can use this knowledge to slip a spherical
probe through the molecule. If the probe was not moved
along the edge, it would be possible that the probe “hits”
one of the generators, while there was a space between
the probe and another generator. Moving the probe along
the Voronoi edge ensures that the distance to the nearest
generators, which are likely to collide with the probe, is
equal.

The algorithm is built on the fact that the probe can pass
among the generators if and only if it can pass on the edge
through the narrowest place. As the algorithm does not
need the position where this narrowest place is, only the
radius of the probe which can pass among the generators is
stored. We will call the radius of the probe on the narrow-
est place a bottleneck. We use the bottleneck to determine
whether the probe can slip along an edge. Figure 5 illus-
trates the idea in two dimensions. This idea also applies in
three dimensions.

+

+

+
+

+

Figure 5: We try to slip a probe among the generators
(light-gray circles). The position of the narrowest place
is marked by a cross. If the probe can pass through, it is il-
lustrated as a dark circle. If the probe cannot pass through
the edge, it is shown as an empty circle.

Our algorithm consists of the following steps:

1. Creation of the additively weighted Voronoi diagram
of molecule atoms.

2. Computation of the bottlenecks.
3. Sorting the Voronoi vertices using the distance from

the vertex to its generators.
4. Traversal of a diagram using a graph traversal algo-

rithm.

Steps 1–3 are done in a preprocessing step.

4.1 Preprocessing

The algorithm starts with the preprocessing stage. In this
stage, the additively weighted Voronoi diagram of atoms
is computed. Next, edge bottlenecks are computed, as de-
scribed later. We also add a boolean flag “is outer” which
we will set on for all Voronoi vertices which have at least
one edge extending to the infinity. This flag will help us
to discover an outer cavity. Finally, Voronoi vertices are
sorted by the distance from a vertex to the surface of its
generators.

The bottleneck can occur anywhere on the Voronoi
edge. To compute the bottleneck we first compute a point
that has the minimal distance from the generators defining
this edge. Next, we must check whether this point lies on
the edge, for which we want to obtain the bottleneck.

This check is done by defining vectors from the cen-
ter of the generator with the smallest weight to the edge
endpoints and a vector to the point with the minimal dis-
tance to the generators. The generator with the smallest
weight needs to be used because of the elliptic edges. If
the vector to the tested point lies within the angle between
vectors to the edge endpoints, we store its distance to the
surface of the edge generators as the bottleneck for the
edge. Otherwise we use the endpoint for which the bottle-
neck is smaller. Figure 6 illustrates the possible positions
of bottlenecks. For details see [11, 18].

+
+

+

Figure 6: Bottlenecks. Crosses are positions of points with
the minimum distance from the edge generators, black cir-
cles are actual positions of bottlenecks.

Now, it would be already possible to find the cavities by
traversing the graph defined by the Voronoi vertices and
edges and checking whether the bottleneck is larger than
the probe size. However, this would be very inefficient,
because it would require visiting all vertices every time
the size of the probe changes.

The efficiency can be greatly improved by sorting the
vertices. We store the distance from the vertex to its gen-
erators with other vertex information. We call this distance
a maximal bottleneck. The maximal bottleneck allows us
to quickly decide whether the given probe can fit among
the generators. Its value is always greater or equal to the
maximum of the bottlenecks. This ensures that we cannot
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skip any vertex which has large enough bottlenecks during
finding cavities.

The last step of preprocessing stage is sorting the ver-
tices using the now obtained maximal bottleneck. The rea-
son to include the distance among the generators and the
vertex itself is that we need to take the space among the
vertex generators into account. This is important, because
the bottlenecks of all edges may be too small, but there is
still enough space among the generators of the vertex (see
Figure 7).

Figure 7: The empty space among generators in 2D. This
may occur in three dimensions, too.

4.2 Finding Cavities

The input of this part of the algorithm is the additively
weighted Voronoi diagram, represented as a graph of
Voronoi vertices and edges and a sorted order of vertices
from the preprocessing stage.

The search for cavities is performed as a graph traver-
sal. We start from the vertex with the largest maximal bot-
tleneck. First, we check whether the maximum of bottle-
necks of the starting vertex is greater than the probe radius.
If this condition is met, we recursively traverse the graph.
During the traversal we mark the visited vertices, so we do
not visit a vertex multiple times. The traversed part of the
Voronoi diagram forms a cavity.

When it is not possible to continue with the traversal,
we move to the vertex with the second largest bottleneck
and start the traversal from there if possible. We repeat
this procedure until a the first vertex is found, for which
its maximal bottleneck is large enough for probe to slip
through. We can safely stop the algorithm here, as all cavi-
ties were found. Since vertices are sorted using their max-
imal bottleneck, none of the remaining vertices has any
bottleneck bigger than the probe radius.

Now, we have found all cavities in the molecule. How-
ever, they include the outer void, too. To remove it, we
will utilize the flag “is outer” introduced earlier. After the
graph has been traversed, we check the “is outer” flag for
each visited vertex. If any of the visited vertices has the
flag set to true, we disregard this part of the graph, because

it is connected to the outer space, hence it cannot be an in-
ner cavity. We can also modify the algorithm to identify
first the outer cavity and then search cavities only within
the remaining vertices. The advantage of such a modifica-
tion is that it is possible to use a probe of a different size
to remove the outer cavity, which would allow us to use
the algorithm to find pockets on the surface of a molecule,
too. This is similar to the creation of β -shape [10] prior
to the search if the quasi-triangulation was used instead of
the additively weighted Voronoi diagram.

5 Experiments and Results

We have developed a Java library implementing the al-
gorithm and a simple visualization tool, the output of
which can be seen in Figure 8. The visualization approx-
imates the shape of a cavity by putting spheres into the
Voronoi vertices forming the cavity. The implementation
uses the awVoronoi library [1] for computing the quasi-
triangulation. For that reason the algorithm described had
to be converted to the dual representation.

The system used for experiments was a PC with Core
i7 920 CPU (four cores at 2.7GHz with Hyper-Threading)
and 12 GB RAM running Arch Linux 64bit. In all mea-
surements, we evaluated our algorithm twelve times with
the given parameters, removed the shortest and longest
measured time and finally computed average of the ten re-
maining times.

5.1 Algorithm Run Time

We have evaluated the run time of our algorithm with re-
gard to a variable probe size and a variable molecule size.

Table 1 and Figure 9 shows the measured algorithm
run time for the variable size of the probe. We used
the Thermus Thermophilus 70S ribosome complexed with
chloramphenicol (PDB ID 3OH5, approximately 87 000
atoms) in this experiment.

Probe Size [Å] Time [ms]
0.2 174
0.4 146
0.6 114
0.8 91
1.0 75
1.2 64
1.4 55
1.6 47
1.8 41
2.0 35

Table 1: Dependency of the algorithm run time on the
probe size.

Next, we have evaluated the run time of our algorithm
on several molecules of different sizes. The measured
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(a)

(b)

Figure 8: (a) Some of the cavities in the molecule 1AKD
for the probe with the radius 1.4Å. (b) The cavities (dark)
with the atoms forming them (light). Small dots represent
centers of the molecule atoms.

times without preprocessing are presented in Table 2. In
the first column, the PDB IDs of the tested molecules are
presented. In the second column, the number of atoms is
given. In the third column, the measured time is given.
Figure 10 shows that the algorithm scales linearly for a
variable molecule size.

Molecule No. of atoms Time [ms]
1CQW 2 754 3
3VMN 5 621 2
3AOB 23 385 14
3UXS 49 743 33
3OH5 87 539 55

Table 2: Algorithm run time for molecules of various
sizes.
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Figure 9: Dependency of the algorithm run time on the
probe size.
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Figure 10: Dependency between the number of atoms and
the run time for the probe with the radius of 1.4Å.

5.2 Comparison With Other Software

We have compared run time of our algorithm with Voro-
prot 0.7.6.4 [20], which implements similar algorithm us-
ing the additively weighted Voronoi diagram for finding
cavities. We chose Voroprot also because we had prob-
lems running other implementations, such as CASTp [4]
which is offered only as a web service.

Transaldolase from Corynebacterium glutamicum
(PDB ID 3R5E, 2 957 atoms) was used for the compari-
son. The reason of the choice of such a small molecule
was that we encountered the problems with processing
larger molecules in Voroprot. The times for Voroprot are
approximate, as the application has a graphical interface
only. The measured times are in Table 3. It can be
seen that our algorithm is several orders of magnitude
faster than Voroprot. The reason is that Voroprot always
searches all Voronoi vertices while our algorithm uses
sorting to reduce the size of searched set.
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Probe Size Run Time [s] Algorithm
[Å] Our Algorithm Voroprot Speedup
0.2 7 ×10−3 3.5 500
0.4 4 ×10−3 2.5 625
0.6 3 ×10−3 1.9 633
0.8 2 ×10−3 1.4 700
1.0 2 ×10−3 1.0 500

Table 3: Comparison with Voroprot.

5.3 Results, Summary and Future Work

We used the visualization tool to check the results visu-
ally. As far as we know, exact evaluation of results has not
been developped yet. We have also compared the largest
cavities found using our implementation with the cavities
found using Voroprot.

Since Voroprot provides only a graphical interface, it
was not possible to do exact run time measurements.
Therefore, more exact time comparison should be carried
out in the future.

Our algorithm currently does not handle elliptic edges.
These edges may or may not be incident to any Voronoi
vertex. It is also possible that only a part of an elliptic
edge forms a cavity. Fortunately, elliptic edges are rare in
proteins, because the difference among atom radii is small.
This is left for future work.

6 Conclusion

We have presented the algorithm for finding inner cavi-
ties in a molecule. The algorithm computes the additively
weighted Voronoi diagram of molecule atoms and sorts the
Voronoi vertices using the distance to their generators in
the preprocessing. The cavities are then found using a
graph traversal, starting from the vertex with largest dis-
tance and ending when all cavities are found.

Our experiments shows that our algorithm is excellent
for a variable probe size thanks to the preprocessing. The
algorithm is able to process even large protein structures
very quickly.
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Abstract

Nowadays virtual museums are implemented using variety
of different concepts. Most of them contain storytelling
in virtual environments. This paper introduces the con-
cept of audio stories guiding the user through the virtual
exhibition. Our goal is to explore if the audio storytelling
can compensate movement limitations in a virtual environ-
ment. For evaluation of user feedback we use qualitative
analysis methodology.

Keywords: storytelling, virtual museums, virtual envi-
ronments

1 Introduction

Media globalization offers endless possibilities to visit and
explore physically distant sites using virtual reality. Vir-
tual museums (VM) are enabling the Internet users, as well
as the real visitors on site, to access the exhibits, interact
with them and learn about their background and context
using computer graphics and multimedia. Recently, story-
telling is becoming an important part of implementation of
virtual museums, as it enhances the immersion of the visi-
tor and upgrades the pure visual expression of the exhibits.

The goal of this paper is to discuss the recent develop-
ments in virtual museums concepts with various kinds of
storytelling. Being a partner of Virtual Museum Transna-
tional Network [4], some of our virtual museum projects
are included in the EU funded research about the most
immersive concept for the virtual museum of the future.
After introduction of story guided virtual environments in
[15, 14] we explore the concept of virtual museums guided
only by audio stories, with very limited motion possibili-
ties. The idea for introduction of this concept emerged
after visiting the Anna Frank virtual museum [3]. While
listening to the voice telling the story about the presented
locations, we did not feel the need to move through the vir-
tual environment, being immersed in the story itself. This
inspired us to explore how the user would perceive the lim-
itation of movement, being offered the audio story in the
virtual museum.
∗dandyrocket@gmail.com
†srizvic@etf.unsa.ba

The rest of the paper is organized as follows: Section 2
gives an overview of the related work in the field of vir-
tual museums with storytelling; Section 3 presents the
audio guided VM concept through the case study - vir-
tual museum of Bosniak institute; Section 4 analyses
the user feedback using quantitative analysis methodology
and Section 5 offers our conclusions and directions for fu-
ture work.

2 Related work

The use of storytelling technology in virtual museums is
not new. Nowadays there are many virtual museums on-
line that use digital stories in the presentation of their vir-
tual exhibits. [13, 6, 8]. Different storytelling techniques
are used, such as textual, audio, video or avatar-based sto-
rytelling. What is still quite absent, however, is the use
of storytelling guidance through the virtual museum ex-
hibitions as a whole - guidance that will provide visitors
with an accurate and complete image of not just particu-
lar exhibit, but also events, moments or places in history,
and help them to understand and appreciate the artefacts
in their historical context. There are very few examples
of such virtual museums online. They are implemented
differently. In some of them visitors activate stories by
walking through virtual environments (automatically or by
pressing buttons). In other, visitors listen to story intros
about virtual exhibitions prior to entering virtual environ-
ments. Virtual environments in those museums also vary
from still 3D renders to panoramic 3D walk-through envi-
ronments.

The National Palace Museum [11] has an exhibition
hall guide for the antiquities in one of their permanent ex-
hibition halls called The treasures of eight thousand years.
The exhibition presents antiquities from different histori-
cal periods (starting from 6,200 B.C.) organized in a num-
ber of exhibition rooms. Each room has an audio guide
and video story illustrated with old photographs and some-
times with 3D animations as well. The rooms are imple-
mented as movable panoramic photographs of halls. The
Virtual Smithsonian [1] allows visitors to take a virtual,
audio guided, room-by-room tour of the whole museum.
The visitor can navigate from a non-movable 3D hall en-
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vironment to another one and explore hotspots which con-
tain 3D artefacts, high resolution images, video and audio
clips, etc.

In Anne Frank Secret Annex [2] virtual museum vis-
itors are able to virtually walk and move around the
panoramic 3D rendered photos of rooms in the house, in
which the Frank family and other Jews lived and hid dur-
ing the WWII. Aside to being able to explore the house in
great detail and to click on various extras with additional
information, such as text or films, visitors can hear the se-
ries of stories, accompanied with the ambient sound and
music that explain what happened to the people in hid-
ing. These audio narrations bring Anne Franks life story
to people’s attention all over the world. They are based
on the stories from now famous Anne Frank’s diary and
reports of witnesses from the Anne Frank House archives.

In contrast to Anne Franks virtual museum where visi-
tors play stories randomly by clicking on info nodes, Sara-
jevo Survival Tools [5] virtual museum uses linear sto-
ryline to share the story about the life of Sarajevo citi-
zens who were forced to live under the siege for 3.5 years
(1992-1996). To the best of our knowledge, it is the only
known example of its kind. In this virtual museum visi-
tors are fully guided through the virtual exhibitions of arte-
facts, manufactured by Sarajevans to survive the siege, by
a linear, digital video story. The whole digital story is di-
vided in a series of story segments organized in a logical
sequence. Story segments are designed in such a way to
present an interrelation of exhibits within a specific theme,
all linked through a storyline. Each segment is played as
intro story in prior to corresponding exhibition gallery. Ex-
hibition galleries are implemented as non-movable virtual
imaginary spaces with links to interactive 3D models of
artefacts, movies about them and galleries of photos.

All these virtual museums use some kind of storytelling
guidance through their collections. The question we would
like to answer here is if it is possible, in those kinds of
virtual museums, to use the story as the visual distraction
so to make visitors of virtual environments do less mov-
ing and clicking and more listening and viewing when the
story is interesting and compelling enough to distract their
visual attention [9].

3 Audio guided Virtual Museum

In this paper we introduce the concept of audio stories
guiding the user through the virtual exhibition. Our goal
is to explore whether the audio storytelling can compen-
sate movement limitations in a virtual environment. Our
case study is the virtual museum of Bosniak Institute in
Sarajevo [7].

The Bosniak Institute is a cultural centre located in
Sarajevo, Bosnia and Herzegovina (Figure 1), focusing on
promotion of the cultural heritage, historical truth and cul-
ture of the Bosniaks and the other nations with whom they
have lived together for centuries. It was established by

Adil Zulfikarpai. The institute is housed in a renovated
sixteenth century Turkish bath and includes a library, an
art centre, archive, collection of old manuscripts and old
maps. There are also: a collection of Syrian furniture,
a collection of furniture from Safvet Bey Baagi family
(Bosnian writer considered to be the father of Bosnian Re-
naissance and one of Bosnia’s most cherished poets at the
turn of the 20th century), and also the collection of various
items and furniture from Bosnian history and culture. The

Figure 1: Bosniak Institute: exterior (above) and interior
(below)

virtual museum project was implemented through the lab
coursework of the Computer Graphics course at the Fac-
ulty of Electrical Engineering in Sarajevo. Students were
creating the individual exhibits virtual representations that
were connected in the virtual museum through the joint
virtual environment.

Creation of virtual environment (Figure 2) is done
through the workflow displayed in Figure 3. We have
taken pictures of the real museum and also of all the ex-
hibits. Virtual environment is supposed to resemble a part
of the real museum, and to be as realistic as possible. To
make the virtual environment, we have used 3ds max and
Flash. Exhibits are grouped in a similar way they are ar-
ranged in exhibition rooms in the real museum. For every
virtual room a short audio story is recorded. The audio
story is supposed to act as a curator in the real museum, to
intrigue the visitor and to make him or her visit as much
exhibits as possible. When the user visits the virtual mu-
seum, he or she is guided by audio stories. They should
help the visitor in navigation through the virtual museum
and introduce him/her with the context of the exhibition.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
44



Figure 2: Home page of virtual museum

Figure 3: Workflow of VM creation process

Our virtual exhibition consists of the Syrian furniture, fur-
niture from Safvet Bey Baagis house and collection of var-
ious cultural heritage objects. Structure of the VM is pre-
sented in Figure 4. The home page of the Virtual Museum
is linked to the pages of: library, archive, manuscripts,
maps, artwork benefactor, and 3D exhibits as presented in
the Figure 2. When the home page loads, the audio story
with information about Bosniak Institute starts. After the
visitor clicks on the link to the 3D exhibitions, another
page opens with audio story about the objects from the
Bosniak Institute (Figure 5). From this page, visitor can
select to go to one of three pages: Syrian furniture (Fig-
ure 6), furniture from Safvet Bey Basagics house (Figure
7) and the page with collection of various items and furni-
ture (Figure 8). On every collections page, an audio story
is also loaded with information about the selected collec-
tion. When the visitor clicks on a particular item from the
selected collection, a new page opens with digital content
related to that item (pictures, 3D model, video and gallery
of photos, Figure 9). The visitor can mute the audio story
in order not to be annoyed if he or she has already heard
the story during the previous visits to the virtual museum.

4 Evaluation

Evaluation of the audio guided virtual museum concept
has been conducted with two tools: questionnaires and
in-depth interviews. The main goal of both user studies
was to determine if the audio storytelling was enough for

Figure 4: Structure of virtual environment

Figure 5: Selection of exhibit group

guiding the users through the VM collection, considering
that they had no possibility to move in 3D virtual envi-
ronment. The analysis of results was performed using
qualitative analysis methodology [12] and therefore
no statistical calculations were used for the analysis of
results. Since the practice has shown that 7 users will
find approximately 80% of problems is in graphics user
interface [12], we have performed the user studies on 14
users in total.

4.1. Experiment design

4.1.1. User study based on questionnaires
Ten users participated in the study, 4 male and 6 female.

They aged from 25 to 50, with the average age of 35. All
of them reported normal hearing. Eight out of ten reported
normal vision. There were no particular criteria for selec-
tion of users. All of them are from Bosnia and Herzegov-
ina.

We have created a semi-structured questionnaire, which
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Figure 6: Syrian furniture

Figure 7: Furniture that belonged to Safvet-Bey Basagic

includes both open-ended and specific questions (some of
them displayed in Table 1), and sent it to the participants
by email, along with the instruction document. They were
asked to read the instructions, explore the virtual museum
environment, fill in the questionnaire and send back their
responses.

4.1.2. In-depth interviews
There were 4 users, 2 male and 2 female. They aged

from 23 to 30, with an average age of 26. All of them
reported normal hearing. Also, all of them reported nor-
mal vision. There were no specific criteria for selection of
users and all of them were from Bosnia and Herzegovina.
Users were interviewed based on the questionnaire from
the previous section, but they had more freedom to express
their opinions and time to discuss the topic.

4.2. Analysis of the results

Qualitative data analysis is based on data coding [12].
It is a process of extracting qualitative data into quanti-
tative form. In such a process the possible values of the
qualitative data are created according to the given answers.
Since participants often use different terms for the same
phenomenon or same words for different phenomena, it is
important to perform coding as accurate as possible, with-

Figure 8: Collection of various items and furniture

Figure 9: Cradle exhibit homepage

out losing too much information.
The data analysis was performed in two steps: defining

the hypotheses and grounding the evidence. The hypothe-
ses were generated using the constant comparison method
[10]. After coding the questions (Table 2), each of them
representing a particular section, we went through the data
looking for patterns.

We built the following hypotheses from the data:
(H1) - audio story improves the quality of virtual mu-

seum presentation;
(H2) - having the story to guide them through the mu-

seum, users do not feel limited even if their movement in
3D environment is disabled. The aim of this study is not
to prove our hypotheses, but to build up the weight of evi-
dence supporting these propositions, that could be used as
ground theories in future studies. Nine out of 14 users (10
from questionnaires + 4 in-depth interviews) were satisfied
with the story. Two out of 14 users said that the story was
good but it could be more dynamic and 2 out of 14 users
said that story is too long, boring and distracting. Overall,
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Question Code Possible value
What do you think about Good

the story that guides through S1 Average
the virtual museum? Bad
Were you immersed S2 Yes

in the story? No
Did the story distract you Yes

from exploring the S3 No
virtual museum?

Did the story contribute to Yes
your immersion in the S4 No

environment?
What do you think about Good
navigation in the virtual N1 Bad

museum?
Were you able to move in N2 Yes

the 3D environment? No
Did you feel the need for N3 Yes

moving? No

Table 1: The questions, codes and possible values used in
the study.

the users liked the story; it made them feel like they are
in the real museum, they were immersed in the story itself.
Also it was not distracting and it acted like a guide through
the virtual museum. They argument their opinion on the
story with the following explanations: We get two things
in one - It can save us time and that is what we all want or
Story gives the intimate touch to virtual environment; visi-
tor has a feeling like he or she is not alone, he/she feels like
somebody is guiding him/her. Results related to the codes
S1-S4 give enough evidence to support our first hypothesis
(Figure 10).

Nine out of 14 users liked the navigation - It is very
intuitive, and Ive just followed one link to another. Five
out of 14 users did not like the navigation; they found it as
too static and had problems with returning to the previous
pages (You have to click too much to go back on Home
page of the Virtual Museum). One user did not answer
some of the questions.

The most important result of the study is that 11 out of
14 users have not noticed that the movement in 3D envi-
ronment was disabled (Figure 11). To the specific ques-
tion Were you able to move in the 3D environment? they
answered positively. Most probably some of them consid-
ered as movement changing of virtual environments using
links, but however, they have not reported problems with
lack of movement abilities. This result gives enough evi-
dence to support our second hypothesis. Semi-structured
questionnaires also allow collecting not only the foreseen
information but some additional, unexpected data as well.
Besides the mentioned, positive criticism of the project,
some gaps of the proposed concept were identified. There
were a few complaints and suggestions about the content:
There could be some background music also, I know it is a

Code Answer
Good(9)

S1 Average(2)
Bad(2)

S2 Yes(11)
No(2)

S3 Yes(1)
No(12)

S4 Yes(9)
No(4)

Good(9)
N1 Bad(5)
N2 Yes(10)

No(4)
N3 Yes(12)

No(1)

Table 2: The codes and the number of answers provided.

Figure 10: Graphic representation of answers

student project, but could the sound be recorded by a pro-
fessional narrator, Can pages be more interactive, as in a
video game?. There were some suggestions related to the
content of the story and design of the web site.

It was also interesting that users who are not from tech-
nical disciplines liked the project more than computer sci-
ence professionals. Also, users who do not have much ex-
perience with virtual museums think that the environment
is realistic, and do not have problems with navigation. Ex-
perienced computer users were more demanding in tech-
nical sense. They had more suggestions considering the
navigation and technical realization. Almost all users said
that they learned a lot from the project and would like to
visit the real museum after visiting the virtual one.

5 Conclusions and future work

In the paper we presented the concept of audio guided vir-
tual museum. This work is a part of our research on sto-
rytelling in virtual museum projects, performed inside the
Virtual Museum Transnational Network. Results achieved
so far show that the visitors appreciate story guided vir-
tual museums, as they provide them with the context of
the exhibition and historical background, not always visi-
ble from the virtual presentation of the very artefacts. The
story also enhances their immersion in the different space
and time.
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Figure 11: Graphic representation of answers on question
N2

Audio guided virtual museum of Bosniak Institute intro-
duced audio storytelling in virtual environments presented
as still images with links (hot spots). We were interested to
explore how the users react to the movement disability and
if the audio story can make up that limitation without de-
creasing the overall quality of the virtual museum. Qual-
itative analysis of the user study results shows that most
of the users have not even noticed that they are not able
to move in the virtual environment. They also found that
audio storytelling improves the overall quality of the vir-
tual exhibition. In the future work we will perform more
different user studies in order to find the best relationship
between the storytelling and freedom of movement in vir-
tual museum environments. We will also explore how to
make the storytelling more interactive, incorporating it in
serious games for cultural heritage.
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Abstract

Electronic Flight Instrument System (EFIS) known as
glass cockpit is a key component of any modern aircraft. It
visualises practically all cockpit instruments and serves as
replacement for obsolete solution where most instruments
were electromechanical. Flight crews must gain perfect
knowledge of cockpit systems of each aircraft type in or-
der to control it safely. For most aircraft types the available
simulators are expensive, therefore difficult to access for
most people. This paper describes realisation of a semi-
professional simulator of Boeing 787 EFIS. Aim of the
presented solution is to serve as simulator for demand-
ing amateur users, for testing newly developed aircraft
systems in the context of their future use and, in case of
successful certification, also as a training device for flight
crews. In this paper we present description of individual
parts of the EFIS and discussion of currently available sim-
ulators for professional and amateur use. Furthermore, in-
dividual aspects of our solution are described in detail. Be-
sides standard functions of EFIS it supports simulation of
other aircraft systems, e.g. individual panels in the cock-
pit allowing interaction with the flight management system
(FMS). Using a generic interface it allows integration with
various systems for simulation of the external environment
and physical model of the aircraft. Presented solution has
been verified by functional testing and by specific usability
tests with both professional and amateur users.

Keywords: Electronic Flight Instrument System, Flight
Simulation, Flight Training, Human-computer Interaction,
2D Graphics

1 Introduction

Nowadays, the aviation is once again in the rise and global
manufactures of civil aircrafts are introducing new variants
of current aircraft models such as Boeing 747-8 or Boeing
737 MAX and even developing completely new models
such as Airbus A350 XWB, A380 or Boeing 787. This

∗stefaan1@fel.cvut.cz
†macikmir@fel.cvut.cz

trend also evokes increasing number of people interested
in flying, not only as aircraft passengers, but also as those
who like to try pilot experience.

After the events of 9/11 regulation in aviation security
has tightened and access to the flight deck has become
almost impossible for regular people. Flight simulators,
either professional or amateur, provide more or less real
flight experience, which solves this issue to some extend.
Professional simulators usually provide experience close
to a real flight, but access to them can be very costly. The
other option is usage of amateur simulators, which can be
used in a home environment for an affordable price. These
simulators are usually not even close to the quality level
of the professional devices. Mostly, they are product of
the entertainment industry, such as PC games, which are
mainly aimed on amateur users. Therefore they do not
provide complex simulation.

The Boeing 787 is same as the vast majority of current
airliners equipped with a glass cockpit – a cockpit consist-
ing of LCD panels instead of electromechanical devices.
This system is called Electronic Flight Instrument System
(EFIS). Main goal of this work is to implement a simu-
lation of Boeing 787 EFIS, which would allow all users,
even those who do not have access to professional simu-
lators, use a system providing highest possible quality of
simulation of all systems in the cockpit.

This work focuses on following areas:

• On group of people who are interested in aviation
and would like to experience control of an airliner
but professional simulators are unavailable for them.
Quality of home simulators is not sufficient for them,
and thus they are seeking for a product which would
provide, in home conditions, simulation comparable
to professional solutions for an affordable price.

• To provide environment for testing of aircraft systems
being developed in context of their future use.

• To serve as certified flight training device – Basic In-
strument Training Device (BITD, see further) and/or
Flight and Navigation Procedures Trainer (FNPT, see
further).
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2 Background

This chapter introduces the Boeing 787 Dreamliner and
basic terms from the field of aviation instrumentation nec-
essary for comprehension of this text.

2.1 Boeing 787

Boeing 787 Dreamliner is currently the last model of civil
aircraft from the Boeing Corporation. It is a twin-engine
aircraft, which should eventually replace the Boeing 767
model. It is the first civil aircraft that use composite mate-
rials instead of aluminium in such a large scale. Further-
more, thanks to a new design of engines, the noise pro-
duced by the plane is decreased by 60% and the fuel con-
sumption by 20% respectively [18]. Modern construction
of this aircraft incorporates modern design of the EFIS in
ins cockpit.

2.2 Electronic Flight Instrument System

In this work we focus mainly on the simulation of LCD
panels which are present in an aircraft cockpit. The
main part of the Boeing 787 glass cockpit consists of five
fifteen-inch LCD panels. These LCD panels are then vir-
tually divided into smaller parts (see Figure 1):

• Primary Flight Display (PFD) – Display that provides
pilots with the most important flight data like air-
speed, altitude, attitude, heading etc.

• Multi-Function Display (MFD) – MFD can display
various panels according to data that are required
at a particular situation. Specifically it can dis-
play navigation display (ND), system display (SYS),
electronic checklist (CHKL), Control Display Unit
(CDU), Information Display (INFO) and Communi-
cation display (COMM).

• Engine Indicating and Crew Alerting System
(EICAS) – Provides flight crew with information
about engines condition and also displays annunci-
ations for the crew.

Figure 1: EFIS parts [1]

The cockpit is also equipped with Integrated Standby
Flight Display (ISFD), Head-Up Displays (HUD) and
Electronic Flight Bags (EFB). Normally, these systems are

not vital for successful flight and description of these sys-
tems is out of scope of this work (however detailed infor-
mation can be found in[14]).

2.3 Flight simulators

Flight simulators can be divided into two groups – amateur
and professional. The former group incorporates mainly
PC games, which allows users to experience the role of
a pilot with no need for expensive flight training. This
category is represented for example by Microsoft Flight
Simulator [9] or XPlane [8]. The latter group represents
professional simulators that are used for training of flight
crews and therefore must satisfy strict requirements for ac-
curacy of the simulation. Based on the level of the simu-
lation, there are four main categories of professional flight
simulators:

• Basic Instrument Training Device (BITD) – A ground
based training device. It may use screen based instru-
ment panels and spring-loaded flight controls, provid-
ing a training platform for at least the procedural as-
pects of instrument flight [7].

• Flight and Navigation Procedures Trainer (FNPT) –
A training device which represents the flight deck
or cockpit environment including the assemblage of
equipment and computer programmes necessary to
represent an aircraft in flight operations to the ex-
tent that the systems appear to function as in an air-
craft [7].

• Flight Training Device (FTD) – A full size replica
of a specific aircraft types instruments, equipment,
panels and controls in an open flight deck area or
an enclosed aircraft flight deck, including the as-
semblage of equipment and computer software pro-
grammes necessary to represent the aircraft in ground
and flight conditions to the extent of the systems in-
stalled in the device [7].

• Full Flight Simulator (FFS) – A full size replica of a
specific type or make, model and series aircraft flight
deck, including the assemblage of all equipment and
computer programmes necessary to represent the air-
craft in ground and flight operations, a visual system
providing an out of the flight deck view, and a force
cueing motion system [7].

Created EFIS should meet the requirements for profes-
sional simulator from category BITD and/or FNPT, be-
cause for this category is not required complete simulation
of all aircraft systems.

3 Related work

This chapter provides a brief review of currently available
solutions providing relevant functionality.
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Abacus 787 is a plug-in module for Microsoft Flight
Simulator X that provides simulation of Boeing 787 air-
craft. Although, this system provides visualisation of EFIS
visually close to reality, the functionality is not optimal
(see Figure 2). The panels show only fraction of the data
needed in a real flight and the Flight Management Com-
puter (FMC), which is a vital component, is missing com-
pletely. This prevents the system from providing realistic
experience [17].

Figure 2: Abacus 787 [17]

Project magenta (PM) is EFIS simulator of Boeing
737NG, 747-400, 777 and 757/767 or Airbus A320, 330
and 340. Project Magenta provides not only simulation
of the EFIS (see Figure 3) but also many other systems
such as control panels or an instructor station. Most cur-
rent amateur cockpit simulators are based on this project.
However, it does not provide simulation of the Boeing 787
EFIS. It is not an open project, therefore it is not possible
to extend it in order to simulate B787 EFIS.

Figure 3: Project Magenta [4]

Thales 787 is a professional simulator of Boeing 787
certified as category Level D from Thales Group (see Fig-
ure 4). Because its price around USD 15-20 million it is
not available to most regular users.

Figure 4: Thales 787 [5]

4 EFIS simulator architecture

This section describes the architecture of the created sim-
ulator and some specific issues of the implementation.

The implementation is based on C++, OpenGL for
graphical output and XAudio2 for audio output respec-
tively. For communication with the Windows OS it uses
WinAPI interface.

A modular design has been used in order to achieve an
universal solution, where individual independent compo-
nents are created as DLL libraries. The systems consist of
three basic composes:

• The program core, which provides simulation of the
EFIS itself.

• Module for communication with simulation platform
that provides simulation of the external environment
and physical model of the aircraft. The system can
be extended in order to support another simulation
platform by using appropriate version of this module.

• Module for communication with peripheral devices
such as joystick, physical panels etc.

Because the program consists of several modules that
work independently, it was necessary to ensure that these
parts do not slow down each other, especially parts op-
erating in precise time intervals. We used multi-threaded
design to satisfy this requirement (see Figure 5).

EFIS essentially requires multiple displays, in our case
five. Therefore it is necessary to allow our system to be
displayed on multiple monitors as well. Graphic cards
that support connection of more than two monitors at same
time are still not very common. Therefore it was necessary
to design the system to support multiple graphic cards at
the same time.

On each monitor the content is displayed in an indepen-
dent window, which guarantees hardware acceleration for
each display. Therefore it was necessary to design render-
ing loop to be able to render into multiple windows simul-
taneously and work effectively as well. Our solution for
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Figure 5: Structure of threads

this is to use an independent thread for each monitor (see
Figure 6). All these threads contain an independent render-
ing loop. If we have more CPUs and/or GPUs this solution
is significantly more efficient than a naive method (render-
ing all windows in one thread) [3]. On the other hand it
requires synchronisation between threads and data sharing
between different graphic cards. All created threads have
access to shared memory where all necessary information
about the current simulation state is stored.

It is also possible for users to choose on which monitor
and position will be the individual parts of EFIS displayed.
This customisation is possible by using configuration file.

Figure 6: Rendering with multiple threads

Besides the rendering loop, any Windows R© applica-
tion contains its own loop for receiving messages through
which it reacts to external events such as system messages,
status information about mouse and keyboard etc. Due to
the fact that our program contains multiple windows, it
was necessary to adapt message loops of particular win-
dows. Consequentially it was necessary to separate mes-
sages on those important for each application window and
those important for the entire program (see Figure 7).

In order to allow interaction with the created EFIS our
solution also contains simulation of some control panels
from the cockpit. For their simulation we created a custom

Figure 7: Processing messages

system. It is able to display these panels and react to events
trigged by the user as well.

Another important component of the created simulation
is Flight Management Computer (FMC). FMC contains
three databases:

• Navigation database – contains informations about all
airports and all navigation points.

• Performance database – contains performance char-
acteristics of the aircraft.

• Airline modifiable information – contains airline spe-
cific data.

FMC is then able to calculate and provide important in-
formations to crew and other systems. For example infor-
mations about minimum and maximum speed at particular
situation or navigation information displayed on Naviga-
tion Display (ND) or Control Display Unit (CDU).

5 External simulation platform inter-
face

Our system serves as simulation of the EFIS. In order to
achieve complex simulation, it was necessary to integrate
it with a platform that provides simulation of an external
environment and physical model of the aircraft. Microsoft
Flight Simulator X (FSX) meets most of our requirements,
therefore we used this platform [3].

Various data about the external environment and the air-
craft physical model are required for operation of the pre-
sented EFIS simulator. These data can be divided into
three categories:

• Data whose accuracy is critical and hence require fre-
quent updates. This category includes data like air-
craft position, pitch, bank etc.
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• Data that are not changing rapidly during the simula-
tion and therefore does not require frequent updates.
This group includes for example weather information
or position of other aircrafts in a particular area.

• Data constant during the simulation, for example nav-
igational information.

It was necessary to take into account these requirements
when designing the communication interface between our
simulator and FSX. To obtain time-critical data we used
SimConnect [10] interface. This interface is part of the
Microsoft FSX. It allows communication between FSX
and other modules. SimConnect works on client-server
principle. Information about the state of the simulated
aircraft such as position, altitude etc. can be easily ob-
tained by sending requests via the SimConnect interface
into FSX [11]. This principle cannot be applied to all re-
quirements of our system, because not all required data
can be obtained using the SimConnects in this straightfor-
ward way (e.g. data for systems Traffic Collision Avoid-
ance System (TCAS), Vertical Situation Display (VSD)
or terrain radar). Further text describes solutions how to
obtain required data that are not directly accessible using
SimConnect interface.

For implementation of the TCAS it is necessary to get
information about position of other aircrafts in the area.
These data can be obtained via SimConnect using method
as described in [6]. In the beginning it is sent request to
FSX for list of all objects in the simulation. After that
is sent for each object request for its actual position and
altitude. These data are then requested periodically(see
Figure 8). Also it is necessary to watch events when some
object enter or leave simulation.

For the VSD, it is necessary to get data about terrain in
front of aircraft. It is not possible to obtain data about the
terrain using the SimConnect interface. However we can
use similar principle which is used to simulate the TCAS.
In our program we will first insert an object into FSX. This
will serve as an invisible probe. Position of the probe will
be then incrementally moved in the axis of the aircraft and
at every change of the position we get height of the terrain
(see Figure 9). Results of this solution are good and situ-
ation on VSD corresponds with relief in the FSX. How-
ever, because implementation of sampling does not use
any buffer to store and/or preload the necessary data, af-
ter change of heading, a resampling of the new relief on
the VSD is visible.

To obtain the static data, we decided to use decompila-
tion [21] of FSX data files by using modified version of
decompiler BGL2XML [2].

6 Results and Evaluation

Created system fully implements following EFIS sub-
systems:

Figure 8: TCAS

Figure 9: Using probe for getting terrain profile

• Primary Flight Display (PFD)

• Navigation Display (ND)

• Engines Information and Crew Alerting System
(EICAS)

• Traffic Alert and Collision Avoidance System
(TCAS)

• Control Display Unit (CDU)

• Vertical Situation Display (VSD)

• Control panels: Mode Control Panel (MCP), EFIS
Control Panel (ECP), Display Selection Panel (DSP),
Multi-functional Keypad (MFK), Glareshield panel
(GSP)

Furthermore some systems are supported partially,
namely: FMC (Flight Management Computer), Synpop-
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tics display (SYS), Auxiliary display (AUX), Centre For-
ward Panel.

Presented system has been tested for functional and per-
formance aspects. Functional testing was performed by
testing with users and by comparison with real system.
For performance testing we used standard methods such
as unit testing and profiling.

6.1 User interface testing

Because our system is a very specific product, testing of
its user interface requires users with at least basic aviation
experience. The testing was performed in a manner of an
expert review with users who are familiar with function of
an aircraft EFIS. Testing itself was made with two differ-
ent user groups, those who gained their experience with
EFIS in simulators and those with experience from a real
aircraft. This way we get feedback from people with dif-
ferent perspective. The test also covered intended target
categories of users.

The test was performed on a system consisting of two
PCs. The first one was running Microsoft Flight Simulator
X with one monitor. The other PC was running our EFIS
simulator and was equipped with two monitors. Complete
testing layout is shown in Figure 10. The system was con-
trolled by a mouse and Saitek X52 Pro joystick with ped-
als.

Figure 10: Testing layout

The testing itself was divided into several parts:

• Introduction of the project

• Introducing the EFIS, its possibilities, limitations and
the way of control

• Pre-test interview

• The actual test. The test consisted of several tasks,
each of them aimed to verify a particular part of cre-
ated system

• Semi-structured post-test interview

Overall assessment from the users was positive. How-
ever performed tests revealed certain factors, where it is
necessary to improve the created system:

• Hardware problems - Due to hardware limitations,
the layout used for testing was not same as layout in a
real aircraft. This caused problems during interaction
with the system.

• Problems caused by incomplete implementation - Be-
cause the created EFIS does not simulate all aircraft
systems, it was not possible to test all sub-systems,
especially the FMC.

• Problems caused by mistakes in implementation dis-
covered during testing. Some of those issues were
already fixed.

Figure 11: Comparison with the real system (top - our sim-
ulator, bottom - real system [5])

6.2 Comparison with the real system

It was practically impossible to compare our system di-
rectly with the real system in Boeing 787 or with higher
category simulator. Also it was not possible to invite users
with experience directly from Boeing 787. Therefore we
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compared the general functionality of individual systems
with other planes. This allowed us to test the system by
the functional aspect, because the basic function of the
systems in different aircraft types is similar[20]. However
comparison with the specific systems of B787 can only be
obtained from available sources such as manuals for air-
craft [14, 16, 15, 13], photos or videos. In Figure 11 and
Figure 12 is a visual comparison of our system with pho-
tography of the real system. These figures depicts high fi-
delity of the simulated system. Most differences between
these images are caused by slightly different state between
simulated EFIS and the real system on the photography.

Figure 12: Comparison with the real system (top - our sim-
ulator, bottom - real system [5])

6.3 Unit testing and performance evaluation

A set of unit tests was performed in order to evaluate our
implementation. Following subsystems were tested:

• Navigation database

• Thread management

• Interface between EFIS and FSX

Created system passed all performed unit tests. It is out
of scope of this work to describe the results in detail, how-
ever the more information can be found here[3]. More-
over, the performance of the system was evaluated using
profiling. Test itself was performed using integrated pro-
filer in MS Visual Studio. During simulator testing we
were running EFIS simulation on standard conditions for
the period of one minute. From profiling results we con-
cluded some recommendations to improve our system per-
formance. The most significant one was to reduce data
transfers between RAM and GPU. For example by using
Vertex Buffer Objects or Vertex Arrays. Second recom-
mendation was to improve synchronization between indi-
vidual threads. The more detailed information and results
can be found in [3].

7 Conclusions and Future Work

In this paper we presented design, implementation, evalua-
tion and possible usage of our Boeing 787 EFIS simulator.
Our implementation of EFIS could be used in the follow-
ing scenarios:

• As a sophisticated EFIS simulator for advanced ama-
teur users requiring high fidelity simulation.

• Thanks to its modular design it can serve as en-
vironment for laboratory testing of aircraft sys-
tems/instruments being developed or for testing inter-
action between cockpit systems and the flight crew.

• In case of successful certification from Federal Avia-
tion Administration (FAA) [19] or European Aviation
Safety Agency (EASA) [7] (or other national aviation
authority) it could be used as a professional simula-
tor.

Evaluation of our implementation of Boeing 787 EFIS
proved that it provides functional simulation of a real sys-
tem. We managed to design and implement quality sim-
ulation system, which includes most functions of the real
EFIS and other aircraft systems.

Presented solution supports all basic function necessary
for realistic simulation of an EFIS however the overall
experience can be improved by finalizing some missing
parts, namely: missing FMC functions, Synoptics display
(screens representing status of hydraulic and electrical sys-
tems), Electronic Checklist and Head-up display.
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Comparison with the real system has been performed
using publicly available resources, however precise tech-
nical data are necessary for certification of the system as
a professional simulator. This certification requires imple-
mentation of requirements described in Qualification Test
Guide (QTG)[7]. Satisfying these requirements is then
costly and may be difficult without information provided
by aircraft manufacture.

Our system uses a modular design, therefore it is quite
simple to enable support of another aircraft EFIS. There is
already demand for EFIS simulator of Boeing 737 MAX.
There is also demand for implementation of interface to
the Flight Gear simulator – an open source project often
used by the research community, e.g. in project [12].
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Abstract

The semantic gap between the digital image representation
and the user’s image understanding is still a big problem.
In our work we try to reduce this semantic gap in a field of
natural images.

This paper proposes a method for semantic categoriza-
tion and retrieval of natural scene images with and with-
out people. These are typical holiday pictures from hiking
outdoors. Our approach comprises of three stages. Pre-
processing consists of image segmentation into arbitrary-
shaped regions and detection of people in the image. In
the next stage, local image regions are classified using low
level features into semantic concept classes such as water,
sky or sand. Finally the frequency of occurrence of these
semantic concept classes determines the high level scene
category. For the classification of local image regions the
k-Nearest Neighbor and Support Vector Machine classi-
fiers are used. The results obtained by both classifiers are
validated within the paper.

Keywords: Semantic gap, Semantic retrieval, Content
Based Image Retrieval (CBIR), Classification

1 Introduction

We live in a world where having a digital camera or image
scanner is not a problem any more. People are used to
take thousands of pictures during their vacation and they
like to share them at the web galleries or social networks.
Due to more and more images being generated in digital
form around the world, it is important to deal with a
problem how to extract the semantic content of images
and then retrieve these images effectively.

Humans tend to interpret images using high-level con-
cepts, they are able to identify keywords, abstract objects
or events presented in the image. However, for a computer
the image content is a matrix of pixels, which can be sum-
marized by low-level color, texture or shape features. The
lack of correlation between the high-level concepts that a

∗lidayova@gmail.com
†sikudova@sccg.sk

Figure 1: An example of the semantic gap problem. The
two images possess very similar colour and position char-
acteristics, but differ vastly as far as the semantics are con-
cerned.

user requires and the low-level features that image retrieval
systems offer is the semantic gap.

In our work we try to reduce this semantic gap in a field
of natural scene images with and without people. These
sort of pictures are common in personal family albums.
Our method can help the people to search in these albums
effectively.

This paper is organized in the following way: The tech-
niques in reducing the semantic gap are discussed in Sec-
tion 2. In Section 3 our method for semantic categorization
and retrieval is presented. In Section 4 we describe seg-
mentation algorithm and body detection used here. Sec-
tion 5 is dedicated for the low-level features and classi-
fiers. In section 6 we deal with scene categorization and
Section 7 discuss the results. Finally, Section 8 concludes
the paper.

2 Related work

Image retrieval research is moving from text-based,
through content-based, towards semantic-based image re-
trieval. Several systems reducing the semantic gap have
been proposed.

In [6] the techniques reducing the semantic gap are
divided into six categories:

1. Object ontology This system is using object ontology
to define high-level concepts. Firstly low-level fea-
tures describing the color, position and shape of each
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Figure 2: Overview of proposed method

region are calculated. Next different intervals for
these features are defined. Each interval can be trans-
lated to an intermediate-level descriptor qualitatively
describing the region attribute, that humans are more
familiar with. These descriptors form a simple vo-
cabulary, the so-called object ontology. Images can
be classified into different categories by mapping
such descriptors to high-level semantics based on our
knowledge. For example “sky” can be defined as re-
gion of “light blue” color and “upper” spatial loca-
tion. A typical example of such ontology-based sys-
tem is presented in Ref. [8]

2. Machine learning This technique is based on using
supervised or unsupervised machine learning tools
to associate low-level features with query concepts.
A supervised learning algorithm analyzes the train-
ing data and produces an inferred function, which
should predict the correct output value for any valid
input data. In unsupervised learning the goal is
to describe how the unlabeled input data are orga-
nized or clustered. A novel scheme that combines
semi-supervised learning, ensemble learning and ac-
tive learning in a uniform framework is proposed in
Ref. [13]

3. Relevance feedback Methods using relevance feed-
back technique work on-line and try to learn the
user’s intentions on the fly. At the beginning system

provides initial retrieval results and the user marks
which images he considers as “relevant” and which as
“irrelevant”. Machine learning algorithm learns the
user’s feedback and the selector retrieves another im-
ages. The process is repeated until the user is satisfied
with the results. Mechanism of relevance feedback is
well used in Ref. [7]

4. Semantic template This technique is not so widely
used. Semantic templates are generating to support
high-level image retrieval. Semantic template is usu-
ally defined as the “representative” feature of concept
calculated from a collection of sample images. This
technique is used in Ref. [14]

5. Web image retrieval This system has some technical
difference from image retrieval in other application.
Some additional information like the URL of image
file or the descriptive text surrounding the image can
help the semantic-based image retrieval.

6. Frequency domain features Image search and re-
trieval in this method mainly focuses on feature vec-
tors based on the real and imaginary parts of the com-
plex numbers of the image transformed by the Fast
Fourier transform (FFT), Discrete Cosine transform
(DCT) or WALSH transform. This technique was re-
cently presented in Ref. [5]
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Many systems exploit one or more of the above tech-
niques to implement high-level semantic-based image re-
trieval. Our system consists of both supervised and un-
supervised machine learning technique and semantic tem-
plate for scene categorization.

3 Proposed method

Our work is based on the work [12]. Like in their method
also in our proposed method the image is segmented into
local subregions. The difference is in the shape of local
image subregions. While in the initial method [12] the
local image subregions are extracted on a regular grid of
10x10 regions, our proposed method tries to segment the
image into arbitrary-shaped subregions, which correspond
to objects boundaries. This improvement reduces the mis-
classification of regular subregions belonging to two or
even more semantic concepts.

In addition our proposed method detects presence of
people in the image. This is useful because our target
images are typical holiday pictures from hiking outdoors.
Presence of family members on this kind of images is very
common, so it is important to cover also this condition into
image retrieval process. So in our system it is possible to
define if the retrieval pictures should contain people or not.

Only local subregion that represent nature are further
processed. Thus we identify subregions belonging to
people and separate them from others. Afterwards using
low-level features we classify each subregion into one of
following semantic concepts: sky, water, grass, trunks, fo-
liage, rocks, flowers and sand. The selection of these local
semantic concepts was influenced by the psychophysical
studies of Mojsilovic et al. [9] and by concepts used in
Ref. [12]. For the classification of local image regions
we involved the k-Nearest Neighbor and Support Vector
Machine classifiers.

The last stage of this proposed method is scene cate-
gorization. In our work we have six different scene cate-
gories: coasts, forests, rivers/lakes, sky/clouds, plains and
mountains. To each local semantic concept, its frequency
of occurrence is determined. This information enables us
to make a global statement about the amount of particular
concept being present in the image e.g. “There is 22% of
water in the image.” Using this knowledge the most suit-
able category prototype is assigned to the image, that gives
the semantic meaning of the image.

4 Preprocessing

Preprocessing consists of image segmentation into
arbitrary-shaped regions and detection of people in the im-
age.

Figure 3: An example of the body detection. (a) Results
from the face detector with templates (b) Filtered out sub-
regions belonging to humans bodies

4.1 Image segmentation

At first step of our algorithm the image is segmented into
arbitrary-shaped subregions. We take advantage of Mean
Shift segmentation algorithm presented in [3] based on
grouping pixels, which are close in the spatial and color
range domain. This algorithm iteratively detects modes in
a probability density function.

It starts with a region of interest where kernel function
calculates the mean shift vector. Using this vector the re-
gion is shifted to the new location. Can be shown that the
mean shift vector is proportional to the normalized density
gradient estimation, so the region certainly converges to
a point with zero gradient. This is the mode correspond-
ing to the initial position. Modes that are close to each
other are grouped together. For segmentation purposes,
each pixel is marked by color value of the corresponding
mode.

4.2 Body detection

After the image is segmented we used algorithms for skin
and face detection to identify subregions belonging to the
humans body. We applied skin detection [10] which re-
sults in skin probability maps. For face detection we
used the implementation of Viola/Jones Face Detector [11]
found in [4]. This face detector is applied only in the re-
gions, where skin was detected. This combination with
skin detector produces more precise results, because oc-
currence of false faces in treetops and rocks was elimi-
nated.

As next step a template in the shape of humans body is
added to each detected face. Each subregion overlaid by
this template is examined if the majority of subregion area
lies inside the template or outside. Subregions lying for
the most part within the template we consider to depict the
humans body. They will not proceed to further processing
and classification.
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Figure 4: Example of extended subregions

5 Semantic Concept Classification

In the second stage three kinds of features are extracted
from each subregion. Afterwards the subregions are clas-
sified by k-Nearest Neighbor and Support Vector Machine
classifiers into eight semantic concept classes.

5.1 Color features

The color feature is one of the most widely used visual
features in the image retrieval. In our work we use linear
L∗a∗b∗ color histogram. L∗ represents the lightness, a∗ the
red-green component and b∗ the blue-yellow component.
Colour histogram describes the distribution of color and
lightness within the subregions. The histogram is invariant
to rotation, translation and scaling, but does not contain
semantic information.

5.2 Edge direction features

As the second kind of feature we use edge direction his-
togram. It is computed by grouping the edge pixels which
fall into edge directions and counting the number of pixels
in each direction. We are applying the Canny edge oper-
ator and consider 4 directional edges (horizontal, vertical
and 2 diagonals) and 1 non-directional edge.

Since our subregions are arbitrary shaped we need to ap-
ply simple mirror padding to extend region to a rectangular
area. Fig. 4 gives an example of extended subregions.

5.3 Texture features

Texture is another important property of images that helps
in the image retrieval. We combine texture features with
other visual attribute, because texture on its own does not
have the capability of finding similar images. But it can
classify textured images from non-textured ones.

In our work many subregions have same or very similar
color, but they do not belong to the same semantic concept
class. For example sky and water subregions have both

similar shades of blue. Texture features help us classify
subregion into the correct class. We applied one statistical
and one transformed-based method.

5.3.1 Statistical method

We chose method based on co-occurrence matrices [2].
The co-occurrence matrix C(i, j) shows the co-occurrence
of gray-valued pixels i and j at a given distance d and
given direction θ . In our case d is 1 and θ takes values
0◦, 45◦, 90◦ and 135◦. Together we have four different co-
occurrence matrices from where six texture features are
extracted: Energy, Contrast, Correlation, Difference Mo-
ment, Entropy and Homogeneity. They are defined as fol-
lows:

Energy = ∑i ∑ j C(i, j)2

Contrast = ∑i ∑ j(i− j)2C(i, j)

Correlation =
∑i ∑ j(i j)C(i, j)−µiµ j

σiσ j

Di f f erence Moment = ∑i ∑ j
1

1+(i− j)2 C(i, j)

Entropy =−∑i ∑ j C(i, j)logC(i, j)

Homogeneity = ∑i ∑ j
C(i, j)

1+|i− j|

where

µi = ∑i i∑ j C(i, j)

µ j = ∑ j j ∑i C(i, j)

σi = ∑i(i−µi)
2 ∑ j C(i, j)

σ j = ∑i( j−µ j)
2 ∑ j C(i, j)

5.3.2 Transformed-based method

Another texture feature in our work is Gabor Texture Fea-
ture. The two-dimensional Gabor filter is defined as

Gab = 1
2πσxσy

e[−
1
2 ((

x
σx )

2+( y
σy )

2)+ jW (xcosθ+ysinθ)]

where σx and σy are scaling parameters of the filter, W is
the radial frequency of the sinusoid and θ ∈ [0,π] specifies
the orientation of the Gabor filters. Gabor filtered output
FGab of the image is obtained by the convolution of the
given image F with Gabor function Gab for each of the
orientation and scale. The magnitudes of the Gabor filters
responses are represented by the mean and standard devi-
ation:

µ = 1
XY ∑X

x=1 ∑Y
y=1 FGab

std =
√

∑X
x=1 ∑Y

y=1 ‖FGab|−µ|2

The feature vector is constructed using µ and std as feature
components.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
60



Figure 5: Prototypes of the six scene categories

5.4 Classification

We used two methods for the classification of the local
semantic concepts, k-Nearest Neighbor and Support Vec-
tor Machine classifiers. Same classification methods were
used in the initial method [12].

5.4.1 k-Nearest Neighbor classifier

The k-Nearest-Neighbor (kNN) classification is one of the
most fundamental and simple non-parametric classifica-
tion methods. For k-nearest neighbors, the predicted class
of test sample x is set equal to the most frequent true class
among k nearest training samples.

In our work we used the matlab implementation of kNN
classifier. We tested several values of k. Best results were
obtained by k = 10.

Figure 6: Human body detection (a) Original Image. (b)
Manual detection. (c) Obtained result.

5.4.2 Support Vector Machine classifier

Support Vector Machines (SVM) are based on the concept
of decision hyperplane. The SVM finds a linear separating
hyperplane with a maximal margin in the higher dimen-
sional space.

For our experiments, the LIBSVM package [1] with
the radial basis function (RBF) kernel was employed.
LIBSVM implements the “one-against-one” approach for
multi-class classification. For n = 8 classes there are
n(n−1)

2 = 28 single classifiers and each one trains data from
two classes. Each binary classification is considered to be
a voting, where a new data point is allocated to the class
with the highest number of votes.

6 Scene Categorization

The last stage of our method is scene categorization. Scene
categorization refers to the task of grouping images or
scenes into a set of given categories. In our work we
have six different categories: coasts, forests, rivers/lakes,
sky/clouds, plains and mountains (Figure 8 shows an ex-
ample for each category). We define for each of these cat-
egories a category prototype. It is an example which is
most typical for the respective category. Figure 5 displays
these category prototypes and the standard deviations for
each category.

Using the frequency of occurrence of eight semantic
concept classes in the image the most similar category pro-
totype is defined and that determines the high level scene
category.

7 Results

This section summarizes the results of the proposed ap-
proach.
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Overall 67,8% w g r s s f f t
water 71,8 1,4 7,0 1,4 14,1 4,2 0,0 0,0
grass 9,2 40,0 7,5 0,8 0,0 18,3 23,3 0,8
rock 7,4 0,5 77,5 6,9 0,5 2,0 2,5 2,9
sand 0,0 6,7 23,3 53,3 10,0 3,3 0,0 3,3
sky 8,0 0,0 0,9 1,8 82,1 2,7 4,5 0,0

foliage 3,1 14,8 4,8 0,0 0,0 71,6 3,9 1,7
flowers 0,0 11,6 2,0 1,5 0,0 17,2 67,7 0,0
trunks 1,6 3,1 23,4 7,8 0,0 9,4 1,6 53,1

Precision 54,26 43,24 75,24 38,10 86,79 69,2 73,63 73,91

Table 1: Confusion matrix of the SVM concept classification (C=8, γ=0.125). Classification is in %

Color 52,3%
Co-ocurance matrix 41,2%

Gabor feature 43,4%
Edge direction 25,3%

Color+Co-ocurance matrix 59,8%
Color+Gabor feature 62,5%

Color+Edge direction 56,7%
All features 67,8%

Table 2: Low level feature relevance

We measured the quality of human body detection by
comparing the obtained results with manual detection. We
calculated the overlap and left-out feature. Overlap feature
determines what percentage of the manual detection(MD)
is covered by the obtained result(OR).

Overlap = area(OR∩MD)
area(MD)

Left-out feature determines what percentage of the ob-
tained result is not covered by the manual detection.

Le f t−out = area(OR−MD)
area(OR)

Our method for human body detection was tested on 15
images and we achieved average Overlap 92,06% and
average Left-out 15,42%. The method works well if the
person is standing straight. It is a typical pose on holiday
pictures. If person is sitting or lying some errors may
occur. (See Figure 6)

As a next step we tested which low level features are
most relevant in classification process. Results obtained
using SVM classifier can be find in Table 2. It is obvious
that color feature give a good result, but its combination
with texture feature leads in even better accuracy.

The ground truth for subregion membership to one of
the eight semantic concepts was annotated manually. To-
gether we annotated 1028 subregions. The class sizes vary
from 54 (trunks) up to 192 (sky), because sky appears
more often in the images than trunks. The classifiers are
challenged with the inequality in the class sizes and the
visual similarity of image regions that belong to different
classes.

Classification Classification
Class size accuracy accuracy

kNN SVM
sky 192 77,2% 82,1%

water 139 53,4% 71,8%
grass 111 20,7% 40,0%

trunks 54 43,8% 53,1%
foliage 166 66,7% 71,6%

sand 103 47,6% 53,3%
rocks 171 66,0% 77,5%

flowers 94 57,7% 67,7%

Table 3: kNN and SVM classification accuracies

The Table 3 shows that the SVM classification per-
forms better than the kNN classification. We can see a
correlation between the class size and the classification
result. Sky, foliage, and rocks are the largest classes
and they are also classified with the highest accuracy. In
Table 1 is displayed confusion matrix of the SVM concept
classification.

At the end we discuss results obtained by our proposed
method and those obtained by the initial method [12]. Be-
cause of using a regular grid in the initial method, rect-
angular subregions belonging to two semantic concepts
can be classified inaccurately. This is successfully im-
proved by proposed method. On the other hand, in pro-
posed method some problems occur in classification of
small subregions.

For comparison, both methods were tested pixel-by-
pixel with the manually annotated original image. An ar-
ray of same size as original image was obtained, where
logical 1 (white color) mean that pixels represented the
same semantic category and logical 0 (black color) when
different category. Initial method matched the ground truth
in 68,05% compared to proposed method which reached
70,59%. An example can be find in Figure 7.
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Figure 7: Local semantic concept classification (a) Original image. (b) Ground truth. (c+d) Result of initial method and
equality map (e+f) Result of our proposed method and equality map

Figure 8: Exemplary images for each category
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8 Conclusion

We implemented method for semantic categorization and
retrieval of natural scene images presented in [12]. Since
segmentation into 100 rectangular subregions used in this
method can cause mistakes in semantic concepts classi-
fication, we modified this method by using segmentation
into arbitrary shaped regions.

Our target images were typical holiday pictures from
hiking outdoors. Due to frequent presence of family mem-
bers in these pictures we enhance this method with auto-
matic detection of people in the image.

9 Acknowledgment

The author wish to thank Elena Šikudová, PhD. for her
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Abstract

This work presents a novel approach to music style recog-
nition inspired by feature extraction techniques used in im-
age classification. To be able to utilize the image clas-
sification techniques, the 1D sound signal is transformed
to its 2D representation — to a Mel-frequency spectrum.
Small local areas of the spectrum are represented by 128-
dimensional SIFT descriptors from which Bag of Words
(BOW) representation of a whole signal is constructed.
Dictionary used for translating the descriptors to the BOW
representation is created by K-means algorithm. The
BOW feature vectors are classified by non-linear Sup-
port Vector Machine classifier. The proposed approach
was tested on publicly available music recognition data set
GTZAN. The achieved results (86.4% classification rate)
compare favorably to previous results on this dataset —
84.3% classification rate in (Panagakis et al., 2010), 74%
classification rate in (Holzapfel and Stylianou, 2008). Fur-
ther, performance of the proposed audio parametrization
was tested on video semantic category detection task from
TRECVID evaluations, where it provides results superior
to standard audio parametrizations.

Keywords: Music genre recognition, Mel-frequency
spectrum, Local features, SIFT descriptors, Bag of Words,
Support Vector Machine

1 Introduction

Automatic music style recognition has potential applica-
tions in on-line, as well as personal music databases. It
can provide music genre information in cases where it is
not available, and thus support navigation and searching
in such music database. Furthermore, the problem of mu-
sic genre recognition is related to the task of automatically
suggesting suitable songs for users based on their particu-
lar taste or personalized song ratings.

A music genre or a music style is a conventional cat-
egory of music works which all share some common at-
tributes or origin (e.g. the period during which a musical
composition was written, its instrumentation and treatment

∗xbehun03@stud.fit.vutbr.cz
†ihradis@fit.vutbr.com

of those instruments, its form). Although the terms music
genre and music style can be interpreted as being differ-
ent, sometimes, they are used interchangeably. In the rest
of the text, only the term genre is used, as the experiments
are performed on a dataset of well established music gen-
res (e.g. jazz, rock and country). Music genre recognition
is a task, where the goal is to identify the attributes (fea-
tures) specific for a particular genre, and estimate the genre
of a given music piece based on these features.

Music genre recognition can be treated as a standard
classification task which has two main parts - feature ex-
traction and classification. Classification algorithms are
usually task-independent and standard of-the-shelf clas-
sifiers can be used for most tasks. On the other hand,
feature extraction is task-specific. It has to extract infor-
mation from the classified data which is relevant for the
particular task while suppressing effects non-informative
sources of variation (e.g. lighting conditions in visual ob-
ject detection, and compression or microphone quality in
speaker recognition). For these reasons, feature extrac-
tion is usually hand-crafted for particular application, as is
the case of music genre recognition [39]. However, sev-
eral approaches have been recently suggested which learn
features [28, 16]. These feature learning approaches were
shown to be able to learn good representations for various
data and achieve state-of-the-art results in wide range of
classification tasks.

In this work, we explored different idea. We attempted
to transfer well established features in one area to com-
pletely different task and data. Inspired by success of local
image features [25] and Bag of Word representation [13]
in image classification, we applied these methods to audio
data. We show that the image features can be applied to
audio data by transforming the 1D signals to spectrograms
(2D representation), and that this type of feature extraction
is able to achieve state-of-the-art results in music genre
recognition, and that it surpasses standard audio features
in semantic class detection as well.

Next section summarizes previous work in music genre
recognition. Section 3.1 introduces the proposed feature
extraction method and Section 3.2 discusses classification
methods used in experiments. Section 4 presents datasets
on which the approach has been evaluated and Section 5
describes the experiments and discusses the achieved re-
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sults. Finally Section 6 concludes the paper and outlines
possible future work.

2 Previous work

When the music genre recognition is approached as a pat-
tern recognition task, it consists of two parts. These parts
are feature extraction and classification. This section de-
scribes previously proposed methods for classification and
feature extraction for music genre recognition.

According to Tzanetakis at al. [39] features for music
recognition can be divided into three basic types. These
types are Pitch content features, Rhythmic content features
and Timbral texture features. This classification is based
on the type of information extracted by the features from
audio signal.

Pitch content features characterize audio signals in
terms of energy of different frequency bands. For exam-
ple, in [39] the authors propose to detect few dominant
pitches in a short time window [37] from which histograms
of the dominant pitches across a whole song are computed.
From the histograms, a small number of feature is ex-
tracted (e.g. amplitude of maximum peak, pitch interval
between the two most prominent peaks).

Rhythmic content features represent rhythmic structure
of the music. Method of Tzanetakis et al. [39] is based
on detecting the most salient periodicities of the signal
from which a beat histogram is created. Based on the beat
histogram, several features are computed (e.g. relative
amplitude of the two highest histogram peaks, frequency
of the highest peaks). Another example of Rhythm con-
tent features is proposed in [20, 19, 22] where a 24-band
psycho-acoustically modified spectrogram which reflects
human loudness sensation is computed. Fourier transform
is applied to each of the 24 frequencies to obtain spectra
of loudness changes. Several types of features are then
extracted from the loudness change spectra. The loud-
ness change spectra is called by the authors Rhythm Pat-
tern. The extracted features are average spectrum across
the 24 frequency bands, statistical descriptors of each fre-
quency band (mean, median, variance, skewness, kurtosis,
min- and max- values), variance of each loudness change
frequency across all 24 frequency bands, and temporal-
variation of the Rhythm Patterns extracted from short (six
second) time windows.

Timbral texture features should exhibit properties re-
lated to general timbre of the sound. They are based
on short-time Fourier transform and they are calculated
on short time frames of sound. This group includes
many features, for example Spectral Centroid, Spectral
Rolloff, Spectral Flux, Time Domain Zero Crossings [34],
discrete wavelet transform coefficients [17, 23, 10], his-
togram of the wavelet coefficients [18], octave-based spec-
tral contrast [40], and Mel-Frequency Cepstral Coeffi-
cients (MFCC). Mel-Frequency Cepstral Coefficients are
very general features traditionally used in speech recogni-

tion [31, 29], and they provide good results in music genre
recognition [19, 15, 8, 40, 39] as well.

Bergstra et al. [4], use combination of several Tim-
bral texture features. After computing different frame-
level Timbral texture features, they group non-overlapping
blocks of consecutive frames into segments from which
means and variances over a whole music signal are com-
puted (means and variances are used as input to weak
learners in AdaBoost).

The mentioned types features can be used individually;
however, the best results are obtained by their combina-
tion. In [19], the authors combine features of different
types (Pitch content features, Rhythmic content features,
Timbral texture features) into hybrid features.

Many approaches which can not be clearly assigned to
the above described groups exist. An example is the Bio-
Inspired Joint Acoustic and Modulation Frequency Repre-
sentation of Music [30]. In this method, an auditory tem-
poral modulation representation is computed from an au-
ditory spectrogram. This representation discards much of
the spectro-temporal details, and focuses on the underly-
ing slow temporal modulations of the audio signal.

Panagakis et al. [30] describe feature extraction
methods called Multilinear Subspace Analysis Tech-
niques. These techniques are Multilinear principal com-
ponents analysis (MPCA), Non-negative tensor factoriza-
tion (NTF), and Higher-order singular value decomposi-
tion (HOSVD) which are computed from tensors. Lin-
ear counterparts of these methods are Non-negative matrix
factorization (NMF), Singular value decomposition (SVD)
and Principal component analysis (PCA), which can be
viewed as a special cases for first-order tensors (vectors).

Any type of classifier can be used for music genre
recognition. In literature, the most commonly used classi-
fier is Support Vector Machine (SVM) [20, 19, 22, 17, 18].
Compared to other classifiers, SVM was shown to give
superior results [20, 17, 18]. Other classification meth-
ods used for music genre recognition are Gaussian mix-
ture models [40, 39, 34], K-nearest neighbor classifier [20,
10, 39, 34] (K-NN), Round Robin ensemble [10] and Ad-
aboost [4].

3 Method

As mentioned earlier, music genre recognition has two
main parts — feature extraction and classification. The
proposed feature extraction approach relies on transfor-
mation of 1D audio signal to 2D representation, and on
consequent application of local feature extraction methods
from the field of image classification. As a classifier, we
selected SVM, because it provides state-of-the-art results
in music genre recognition [20, 19]. Structure of our ap-
proach is shown in Figure 1, and a detailed description of
each part of this structure is presented in the following text.
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Figure 1: The processing pipeline: Audio signal is seg-
mented, and Mel-frequency spectrograms are computed
for the segments. Local features (SIFT) are extracted from
the spectrograms on a regular grid. The local descrip-
tors are translated to codewords by codebook, and Bag
of Words representation is computed as a occurrence his-
togram of the codewords. The Bag of Words representa-
tion is used as an input to classification by SVM.

3.1 Feature extraction

This section presents a novel approach to music genre
recognition inspired by feature extraction techniques used
in image classification. Common approach in image clas-
sification [36] is to represent local parts of an image by
a high-dimensional descriptors. Such descriptors encode
appearance of the image patches, for example, spatial and
directional distribution of gray-scale gradients as in SIFT
descriptor [25, 24]. Such local descriptors are also called
local image features in computer vision [33, 26]. To cre-
ate a more compact representation, the local features can
be assigned numerical identifiers based on their similarity
to a set of prototypes [9]. The set of prototypes is called
a visual codebook and the resulting image patches with
assigned prototype IDs are called visual words.

Similarly to a text document, which can be described by
the counts of individual words it contains, an image can
be represented by counts of visual words [12]. Such rep-
resentation is called Bag of Visual Words (BOW). BOW
discards information about spatial relations. It discards
any information about positions of the visual words, and

retains only information of the local appearances.
To be able to use the local feature techniques from

image classification, a 1D sound signal has to be trans-
formed to its 2D representation. A natural way to cre-
ate such 2D representation is to describe the sound sig-
nal in terms of energies of different frequency bands in
short time windows. Methods for represent 1D signals in
this way include short-term Fourier transform [2], wavelet
transform [2] and many others. For the purpose of music
genre recognition, we have chosen Mel-frequency spec-
trogram [38] as the 2D representation. The Mel-frequency
spectrogram is similar to short-term Fourier transform, ex-
cept the frequency scale is logarithmic which is closer to
how humans perceive sounds (e.g. music intervals are
multiplies of frequencies instead of fixed additions).

In our work, the Mel-frequency spectra were obtained
by segmenting the audio track into 100 ms segments with
25 ms overlap. Mel-frequency spectra with 128 frequency
bands and maximum frequency 12 KHz was computed
from each of the segments. In order to be able to use exist-
ing local image feature methods, dynamic range and con-
trast of the spectrograms were reduced by

x =

(
log(e+1)

maxV

)
∗255, (1)

where e is a value from the original Mel-frequency spec-
trum, maxV is logarithm of the maximal value in the origi-
nal Mel-frequency spectrogram and x is the resulting value
in the lower dynamic range spectra. The transformation
from equation 1 assures that the resulting values are in in-
terval < 0,255>, and that they correspond to how humans
perceive sound intensity (perception of acoustic intensity
is logarithmic). Example of the obtained spectrogram is
show in Figure 2.

Then the spectrograms were handled as images and lo-
cal features were extracted from them. As the spectro-
grams do not exhibit any stable and distinct areas which
could be detected by interest region detectors [27], we
sampled the spectrograms on a regular grid with cell size
8× 8 pixels and SIFT descriptors [24] were computed
from the sampled small circular areas. The SIFT descrip-
tor computes 16 Histograms of Oriented Gradients (HOG)
on a 4 by 4 grid in the area of interest. Each of the his-
tograms has 8 orientational bins, and magnitude of im-
age gradient in each pixel is distributed between the clos-
est bins according to its orientation and between the spa-
tially closest histograms. The resulting SIFT descriptor
is a vector of 128 values created by concatenating the 16
Histograms of Oriented Gradients.

To create a feature vector for a whole audio recording,
extracted local features are aggregated to a Bag of Word
(BOW) representation. In order to obtain the BOW repre-
sentation, local features are first translated to visual words
by codebook transform. To create a codebook, it is pos-
sible use to any clustering or quantization algorithm. The
most commonly used is the k-means algorithm [9]. We
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Figure 2: Example of a Mel-frequency spectrogram obtained for a music track. Columns are Mel-frequency spectra of
signal segments in time. Lighter areas of the spectrogram represent higher energy. Bright vertical stripes represent the
beats.

used k-means algorithm with Euclidean distance to ob-
tain the set of prototypes which constitute the codebook
- cluster centers become the prototypes. In the experi-
ments, we used 4096 codewords (clusters) and initial posi-
tions of cluster centers were chosen randomly from train-
ing data set. Note that the goal of the k-means clustering
in this case is not to find tight clusters of feature descrip-
tors, rather, it provides good coverage of all possible de-
scriptors, and it achieves low reconstruction error when the
descriptors are quantized by the prototypes.

When assigning local features to the single closest code-
word, quantization errors occur and some information is
lost. This is especially significant in high-dimensional
spaces, as is the case of the local patch descriptors where
distances to several nearest codewords tend to be very sim-
ilar. In the context of image classification, this issue was
discussed for example by Gambert et al. [9], who propose
to distribute the local descriptors to several close code-
words according to codeword uncertainty. Computation of
BOW with codeword uncertainty is defined for each code-
word w from a codebook B as

UNC(w) = ∑
p∈P

K (w, p)
∑v∈B K (v, p)

, (2)

where P is a set of local image features and K is a kernel
function. We use Gaussian kernel

K(w,w′) = exp
(
−‖w−w′‖2

2
2σ2

)
, (3)

where σ defines the size of the kernel. In our experiments,
value of σ was set as the average distance between two
closest neighboring codewords from a codebook. Equa-
tion 2 computes contributions of all local features to a par-
ticular word w and it sums the individual contributions.
The BOW representation is a vector of UNC(w) values
for all words from a codebook normalized to unit length.

3.2 Classification

Our experiments were performed with Support Vector Ma-
chine classifier (SVM) [6] which is often used for various
tasks in image and video classification [14, 33, 9, 36, 35].
SVM has four main advantages. It generalizes well, it can
use kernels, it is easy to work with, and good-quality SVM
solvers are available. Although non-linear kernels have
been shown to perform better over the linear kernel in im-
age recognition [32], we use the linear kernel in some ex-
periments due to computational reasons. In addition to the
linear kernel, Gaussian kernel

K(x,x′) = exp
(
−γ‖x− x′‖2

2
)
, (4)

was used in the experiments as well. Optimal value of the
SVM regularization parameter C and the Gaussian kernel
scale γ were estimated by grid search with 10-fold cross-
validation with stratified sampling of training dataset.

Classifiers with the Gaussian kernel were trained using
LIBSVM1 [5] implementation of a solver for the standard
soft-margin SVM formulation [6] which has a single regu-
larization parameter C. Linear classifiers were trained us-
ing LIBLINEAR [7] which is able to handle large linear
SVM problems efficiently.

4 Data sets

The approach, created for music genre recognition, was
tested on GTZAN Genre collection2. This dataset was col-
lected by G. Tzanetakis [39]. We chose GTZAN Genre
collection, in order to be able to compare to previously
published result on this dataset [30, 11, 3, 21, 4, 18, 39].
GTAZAN Genre collection contains 1000 audio tracks,
where each track is 30 seconds long. These tracks are di-
vided into 10 music genres — namely Blues, Classical,

1Experiments with Gaussan kernel SVM were concluded in Rapid-
Miner which is a open–source tool for data minning, machine learning,
text mining and other classification operations (http://rapid-i.com/).

2http://marsyas.info/download/data sets
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Blues Metal Classical Rock Disco Hiphop Country Jazz Reaggae Pop
Blues 92 0 1 2 0 2 2 5 2 2
Metal 0 98 1 0 0 2 0 0 0 0

Classical 2 0 83 3 0 3 0 6 2 10
Rock 4 1 3 88 3 1 1 6 3 2
Disco 0 0 0 1 86 0 1 3 3 1

Hiphop 0 1 2 0 0 91 0 0 1 2
Country 0 0 0 1 2 0 94 0 1 3

Jazz 0 0 0 1 3 0 0 77 3 3
Reggae 2 0 2 1 3 0 0 2 83 5

Pop 0 0 8 3 3 1 2 1 2 72

Table 1: Confusion matrix on the GTZAN genre collection achieved by parametrization for 32×32 local features (clas-
sification accuracy 86.4%).

Country, Disco, HipHop, Jazz, Metal, Pop, Reggae, and
Rock. Each genre is represented by 100 tracks. The tracks
are all 22050 Hz mono 16-bit audio files.

Further, performance of the proposed audio
parametrization was tested on data from semantic
indexing task from TRECVID evaluations. The purpose
of the semantic indexing task is to automatically detect
semantic categories in video. Detection of semantic
categories can be understood as video tagging which
is, for example, performed by users when uploading
videos to Internet archives (e.g. YouTube). The videos
in semantic indexing task are tagged at the level of video
shots.

In our experiments, we used a subset of TRECVID
2011 training data. First 20,000 shots from the TRECVID
dataset were chosen as a training set, and following 50,000
shots were used for testing.

The TRECVID data was collaboratively annotated in
an active learning setup3 [1] which resulted in 346 usable
semantic classes with enough annotations. From the an-
notated classes, we chose 554 the most common classes
in our training set. The training set contains 29478 posi-
tive and 312398 negative class annotations. The testing set
contains 86091 positive and 820057 negative annotations.

In the TRECVID data, some shots are very short while
others are several minutes long. In order compensate for
these difference, we chose a representative audio segment
for a shot to be centered on the shot with duration re-
stricted to be between 10 s and 20 s.

3http://mrim.imag.fr/tvca/
4The selected classes were: person, outdoor, face, vegetation, single

person, male person, adult, indoor, trees, daytime outdoor, overlaid text,
female person, computer or television screens, plant, entertainment, sky,
building, vehicle, suburban, singing, ground vehicles, landscape, streets,
road, celebrity entertainment, actor, walking running, instrumental musi-
cian, scene text, sitting down, animal, child, waterscape waterfront, car,
doorway, news studio, walking, politics, cityscape, two people, hand,
city, quadruped, mammal, carnivore, explosion fire, reporters, mountain,
domesticated animal, female-human-face-closeup, dark-skinned people,
graphic, crowd, chair, teenagers

5 Experiments and results

This section contains description of experiments and re-
sults in genre recognition and semantic indexing. Our
main experiment for both tasks was aimed to explore the
effect of local feature size, in order to estimate what size of
the local features is the best for the solved tasks (small size
is capture detail and bigger sizes represent larger context).
Results achieved on the GTZAN dataset were compared to
results of other music genre recognition approaches, and
result achieved on TRECVID 2011 dataet were compared
to two standard audio parametrizations.

Following the experimental setup used in [30, 39],
stratified tenfold cross validation is employed to estimate
performance in experiments conducted on the GTZAN
dataset. That means, each training set contained 900 tracks
(9 parts of validation), testing set contained 100 tracks
(1 part of validation) from GTAZAN, and the parts were
gradually alternated for training and testing in the exper-
iment. This experimental setup allows for comparison to
other published approaches.

We did experiments for 8×8, 16×16 and 32×32 pix-
els sizes of the local features extracted from spectograms.
SVM with RBF kernel function was used. Results for
these different sizes are shown in Table 4. The best clas-
sification accuracy (86.4%) was achieved by parametriza-
tion for 32× 32 local features. Confusion matrix for this
result is shown in Table 1.

Size of loc. features Classification accuracy
8×8 83.4%

16×16 84.2%
32×32 86.4%

Table 4: Classification accuracy achieved on GTZAN
Genre collection for different sizes of local features.

Table 2 compares classification accuracy on the
GTZAN Genre collection to other approaches. As can be
seen, our approach performs the best. The results show
that the local image features are a good choice for music
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Approach (features + classifier) Classification accuracy
mel-spectrogram - SIFT+ SVM (this work) 86.4%

non-negative MPCA + SVM [30] 84.3%
aggregate features + AdaBoost [4] 82.5%
wavelet histograms + SVM [18] 78.5%

audio and symbolic features + SMV [21] 76.8%
many features + NTF [3] 75.0%

spectrogram - NMF + GMM [11] 74.0%
wavelet histograms + LDA [18] 71.3%

pitch, rhytmic and timbral features + GMM [39] 61.0%

Table 2: Classification accuracies achieved by our approach and other published approaches for GTZAN Genre collection.

Features Mean Average Precision
mel-spectrogram - SIFT 8×8 + SVM 0.144

mel-spectrogram - SIFT 16×16 + SVM 0.147
SPEC + SVM 0.115
MFCC + SVM 0.113

Table 3: Mean Average Precisions achieved in semantic indexing task on TRECVID 2011 training set.

genre recognition.
To compare our approach with a standard baseline audio

parametrization on TRECVID 2011, local features with
sizes of 8× 8 and 16× 16 were used. SVM with linear
kernel function was used as a classifier for BOW, as well
as, for the standard audio parametrizations. Meta parame-
ter was estimated by stratified sixfold cross validation.

The two baseline parametrizations are SPEC and MFCC
which are both computed from short overlapping time
windows. A spectrum is computed for each window a for
SPEC, respectively mel-frequency spectrum for MFCC.
Bag of Words representation is computed for the obtained
spectra — one spectra is translated one code word. Both
parametrizations use 100 ms window with 75 ms overlap,
and a codebook of 4096 words. Performance of the SPEC,
MFCC and our approach are compared in Table 3. The
table shows mean average precision for each approach.
Mean average precision (MAP) is the mean value of av-
erage precision scores across all classes. The average pre-
cision is an area under precision-recall curve. As can be
seen in Table 3, the best MAP 0.147 was achieved by the
local image features with size 16×16 pixels.

6 Conclusions

This paper presented a novel feature extraction approach
for audio data which is based on SIFT local features and
Bag of Word representation which were previously used
with good results in image classification. The experiments
show that the proposed feature extraction provides very
good results in music genre recognition task. Specifically,
its performance is superior to previously published results
on the GTZAN dataset. In semantic indexing, the pro-

posed approach provides better results compared to MFCC
and spectral features. Overall, the results are very promis-
ing and we plan to extend the work to other classification
tasks which process audio data. Moreover, image classi-
fication provides wide variety of existing features which
could all be applied to spectrograms as well, and which
could possibly surpass the presented approach. Previous
work in image classification suggests that no particular
type of features is optimal in wide variety of tasks, and that
combining different types of features improves results [36]
(at the expense of higher computational cost). It is prob-
able that combining multiple features inspired by image
classification in music recognition would improve results
even further. Furthermore, the features could be combined
with traditional audio features.
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Abstract

This paper discusses the Isomap method for dimension-
ality reduction and studies its performance on both artifi-
cial and natural datasets. While linear methods for dimen-
sionality reduction such as Principle Component Analy-
sis (PCA) detect a linear subspace of the original domain
that represents the data with maximal accuracy, the Isomap
method detects the tangent space of a manifold embedded
in the original domain. PCA remains globally linear as it
simply transforms the data from one vector space into an-
other. Isomap is only locally linear; globally it maps a low-
dimensional manifold embedded in a high-dimensional
domain into a lower-dimensional vector space by globally
aligning the local manifold tangent spaces. The critical
precondition for its success is that the sampling frequency
of the data is sufficient to avoid ’short-circuits’ in the spa-
tial dissimilarity matrix. This is demonstrated by means
of artificial datasets with dimensionality ranging from two
(e.g. planar geometry) to several thousand (e.g. images of
geometrical models) since they allow absolute control over
the sampling frequency. The results of Isomap applied to
a natural dataset (pressure images from a foot scan) are
much more ambiguous. Since we have no prior knowl-
edge of the ’hidden’ dimensionality of the data we do not
know if the sampling frequency is sufficient. The difficulty
here lies in differentiating between classification outliers,
i.e. atypical samples, and ’unexpected’ degrees of free-
dom, that may initially seem ’wrong’ if they contradict our
expectations.

Keywords: Isomap, Principle Component Analysis, di-
mensionality reduction, non-linearity, sampling frequency

1 Introduction

Dimensionality reduction can be viewed as the process of
finding the domain best suited for embedding a set of high-
dimensional data samples [2]. Ideally, the dimensionality
of this domain is considerably lower (e.g. an order of mag-
nitude or more) than the dimensionality of the data sam-
ples, yet sufficient to reproduce them within a given mar-
gin of error. A highly useful byproduct of dimensionality

∗g.paskaleva@gmx.at

reduction is an interpretation of the given data set within
the new domain [2] that is not possible in the original do-
main due to its high complexity. The purpose of this work
is to discuss the Isomap method for dimensionality reduc-
tion and to compare it to the classical method of Principal
Component Analysis (PCA) in terms of effectiveness with
particular emphasis on the quality of insight provided into
both geometrical and image data.

Human visual perception is capable of reducing com-
plex data to its underlying dimensionality in less than a
second (i. e. the lighting in a photograph), particularly
in the presence of prior knowledge or expectations [9, 3].
While during the first phases of object recognition linear
methods such as frequency decomposition play an impor-
tant role [9], in the latter stages of conscious search for yet
undiscovered interdependencies they might prove too re-
strictive. In this work the ability of the most commonly
used linear method (PCA) and one non-linear method
(Isomaps) to help a human observer gain new insight into
complex high-dimensional (visual) data is examined in de-
tail.

The next section provides a brief overview over the ex-
isting methods for dimensionality reduction. Section 3 re-
views Isomaps and PCA in detail. Section 4 compares the
results of the application of both Isomaps and PCA to ar-
tificially produced data sets. Section 5 performs the same
comparison on the basis of a natural data set. Section 6
discusses the results.

2 Methods for Dimensionality Re-
duction

All methods for dimensionality reduction can be divided
into two large classes - the classical linear techniques and
the more recently developed non-linear techniques.

As the term linear will be used extensively we provide
a definition. A linear map (A : X →Y with X and Y vector
spaces) or a linear operator (A : X→ X on the vector space
X) is a function with the following two properties:

additivity : A(~x+~y) = A(~x)+A(~y)

homogeneity of degree 1: A(~xα) = (A~x)α with α ∈ R

Whenever a reduction step is described as linear it is to
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be understood that it defines a linear map from the vector
space of the original data points X into a new vector space
Y.

2.1 Linear Methods for Dimensionality Re-
duction

The classical methods for dimensionality reduction in-
clude PCA, classical Multidimensional Scaling (MDS),
Factor Analysis (FA), and Independent Component Anal-
ysis (ICA). What is common to all of them is that they look
for a linear subspace in the sampled data [2, 5]. A com-
mon advantage of all linear methods is that the embedding
of new data samples in the already calculated subspace is
reduced to applying the linear mapping to the new sam-
ples. For most non-linear methods, however, only estima-
tion techniques exist [5].

2.2 Non-Linear Methods for Dimensionality
Reduction

Methods that can deal with non-linear cases can be sub-
divided in techniques that preserve global data proper-
ties in the low-dimensional representation - e.g. Ker-
nel PCA, Semidefinite Embedding (SDE), MDS with a
non-Euclidean distance function, Isomaps, and Maximum
Variance Unfolding (MVU), techniques that preserve lo-
cal properties in the low-dimensional representation - e.g.
Locally Linear Embedding (LLE), Laplacian Eigenmaps
(LEM), Hessian LLE, and techniques that calculate lo-
cal linear models and subsequently align them globally.
Markov processes and neural networks have also been
successfully used for non-linear dimensionality reduction.
Detailed discussion of the above methods can be found in
[2, 5, 8].

3 Mathematical Background of PCA
and Isomaps

In this section the mathematical theory behind PCA and
Isomaps is discussed in detail. The fundamental difference
between the two methods is presented in Figure 1.

3.1 PCA

Let us assume that there are N data samples of dimension-
ality D and let the i-th data point be represented as a D-
dimensional vector ~xi = (xi1,xi2, ...,xiD) with i = 1, ...,N.
The result of PCA is a linear map that projects the data
points from the original vector space into another while
retaining as much of the variability of the data as possi-
ble and orienting the coordinate axes (or principal compo-
nents) spanning the new vector space according to it. The
principal components are linear combinations of the exist-
ing data points. As they are orthogonal to each other there
can be at most D of them.

Figure 1: On the left PCA determines an optimal embedding
of the ’Swiss roll’ dataset in a 3-dimensional vector space. On
the right Isomap performs local linear fitting before mapping the
detected local vector spaces into a global vector space.

Let us assume that the axis aligned to the maximum
variability of the data is P1 = ∑n

i=1(wi~xi).
If we combine the coefficients wi in a vector ~w =

(w1,w2, ...,wN) and the data points ~xi - column-wise in
a N×D matrix X we can write the previous equation as
P1 = wT ×X .

The variance along P1 can be calculated as VarP1 =
E[(P1−E[P1])

2] where E[P1] is the expected value (mean)
of P1, which exists whenever P1 has a variance [7]. We
can assume E[P1] = 0 since this would only remove one
translation from the linear map that can be re-applied in
the very last step. Thus

VarP1 = E[P2
1 ] or

= (~wT ×X)× (~wT ×X)T

= ~wT × (X×XT )×~w

= ~wT ×S×~w

with S the (scaled) covariance matrix of the original data
points [7].

As VarP1 is not bounded above for an arbitrary ~w we
impose the restriction ‖~w‖= 1. We want to derive P1 from
the covariance of the data samples, not scale it to infinity.
In order to maximize ~wT ×S×~w with the constraint ~wT ×
~w = 1 we apply a Lagrange multiplier α1:

L(~w,α1) = ~wT ×S×~w−α1× (~wT ×~w−1).

After differentiating with respect to ~w we have S×~w =
α1×~w. Obviously, VarP1 is maximal for the biggest α1,
i.e. the largest eigenvalue of S corresponding to the eigen-
vector ~w.

Essentially, in its first step PCA calculates the D×D co-
variance matrix of the original data samples. Then the R
eigenvectors (R ≤ D) corresponding to the R largest non-
zero eigenvalues of the covariance matrix build the base
BR of the R-dimensional linear domain in which the data
samples can be projected by means of the map BRBT

R with
minimal loss of variability [2]. A significant difference
between the Rth and the (R+ 1)th largest eigenvalue in-
dicates the existence of an R-dimensional linear subspace
’hidden’ in the original domain. In that case the remaining
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D−R Eigenvectors can be interpreted as noise obscuring
the true dimensionality of the data.

An obvious drawback of PCA is that the size of the co-
variance matrix depends on the dimensionality of the data
samples and becomes impractical for high-dimensional
domains such as image data. One way to avoid this, es-
pecially if N < D, is to apply dual PCA [5].

The projection calculated by PCA has the effect of min-
imizing the squared reconstruction error. Using this prop-
erty as a starting point, Ghodsi shows in [2] that the linear
map of PCA can be obtained as the matrix U in the singu-
lar value decomposition of X =U ×E×V T as it contains
the eigenvectors of XXT (V contains the eigenvectors of
XT X and E - the square roots of the non-zero eigenvalues
of both XXT and XT X in its diagonal). Once U , V and E
can be reduced in size according to the rank of E it follows
that E is invertible and U =XV E−1. This produces the lin-
ear map UTU of dual PCA (by solving the dual problem
to that of classical PCA).

3.2 Isomaps

In its first step Isomap uses a neighborhood criterion (k
nearest neighbors or an ε-neighborhood [4]) to build a
neighborhood graph of the data samples. Then it builds a
N×N spatial dissimilarity matrix by calculating the short-
est paths between each pair of data samples, which allows
non-linear subspaces to come into consideration [6]. The
goal is to use the shortest paths between data samples to
detect a manifold embedded in the vector space of the orig-
inal data points.

In its second step Isomap applies classical MDS. This
method takes the N × N dissimilarity matrix of N D-
dimensional data points produced in the previous step as
its input and calculates a linear transformation that pre-
serves the pair-wise shortest path distances between the
points while disregarding their coordinates in the original
domain entirely. In effect, instead of minimizing the re-
construction error relative to the the original coordinates
(which is what PCA does) MDS minimizes the reconstruc-
tion error relative to the dissimilarity matrix. Since it con-
tains only scalar values it does not depend on the original
dimensionality of the data points; in fact, it is the func-
tion of MDS to find the minimal suitable dimensionality
for data points with (nearly) the same dissimilarity matrix
(see Figure 2).

MDS uses the fact that the dissimilarity matrix, when
employing the Euclidean distance as a dissimilarity mea-
sure, is expressed by means of the inner product of the
N ×D data point matrix X (the Gram matrix [8]): G =
XT X = −1/2×H ×D2×H with H = I− 1/D×~e×~eT

where ~e = (1,1, ...,1) is a N - dimensional vector [5].
There exist multiple methods for recovering a data ma-
trix X when only the Gram matrix G is known [5, 8]. The
result corresponds to a ’flattening’ or linearization of the
tangent space of any manifold concealed in the original
domain.

Figure 2: A comparison of PCA, dual PCA and MDS. Both
PCA methods perform reconstruction with one component.
MDS detects two degrees of freedom.

Tennenbaum et. al. provide a proof in [1] that as the
number of data samples increases so does also the ac-
curacy of the approximation of the underlying manifold
performed by Isomap. Asymptotic convergence to the
’true’ underlying structure is guaranteed for smooth mani-
folds isometric to a convex domain of Euclidean space [4].
These dependencies will be demonstrated in the next sec-
tion.

4 PCA and Isomap Applied to Artifi-
cial Datasets

The experiments on artificial datasets documented in [5]
show that Isomap is significantly better than PCA in de-
tecting non-linear structures on the ’Swiss roll’ , the ’He-
lix’ (i.e. on smooth highly non-linear manifolds, the first
one Euclidean, the second one - non-Euclidean) as well
as on a discontinuous ’broken Swiss roll’ dataset. How-
ever, Isomap performs only slightly better than PCA on a
dataset with high intrinsic dimensionality.

4.1 Low-dimensional Data Sets

We start our experiments with a one-dimensional dataset
folded in two dimensions - a spiral. Applying Isomap with
4 nearest neighbors produces the mapping (represented by
the straight lines) shown in Figure 3.

The next experiment applies Isomap with 4 nearest
neighbors again to a one-dimensional set, but this time it

Figure 3: Isomap performed on a one-dimensional manifold
folded in two dimensions.
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Figure 4: Isomap performed on a one-dimensional manifold
folded in three dimensions.

is folded in three dimensions. As Figure 4 shows the result
is the same as in the previous case.

Figure 5 shows a region in the data samples that causes
the error in the mapping of the manifold into the one-
dimensional domain ( the loop in Figure 6 - the color gra-
dient corresponds to the ordering of the data samples ac-
cording to the first detected degree of freedom). Since the
underlying manifold is actually one-dimensional, the loop
represents the failure of Isomap to recognize this in the
vicinity of the ’short-circuit’.

These three examples demonstrate a key requirement
for the convergence of Isomaps [1]: the sampling condi-
tion. It states that arbitrarily close approximation of the
underlying manifold M is possible if the neighborhood
graph contains all edges connecting data samples at a dis-
tance less than a positive parameter ε , and for each point
m on M there exists a data sample that is at a distance
less than ε/4 from m. In other words, the sampling den-
sity must be sufficient for every point on the manifold. In
particular, it must be at most half of the shortest distance
between manifold ’folds’ (see Figure 5).

The next two experiments utilize the ’Swiss roll’ dataset

Figure 5: An example of insufficient sampling density.

Figure 6: The loop on the far left showcases the error resulting
from insufficient sampling density.

used in [4] and [5]. Figures 7 and 9 visualize the dif-
ference resulting from the choice of the number of near-
est neighbors k. For k = 7 Isomap manages to recognize
the underlying two-dimensionality of the dataset in spite
of the numerous ’short-circuits’ resulting from insufficient
data sampling (see Figure 7 - the change in color corre-
sponds to the ordering along one detected degree of free-
dom, the edges are those of the neighborhood graph). The
’unwrapped’ manifold is shown in Figure 8. For k = 20,
however, we obtain the same result as with PCA - there is
no meaningful dimensionality reduction, only a change in
the coordinate system. Since for all examples above PCA
cannot reduce the dimensionality of the data (as there is
no significant difference in the detected eigenvalues) its
results are not shown.

Figure 7: The ’Swiss roll’ dataset colored according to the first
and second degrees of freedom detected by Isomaps with k = 7.

Figure 8: The unwrapped ’Swiss roll’ dataset from Figure 7
shows a slight ’thickening’ in the third dimension due to ’short-
circuiting’ errors.

The ’Swiss roll’ examples showcase another important
condition for successful approximation: the neighborhood
condition. It requires that the neighborhood graph does not
contain edges connecting data samples whose Euclidean
distance is larger than certain parameters derived from the
minimum radius of curvature r0 and the minimum branch
separation s0 of M. The minimum branch separation is the
largest Euclidean distance between points on M that still
guarantees a geodesic distance of less than πr0 [1]. In
the case of 20 nearest neighbors this condition is clearly
violated and thus Isomap fails.
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Figure 9: The ’Swiss roll’ dataset colored according to the first
and second degrees of freedom detected by Isomaps with k = 20.

In [1] Bernstein et. al. provide a proof that a random
sampling of sufficient density can satisfy the two condi-
tions above with probability depending on the volume of
M and on the volume of the smallest metric ball in M.
However, while these conditions are easy to check in an
artificially generated data set with known degrees of free-
dom it is quite difficult to do so for natural datasets where
the prior knowledge is insufficient, as will be demonstrated
in Section 5.

4.2 High-dimensional Data Sets

We now move to a very high-dimensional domain - that of
image data. The generated images satisfy both the sam-
pling and the neighborhood conditions from Section 4.1.

We generate 300 images with resolution 64× 86 pix-
els of a glass ball illuminated by several light sources (as
shown in Figure 11), only one of which changes position
- it traverses one half of a circular trajectory from left to
right. The resulting data samples are 5504-dimensional
vectors (64× 86 = 5504) containing 8-bit integral inten-
sity values.

Figure 10 shows the residual variances after consecutive
data reconstruction with 1 to 6 components detected by
PCA and by Isomap (k = 2 nearest neighbors considered
in the neighborhood graph) respectively. Where PCA per-
forms a frequency decomposition of the data (first image
group) and the residuals diminish rather gradually, Isomap
(second image group) shows a sharper drop in the residu-
als after the first detected degree of freedom and correctly
identifies the main degree of freedom in the data as move-
ment.

Figure 11 shows in the first row the ordering of the
images along the first principal component calculated by
PCA. From the viewpoint of a human observer this order-
ing does not carry any meaningful insight. The ordering
in the second row on the other hand corresponds to a step-
by-step rotation of the mobile light source around the ball.

The next experiment introduces two degrees of freedom.
We generate 5000 images with resolution 100× 50 pix-
els of a statue (as shown in Figure 12). It is illuminated

Figure 10: The residual (unaccounted for by the currently used
model) variance along the first 6 degrees of freedom detected
by PCA and Isomap respectively. The sharp drop in the graph
indicates that PCA as well as Isomap has detected the intrinsic
dimensionality of the data.

Figure 11: The first group shows the ordering according to the
first principal component. The second group shows the ordering
according to the first degree of freedom detected by Isomap.

by two light sources, one of which traverses a similar tra-
jectory as in the previous experiment. What also changes
in these images is the camera position, which traverses a
one-dimensional path folded in three dimensions around
the statue.

Similar to the previous experiment, Figure 12 shows the
first 6 principal components detected by PCA and the re-
sulting ordering of the data; Figure 13 shows the variations
along the degrees of freedom with the 6 highest residuals
resulting from Isomap with k = 10 nearest neighbors con-
sidered in the neighborhood graph, again followed by the
resulting ordering of the data. The difference is less ob-
vious this time. For PCA the following observation can
be made: the smaller the corresponding eigenvalue, the
higher the frequency of the information carried by the prin-
cipal component. Again there is a significant drop after the
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largest residual to indicate a sub-space of the original do-
main well suited for representing the data, in this case - the
overall lightness of the scene. The behavior of Isomap is
also similar to that in the previous case with the difference
that the sharp drop in the residuals occurs after the second
detected degree of freedom and the result gives a human
observer information about the parameters responsible for
the variation in the image data.

Figure 12: The ordering of the statue images according to the
first principal component (highlighted in the top row) detected
by PCA.

Figure 13: The ordering of the statue images according to the
first and second degrees of freedom detected by Isomap: the cam-
era path and the light source path. The variation (gradient) along
the first 6 degrees of freedom is in the top row.

The orderings in Figure 13 show a step-by-step traversal
of the camera path, and a step-by-step change of the posi-
tion of the mobile light source. The second ordering is
remarkable in its independence from the camera position

- the ordering is correct regardless of the overall lightness
of the scene.

5 PCA and Isomap Applied to a Nat-
ural Dataset

The experiments on natural datasets documented in [5]
show that Isomap performs poorer than PCA in four out
of five cases. The first reason for that according to Maaten
et. al. is the ’curse of dimensionality’ - the fact that with
the rising of the dimensionality of the underlying mani-
fold the number of data samples needed for its proper de-
tection rises exponentially. The second reason is the pres-
ence of noise in the natural datasets that results in local
overfitting. On the other hand, outliers result in very sim-
ilar performances. While even a single outlier can cause a
’short-circuit’ in the neighborhood graph of Isomaps, the
more ’short-circuits’ Isomap produces the more the spatial
dissimilarity matrix approaches the squared Euclidean dis-
tances matrix for the data samples and consequently PCA
(see Section 3). Consequently, in the presence of enough
outliers Isomap fails to detect non-linear subspaces to the
same degree PCA does.

The natural dataset used in this last experiment consists
of 1298 archive images with resolution of 410× 230 pix-
els of the maximal walking pressure distribution over a hu-
man foot of volunteers aged 12 to 85, courtesy of Sandrina
Illes, MSc, TU Chemnitz, Department Forschungsmetho-
den und Analyseverfahren. The images were obtained by
means of a RSScan 0.5 Gait Scientific foot scanner with
spatial resolution of 4 sensors per cm2 and temporal reso-
lution of 300 Hz.

Figure 14: Dataset preparation. The second image from the
right represents dataset GS, the rightmost image - the dataset BW.

In the initial stage we prepared the images as illustrated
in Figure 14. First the color coded pressure distribution
was converted into intensity values. Subsequently all dis-
continuities were eliminated through linear interpolation
in order to improve the conditions for the application of
Isomaps (see Section 3). This was followed by the global
alignment of all images. The thus prepared grayscale im-
ages built dataset GS. The binary dataset BW was derived
from GS by employing thresholding followed by a low
pass filter to remove noise. In order to reduce dimension-
ality we scaled the images to a resolution of 64×36 pixels
(2304 dimensions). Tests with different did not produce
significant changes in the final result.
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Figure 15: The first row shows the variance along the first 6
degrees of freedom detected by Isomap. The second row shows
the first 6 principal components calculated by PCA.

Figure 15 shows the comparison between the first 6
principal components detected by PCA and the variations
along the degrees of freedom with the 6 highest residuals
resulting from Isomap with k = 20 nearest neighbors ap-
plied to dataset GS. We performed the Isomap algorithm
with values for k ranging from 2 to 50 and chose 20 as
it produced the least number of apparent ordering errors.
PCA failed to detect any sharp drop in the Eigenvalues cor-
responding to the first 20 principal components. Isomap
exhibited the same behavior in respect to the residuals cor-
responding to the first 20 detected degrees of freedom.

Figure 16 shows the ordering along the first, second, and
third degrees of freedom detected by Isomap respectively.
As opposed to the results in the previous section, the in-
terpretation here is difficult due to lack of prior knowledge
of the intrinsic dimensionality of the original domain. A
tentative interpretation of the results was attempted by an
expert in the field of gait analysis, Sandrina Illes, MSc.

The first degree of freedom seems to indicate the
amount of pressure on the joint of the big toe. The second
degree of freedom seems to correspond to the pressure dis-
tribution on the front of the foot, the foot arches, and the
heel. The third degree of freedom seems to relate to the
pressure on the base of the second and fifth metatarsals.
The forth degree of freedom seems very similar to the first
one. The fifth degree of freedom seems to indicate the
amount of pressure on the toes compared to the pressure
on the front of the foot, and the sixth degree of freedom
seem to give an ordering according to the presence of Hal-
lux Valgus (bunion).

Figure 17 shows the comparison between the first 6
principal components detected by PCA and the variations
along the degrees of freedom with the 6 highest residuals
resulting from Isomap with k = 20 nearest neighbors ap-
plied to dataset BW. We performed the Isomap algorithm
with values for k ranging from 2 to 50 and again chose
20 as it delivered the most consistent results. PCA failed
to detect any sharp drop in the Eigenvalues corresponding
to the first 20 principal components. Isomap exhibited the
same behavior with respect to the residuals corresponding
to the first 20 detected degrees of freedom.

Figure 18 shows the ordering along the first, second,
and third degrees of freedom detected by Isomap respec-
tively. A tentative interpretation of the results was again
attempted by Sandrina Illes, MSc.

Figure 16: The ordering of the GS foot images according to the
first three degrees of freedom detected by Isomap.

Figure 17: The first row shows the variance along the first 6
degrees of freedom detected by Isomap. The second row shows
the first 6 principal components calculated by PCA.

The first degree of freedom seems to produce an order-
ing from very high to completely collapsed foot arches.
The second degree of freedom seems to correspond to the
overall shape of the foot with an emphasis on the relation
between the length of the longitudinal arch and the foot
length. The third degree of freedom seems to relate to the
form of the front of the foot and the degree to which the
small toes are used. The forth degree of freedom seems
somewhat similar to the first one. The fifth degree of free-
dom seems to indicate the amount to which the transversal
arch touches down, and the sixth degree of freedom seems
to be in relation to the amount of pressure on the joint of
the big toe as well as the function of the other four toes.
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Figure 18: The ordering of the BW foot images according to
the first three degrees of freedom detected by Isomap.

6 Results

The results of our experiments in Sections 4 and 5 con-
firm the performance predictions in [1] and the findings
in [5]. Isomap delivers the best results in recognising
the intrinsic dimensionality of artificial datasets since they
can be sampled adequately due to our a priori knowl-
edge of their structure. The dimensionality of the origi-
nal data samples does not influence the results. The fail-
ure to satisfy the sampling condition (see Section 4.1) re-
sults in ’thickened’ manifolds [5] due to noise from ’short-
circuiting’. Nevertheless Isomap still delivers good re-
sults. The failure to satisfy the neighborhood condition
however causes convergence of the results from PCA and
Isomap - i.e. inability to detect non-linear subspaces in the
sampled data.

The main difficulty with natural datasets lies in our lack
of prior knowledge. Since we cannot determine if the data
samples satisfy the two conditions in Section 4.1 it is
highly likely that one or both of the problems described
in the paragraph above will occur, which in turn makes
interpretation of the result even more challenging.

For the low-dimensional examples in Section 4.1 both
PCA and Isomap required less than 1 min. to calculate
in MatLabT M on a dual core 1.8 GHz, 2 GB RAM 32-
bit Windows platform. For the image examples in Section
4.2 Isomap needed 4 min. for the ball, 10 min. for the foot
BW, 12 min. for the foot GS and 20 min. for the statue.

Classical PCA needed 6 min. for the ball, 5 min. for the
foot BW, 7 min. for the foot GS and 20 min. for the statue
datasets. Dual PCA needed less than 2 min. per example.

7 Conclusions

Isomaps is a non-linear method for dimensionality reduc-
tion that preserves the geodesic distances between the data
samples in their lower-dimensional representation, if such
representation can be found. When applied to sufficiently
densely sampled artificial datasets it outperforms PCA sig-
nificantly both in detecting underlying lower-dimensional
highly folded subspaces as well as in achieving readabil-
ity for human observers. On natural datasets PCA and
Isomaps deliver comparable results due to our inability to
ensure a satisfactory sampling density (at least half of the
smallest distance between manifold ’folds’) and an ade-
quate neighborhood definition. In order for a human ob-
server to glean new insight in a heretofore unknown do-
main by means of Isomap one needs to proceed iteratively,
adjusting the number of nearest neighbors to be considered
in the neighborhood graph and, even more importantly, the
data sampling density in each iteration.
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Abstract

In this paper we address the problem of content creation
for physical simulation of soft body objects. We aim to
optimize the process of modeling deformable bodies with
complex rigid-body skeletons which can be used to vi-
sualize realistic movement and animations. Currently no
efficient or standarized asset design and implementation
method exists for this type of models. We propose re-
organization of the present segregation of duties between
designer and developer, through a new specialized data in-
terchange file format and the use of extensible open-source
designing environment Blender. Simplification of pro-
gramming work is achieved without unnecessary workload
addition for the content creator. Blender is used for object
modeling as well as for physical properties and skeleton
specification. In result a crucial part of the design work-
flow is extracted outside of the game engine’s SDK toolkit
towards independent 3D modeling tools. To evaluate the
proposed method a real-time physically-based soft-body
character animation is created using Nvidia PhysX and
OpenGL.

Keywords: deformable objects, soft body physics, con-
tent creation, Blender, rigid skeletons.

1 Introduction

When rendering real-time computer-generated 3D scenes,
the goal is often to create as realistic-looking impression
as possible. Under the term of realism we understand 3D
models which first of all look life-like, but also behave in
a physically-correct manner [4].

Different types of objects behaviour of which can be
simulated exist and their simulation requires different ap-
proaches. Examples of such objects include:

• rigid bodies - firm, not changing their shape,

• soft bodies - deformable, elastic, fluids, simulating
substances like metal, rubber or water.

Depending on the type of given model, for proper sim-
ulation of its physical behaviour different kinds of meshes

∗klubiszewska@wi.zut.edu.pl

(a) (b)

Figure 1: Soft body with its tetrahedral volumetric mesh
(a) and its counterpart rigged with a skeleton (b).

are used. For very simple rigid objects it is enough to pro-
vide just the same polygon mesh as the one used for ren-
dering purposes. For more complex objects often a sim-
plified convex hull dedicated to collision detection is sup-
plied. Soft bodies, however, require two different kinds of
meshes: one built of planar polygons for rendering pur-
poses, and the other built of tetrahedra (Figure 1a) neces-
sary for the simulation of object’s volume.

In the paper we focus on models which consist of both
soft and rigid objects (Figure 1b). These are mainly elastic
bodies built over rigid-body skeletons. Such complex way
of composing and physically simulating objects is not yet
popular in video games and real-time virtual reality appli-
cations. This situation is mainly caused by the computa-
tional cost regarding non-rigid bodies. Every soft object is
represented by a number of tetrahedra, each of which has
its own position, physical properties and constantly influ-
ences the state of every adjacent element. Computations
such as the previously described are not required when
simulating rigid bodies as their shape is invariable, so is
their volume.

Until recently it was impossible to simultaneously sim-
ulate and visualize several such objects in real time. Cur-
rently thanks to the improving processing power of mod-
ern hardware and still improving software tools such as
physics and rendering engines, we can finally simulate
real soft bodies instead of using keyframe interpolation
for smooth animation of deformations [8]. This fact intro-
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duces completely new possibilities in depicting the reality
which surrounds us.

Today even for the simplest models their description is
divided into parts. Renderable mesh data and skeleton data
are exported to a different file than the tetrahedral mesh
necessary for soft body simulation. In addition some in-
formation has to be provided manually by the designer in
descriptive documents, which are then interpreted by the
programmer. A unified, universal and open format is miss-
ing.

We propose gathering all the data using an extensible
file format to automate and optimize the content creation
process and to simplify building simulations which make
use of deformable bodies. The goal is to reduce the de-
veloper’s workload without unnecessarily increasing the
number of artist’s, designer’s and animator’s responsibili-
ties by allowing them to work with a single, well-known
software suite. Such an optimization will lead to faster,
more efficient transferring of created models from design
software to end applications. It is most important for video
games asset creation, where artist’s fantasy is one of the
key aspects leading to success.

In the next chapter we provide a short survey of exist-
ing approaches to the simulation of soft bodies, or meth-
ods which can be used in replacement. The third chapter
covers the issues related to the current workflow and pro-
poses our solution to the outlined problems. In the fourth
chapter we present implementation-related details impor-
tant when using our method. We conclude the paper with
results gathered from building a test scene containing a
soft body with a rigid skeleton and we compare it with a
sole deformable body. In the end our future goals are de-
scribed.

2 Related work

The idea of soft body simulation for computer graphics
applications was proposed in the late ’80s [15]. The first
trials were conducted with non-real-time simulations only
as real-time visualization of complex objects was far out
of the scope for that time hardware.

There are many different approaches for simulating soft
bodies. They were comprehensively surveyed in [5] and
[10]. We have chosen the method which bases on us-
ing tetrahedral lattice mesh for representing the object’s
volume. The mesh consists of finite number of elements
which thoroughly fill the modeled object’s extent [14]. Its
vertices form the topology of a mass-spring system used
for simulating the body’s interaction and self collisions
[2]. Cost of this approach can be easily scaled to suit the
needs of a particular model, scene and hardware capabil-
ities. It makes the method useful for interactive simula-
tions.

To address the calculation complexity related issues,
a keyframe-based simplification can be used. The ac-
tual deformations are calculated off-line and only cer-

tain keyframes are exported for use in real time. These
keyframes are then interpolated to resemble smooth ani-
mation [8]. This solution lacks the freedom of interaction
as the object’s reactions are limited only to a strictly de-
fined set of previously prepared possibilities. To achieve
the true real-time simulation we decided to perform on-
line calculations for the whole object’s volume instead of
using the keyframes.

However, a body which only consists of a deformable
volume is hardly controllable and classic methods for e.g.
character animation cannot be used. To solve this prob-
lem a coupling between the soft body and a rigid skeleton
can be used. The skeleton can react to applied forces and
movement induced by methods such as reverse kinemat-
ics [7]. The use of a skeleton allows us to introduce limits
for bone joints which restrict the movement that could be
recognized as unnatural depending on the object’s charac-
teristics [6, 13].

The field for soft bodies application, including those
equipped with a rigid skeleton, is very broad. Apart from
the already mentioned character animation, deformable
objects are used for modeling destruction [12] and jelly-
like entities [3] in video games. Moreover physically-
correct simulation of soft tissues is pursued by the numer-
ous virtual reality applications aimed at training medical
personnel [1, 9].

Using a soft body in real-time graphics visualization
presents many benefits:

• preserves a consistent volume - as its finite elements
influence each other,

• smooth deformations can be applied,

• is elastic - retains its previous form,

• tearing can occur - in effect it breaks the former topol-
ogy and forms two or more objects.

3 Proposed content creation work-
flow

In order to simulate a soft body together with its rigid
skeleton, appropriate input data are needed. These include
not only the renderable mesh information, but purely phys-
ical properties as well. The following are necessary:

• coordinates of polygonal mesh vertices for rendering
purposes,

• coordinates of tetrahedral mesh vertices for volume
simulation,

• coordinates of rigid body vertices,

• information on joints and their types for coupling
rigid bodies,

• limitation and spring information for joints,
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• mass (for both body types),

• friction (for both body types),

• gravity response (for both body types),

• texture coordinates for renderable soft body mesh,

• information necessary for dynamic calculation of
normal vectors.

3.1 Current content creation workflow

On the diagram (Figure 2) the problem of current work-
flow for designing soft body with rigid skeleton is pic-
tured.
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Figure 2: Current content creation workflow for designing
soft body with rigid skeleton.

It can be seen that the pipeline is a multi-stage, complex
process which can result in numerous misunderstandings
between the design and development teams.

Currently the artist who designs the 3D model creates
a mesh for both soft body and rigid skeleton. Then the
parts are exported to appropriate files. Additionally he is
responsible for creation of volumetric tetrahedral mesh in
a separate, specialized program in order to allow the defor-
mation of soft body structure. The next step is the descrip-
tion of dependencies between certain objects, the physical
properties, joints etc. to achieve the desired object rigging.

For example, an elbow exposes a naturally limited free-
dom of swinging angle and direction. The joint prevents
the bones from moving away from each other (Figure 3).
These limitations have to be applied to simulated bones
as well. And because of no popular, cross-platform solu-
tion, the risk of misunderstandings between cooperating
persons is high.

The developer receives a set of files that have to be im-
ported one-by-one in the end application. The additional
provided information has to be implemented manually, the
joints need to be set up, the physical properties and the

Figure 3: Stanford Armadillo skeleton with joint limits vi-
sualized as cones.

joint limitations need to be introduced according to the de-
signer’s description.

The current workflow requires the developer to possess
knowledge about the model which he imports. He has
to perform numerous object-dependent actions manually.
The complexity of the workflow, its time-consuming as-
pect and proneness to mistakes does not allow for efficient
use in the creation of deformable assets for real-time com-
puter graphics applications.

3.2 Solution

The diagram (Figure 4) presents our proposed content cre-
ation pipeline for designing soft body with rigid skeleton.
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Figure 4: Proposed content creation workflow for design-
ing soft body with rigid skeleton.

The main aim of the improvements is to reduce the pro-
grammer’s workload. As the diagram pictures, the most
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of the stages are now controlled by the designer. How-
ever, despite controlling the major part of the workflow,
the designer is not overwhelmed with responsibilities. He
describes the object’s properties within the same software
suite he uses for modeling. The programmer’s only re-
maining duty is to import the resulting file to make the
object available for simulation and rendering.

During the first stage the 3D artist creates meshes for
objects: deformable one related to the body silhouette and
rigid ones for the skeleton. Then he is able to create joints
between the skeleton parts and set their limits to form the
object’s rigging. Physical properties are assigned to proper
parts of the model and other rendering-related data such as
the material and texture data can be applied as in regular
objects modeling pipeline. While exporting, the tetrahe-
dral mesh is generated automatically for the deformable
volume.

Differences between the proposed and current solution
are relatively insignificant from the designer’s point of
view, but at the same time the programmer is left with sig-
nificantly less responsibilities. Instead of descriptive doc-
umentation, the artist can configure properties already in
the design software (Figure 5). Finally a single file is ex-
ported for the complete complex model.

The programmer imports received data to the final ap-
plication using the importer described later in chapter 4.
He is not obliged to specify the parameters, join specific
objects and set the limits by himself. He does not need
to know anything specific about the particular model as
during the import procedure all the necessary data are pro-
cessed automatically. The imported model is ready-to-use.

Our solution helps the content creation automatization
and reduces the necessary workload. It also eliminates the
chance for misunderstandings resulting from descriptive
documents.

4 Technical details

In order to test our solution we created a simple applica-
tion which generates a real-time animation of Stanford Ar-
madillo model. Our object consists of a soft body rigged
with a rigid-body skeleton. Armadillo’s arms are attached
to invisible blocks floating in space. Bones of the skeleton
are coupled using 3-degrees-of-freedom spherical joints
with limited ability to swing so that the character cannot
hang limply. The model is influenced by gravity and ob-
jects which can be thrown at it to visualize the deforma-
tions.

For 3D object design purposes we use Blender 2.61
(Figure 5) software which is freely available and allows
us to create our own plug-in extensions. Visualization is
performed in real time by a simple OpenGL 2.1 and Glut
library-based rendering engine written in C++. NVIDIA
PhysX 2.8.1 engine is responsible for physics-related cal-
culations and soft body simulation.

Currently we use PhysX Viewer which is a part of the

NVIDIA PhysX SDK to create a tetrahedral mesh. How-
ever in the future the lattice is to be created automatically
during exporting procedure of the model from design en-
vironment. We plan to use the algorithm described in [14]
for this purpose.

Figure 5: Creating model skeleton of Stanford Armadillo
in Blender 2.61.

BLENDER
EXPORTER

SPECIALIZED DATA
INTERCHANGE
FILE FORMAT

APPLICATION
IMPORTER

BLENDER APPLICATION

OUR METHOD

Figure 6: Implementation schema using proposed tools.

Exemplary contents of an XML file are shown in Figure
8. They include the contents of both standard Wavefront
OBJ and native NVIDIA PhysX TET files. The file con-
tains skeleton’s polygon meshes, tetrahedral volumetric
lattice mesh, renderable soft body surface polygon mesh,
descriptions of skeleton joints and various physical prop-
erties of both rigid and soft parts. We use XML mainly
to depict the hierarchy of elements which are parts of the
proposed format. In the future a binary file format should
be considered for final implementation to reduce the file
size and improve the processing speed during import.

The whole structure is divided into parts which relate to
soft body and rigid bodies.

In the soft-body section there are:

• tetrahedral mesh which describes the volume:

– vertices

– configurations of consequent tetrahedra

• polygon mesh for rendering purposes:

– vertices

– texture coordinates

– configurations of consequent polygons
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• barycentric coordinates - mapping of renderable
mesh vertices into the volume of a specified tetrahe-
dron which includes the vertex in the initial pose

• physical attributes:

– mass

– volume stiffness

– stretching stiffness

– friction

– particle radius, solver iterations - scene-
dependent values important for simulation sta-
bility

The rigid-body-skeleton section consists of:

• convex polygon meshes for collision detection:

– vertices

– configurations of consequent polygons

• physical properties:

– mass

– friction

• joints between rigid bones:

– type-dependent values and limitations

When the model is imported, information chunks are
routed to appropriate application elements: the rendering
engine and physics engine.

(a) (b) (c)

Figure 7: Renderable surface mesh (a), tetrahedral lattice
mesh (b), tetrahedral mesh with rigid skeleton (c).

Polygon surface mesh for the soft body (Figure 7a) to-
gether with its texture coordinates is passed directly to
the rendering engine. The tetrahedral mesh (Figure 7b)
is passed to NVIDIA PhysX, same as the convex skeleton
meshes (Figure 7c). In our case the skeleton is intended
for physics simulation only, it is not intended for drawing.

For every rigid bone a separate actor is created in
PhysX. Each of them is coupled with other bones using
a joint according to the joints section of model file. The
joint can be any of the 10 types offered by NVIDIA PhysX
[11], e.g.:

• Spherical joint;

• Revolute joint;

• 6-degree-of-freedom joint;

• Distance joint.

Every joint can have different limitations depending on
its type. For example, the spherical joint can be restricted
to swing or twist only in a specified angle range.

For the soft body no actor is created. Instead, an in-
stance of a specialized PhysX soft body class is used. It
receives the necessary parameter values from the imported
model file, such as mass, stiffness and friction.

To visualize the simulation, during every animation
frame the position of each renderable surface mesh vertex
is updated according to the simulation results. The update
is performed with the help of four-dimensional barycen-
tric coordinates BVi , which are defined for every vertex Vi
of the polygon surface mesh:

Bvi = (v0,v1,v2,1− (v0 + v1 + v2))

Where the k-th element of the vector BVi we write as
B(Vi,k). The coordinates are calculated for the initial pose
of renderable mesh vertices in the volume built of tetra-
hedra. To obtain the current vertex position V ′i necessary
to visualize the soft body, we calculate an affine combina-
tion using current position P′ of vertex Tj of the tetrahedral
mesh:

V ′i =
4

∑
k=1

B(Vi,k)P
′
(Tj ,k)

In order to calculate correct lighting of the soft body, in
every frame we use the already updated positions of ver-
tices to calculate current normal vectors Nl for every l-th
face. It amounts to applying a cross product between two
edges E1 and E2 of a given triangle built from vertices V0,
V1 and V2.

E1 =V0−V1

E2 =V2−V1

Nl = E1×E2

The order of vertices depends on the order in which the
triangles were defined: clockwise or counter-clockwise.
To achieve smooth shading, per-vertex normal vectors
have to be averaged and normalized.

The soft body can be attached to its skeleton in two
ways:

• one-by-one explicitly specified rigid objects are at-
tached to the soft volume,

• every rigid object which collides with the volume is
automatically attached.
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Advantage of the first approach is that the coupling can
be strictly defined. In the second case the attachment pro-
cedure has to take place in a controlled space, where no
other object can appear by accident. Otherwise unwanted
attachment can occur. But when using this way no addi-
tional data and activity is necessary for creating the cou-
pling.

5 Results

The resulting visualization of rigid-skeleton-rigged soft
body which makes use of joint limits behaves much more
naturally than when not using the skeleton (Figures 9, 10).
It is worth noticing that the limbs of Stanford Armadillo
do not bend under angles which could look unrealistically.
Without the skeleton there is no such restriction and the
deformation can occur in a completely random manner.
The other advantage is the ability to control the soft body
with inverse kinematics, what is impossible in a pure-soft-
body solution. Also the ability to set different masses to
different bones in order to achieve non-uniform mass dis-
tribution improves the realism of character’s reactions.

In our example the volumetric lattice consisted of ap-
proximately 2750 tetrahedra. The renderable surface mesh
contained 1036 polygons. The low number of polygons
resulted from the necessity to recalculate vertex positions
and normal vectors every frame what makes achieving in-
teractive frame rate challenging. While rendering two such
models simultaneously on the scene we reach 18 frames
per second on an NVIDIA GeForce GTX 295 and AMD
Phenom II X4 965.

We observed during the implementation process that it
is important to match the soft body volume’s particle ra-
dius with the simulation conditions like the model’s size
and density of the lattice mesh. Otherwise skeleton attach-
ment can be problematic as some parts of the bones can
slip in-between the particles. It is also important not to
forget about setting friction high enough to avoid simula-
tion instability. The importance increases with the parti-
cle radii as the particles begin to constantly influence each
other.

6 Summary and future work

We presented a file format and workflow improvements
which can lead to enhanced work efficiency during design
phase of rigid-skeleton-rigged soft body simulations. Be-
haviour of the model which is simulated with a skeleton
proved to be closer to the expected and natural than when
using a sole soft body or a rigid body instead. We believe
that in the future video games will benefit from using this
approach for character animation instead of the currently
common unrealistic solutions.

One of our future goals is to create a Blender plug-in for
exporting models to our universal format (Figure 8). The

exporter should allow easy definition of different physical
properties and intuitive coupling of skeleton parts together
with setting their attributes and limits using the Blender
built-in armature interface. Also the automatic generation
of tetrahedral mesh should be introduced to the exporter.
Our file format should be extended to cover other impor-
tant rendering-related features such as materials and tex-
tures. Interesting soft-body features such as tearing and
heterogeneous materials stay in our field of interest as
well.
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<?xml version="1.0" encoding="utf-8"?>
<model>
  <soft_body>
    <tetrahedron_mesh target="volume">
      <vertices>
        <vertex id="1" x="8.4" y="2.3" z="9.5"/>
        <!-- ... -->
      </vertices>
      <tetrahedra>
        <tetrahedron>
          <node v="1"/>
          <!-- ... -->
        </tetrahedron>
      </tetrahedra>
    </tetrahedron_mesh>
    <polygon_mesh target="rendering">
      <vertices>
        <vertex id="1" x="8.4" y="2.3" z="9.5"/>
        <!-- ... -->
      </vertices>
      <texture_coords>
        <coord id="1" u="8.4" v="2.3"/>
        <!-- ... -->
      </texture_coords>
      <normals>
        <vector id="1" x="8.4" y="2.3" z="9.5"/>
        <!-- ... -->
      </normals>
      <faces>
        <face>
          <node v="1" n="44" t="45"/>
          <!-- ... -->
        </face>
      </faces>
    </polygon_mesh>
    <barycentric>
      <coord render_id="7" tetr_id="3" v0="0.2" 

v1="0.2" v2="0.1"/>
    </barycentric>
    <attributes>
      <mass>1.0</mass>
      <volume_stiffness>0.5</volume_stiffness>
      <stretching_stiffness>0.9</stretching_stiffness>
      <friction>0.9</friction>
      <particle_radius>0.4</particle_radius>
      <solver_iterations>10</solver_iterations>
    </attributes>
  </soft_body>
  <rigid_bodies>
    <rigid_body id="1">
      <polygon_mesh target="collision_detection">
        <vertices>
          <vertex id="1" x="8.4" y="2.3" z="9.5"/>
          <!-- ... -->
        </vertices>
        <faces>
          <face>
            <node v="1"/>
            <!-- ... -->
          </face>
        </faces>
      </polygon_mesh>
      <attributes>
        <mass>1.0</mass>
        <friction>0.9</friction>
      </attributes>
    </rigid_body>
    <!-- ... -->
    <joints>
      <spherical_joint r1="1" r2="2">
        <limits>
          <limit target="swing" angle="45"/>
        </limits>
      </spherical_joint>
      <!-- ... -->
    </joints>
  </rigid_bodies>
</model>

Figure 8: Exemplary model file contents for a soft-body
object with a rigid skeleton.
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(a) (b) (c) (d)

Figure 9: Frames from the animation depicting throwing balls at a pure skeleton-free soft body. Worth noticing is the
unnatural bending of limbs in images (b), (c), (d) and the overall inertia resulting from uniform mass distribution.

(a) (b) (c) (d)

Figure 10: Frames from the animation of a soft body rigged with a rigid skeleton. The shape is retained much more firmly
and the character does not expose unnatural behaviour.
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Abstract

While there are many algorithms which address the re-
construction of partial surfaces from single-view normal
fields, to the best of our knowledge, there is only one
method [Chang et al., ’Multiview Normal Field Integra-
tion using Level Sets’, CVPR 2007] which focuses on the
reconstruction of the full shape of an object from multiple
normal fields captured from multiple viewpoints. In this
paper, we propose an alternative approach for the integra-
tion of such normal fields. We use a similar energy for-
mulation as Chang et al., but replace the employed level-
set representation with a graph-cut based reconstruction.
Based on the visual hull of the object we estimate the vis-
ibility from each viewpoint. Then we project estimated
normal fields to the visual hull and the optimal surface is
computed by maximizing the flux of the obtained vector
field through the surface. The graph-cut approach allows
for a fast and globally consistent optimization of the given
problem. Finally, we demonstrate the validity of our algo-
rithm on synthetic data sets.

Keywords: 3D reconstruction, normal field integration,
graph-cuts, multiview vision

1 Introduction

The digitization of 3D objects is a very important topic
in computer graphics and computer vision and requires a
faithful reconstruction of the object surface. There are var-
ious applications to surface reconstruction of real models
in industry, archaeology and art, medical imaging and en-
tertainment. The aim of surface reconstruction is to con-
struct an as accurate as possible approximation of the ge-
ometry of a real surface.

For this purpose, many different techniques have been
developed. Some methods, such as laser scanning, struc-
tured light systems and multiview stereo methods directly
reconstruct an oriented point cloud, from which a closed
surface can be derived by applying one of the surface fit-
ting methods [13, 4, 20, 18, 12]. In contrast, there are

∗osep@informatik.uni-bonn.de
†mw@cs.uni-bonn.de
‡rk@cs.uni-bonn.de

also approaches that only rely on information about the
surface normals. Methods such as Shape-from-Shading
[23] and Shape-from-Specularity [6] can be used for ob-
taining a normal field and subsequently, normal field in-
tegration methods are applied for estimating the shape of
the observed object. However, most of the works address
only reconstruction of a certain part of the object surface
from the estimated normal fields as they only use a sin-
gle viewpoint. In this paper, we address the integration of
such estimated normal fields from multiple views in order
to recover the full 3D shape of the object. The fusion of
such information from multiple viewpoints is a challeng-
ing problem, because we do not have any spatial surface
samples but only normal samples.

To the best of our knowledge, this problem has only
been addressed in [5]. The authors derive an energy func-
tional consisting of a surface and the flux term, and min-
imize it using level-sets. Our work is based on the min-
imization of the same energy functional. However, we
take a different optimization approach. Similarly as in [5],
we first compute the visual hull of the object. Based on
that we compute an approximation of the visibility. Then,
we project the observed normal fields from each view to
the visual hull, taking into the account the visibility. We
simultaneously optimize the flux through the surface by
maximizing divergence and enforce a minimal surface us-
ing Graph-Cuts.

The rest of our paper is organized as follows. In the
next section, we discuss previous and related work in the
area of 3D surface reconstruction using normal field inte-
gration. In Section 3, we state our goal more precisely and
introduce necessary notations. In Section 4, we explain all
steps of our algorithm in detail and in Section 5 we dis-
cuss the results of our multiview normal field integration
algorithm. Finally, we conclude the paper in Section 6 and
discuss possibilities for future work.

2 Previous Work

As pointed out in [11], there is no algorithm, which is
able to reconstruct a general scene with any type of ma-
terials and lighting conditions. The different approaches
are usually designed according to the requirements in the
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observed scene. For this, they rely on exploiting different
visual cues such as silhouettes, textures, shading, specu-
larities, etc.

Assuming we already have normal information as input,
we concentrate on reviewing techniques using such normal
information to reconstruct a surface. There exists a vari-
ety of techniques addressing the normal field integration
problem. This is a challenging problem, because in the
presence of noise, the observed normal fields are not inte-
grable. For a vector field to be gradient of the function, its
curl must be zero, which is rarely the case in the presence
of noise and outliers.

Most of the methods addressing this issue attempt to
enforce integrability. In [8], the authors project the gra-
dient field to integrable functions using the Fourier ba-
sis functions. There also exist several variants of this
method, where different basis functions (cosine basis [9],
shapelets [16], etc.) are used. Another approach, proposed
in [22], attempts to solve the problem by finding the func-
tion whose gradient is closest to the observed normal field
in the L2 norm sense by solving the Poisson equation. The
authors of [21] observed, that methods based on minimiz-
ing least-squares cost functions cannot handle outliers well
and propose a method that minimizes an energy functional
in the L1 norm sense. However, all of these methods only
address the reconstruction of partial (2.5D) surfaces from
a single-view normal field. A detailed review of the related
work on single-view normal field integration can be found
in [23].

Combining normal field information from several views
is addressed in [5]. There, the authors propose an efficient
algorithm based on energy minimization, to which our ap-
proach is closely related. To the best of our knowledge,
their algorithm is the first one that is able to recover the
full 3D shape of an object from multiple normal fields. In
their work, they derive a geometric PDE that minimizes
an energy functional which is composed of mean curva-
ture and flux term. The PDE is optimized using a level set
method. This optimization process is a drawback of their
approach, since it can find only a local minimum of the
energy functional and it is highly dependent on the initial
surface.

There are also certain similarities of the considered re-
construction problem to surface reconstruction from ori-
ented point clouds. Among the implicit function fitting-
based methods, there are approaches [13, 4, 18] that con-
sider an oriented point cloud simply as a vector field that is
in fact a sparse sampling of a continuous vector field cor-
responding to the true surface ∂M of the solid M. Based
on that observation, these methods attempt to find an im-
plicit function f (x) whose gradient ∇ f (x) is as close to
the observed vector field ~V as possible. Our reconstruc-
tion method is also based on these ideas and observations.

3 Problem Statement

Our goal is to reconstruct the full 3D, closed and twice
differentiable surface ∂M ∈R3 of a solid M, given the ob-
served normal fields (normal samples) from different cam-
eras. Furthermore, we want to obtain a watertight surface
in form of a polygonal mesh. Note, that in our formula-
tion, we do not have samples of surface points but only
samples of their normals, projected to the image planes
of the cameras. In our setup, we assume having N cal-
ibrated cameras Ci, i ∈ [1...N], as visualized in Figure 1.
Each camera provides a noisy normal field estimate vi. The
mapping vi : Ω ⊂ R2 7→ R3 is a projection of normals of
the points, seen from the camera Ci to its image plane.
For the cameras, we assume a pinhole camera model and
we assume that we have for each camera a projection ma-
trix Pi = Ki [Ri|ti]. The matrix Ki is the camera calibration
matrix and it provides the intrinsic parameters of the cam-
era. The matrix [Ri|ti] provides information about external
camera parameters (position and orientation in space). The
projection of the point x ∈ ∂M to the image plane of i-th
camera Ci will be denoted by x̃i = Pix and vi(x̃i) denotes
the projection of the normal n(x) of the point x ∈ ∂M to
the image plane of camera Ci.

Figure 1: A typical scene setup (top). Projection process
(bottom). The surface point x of the solid M is visible
in cameras C1 and C2 and its normal is projected to their
image planes.

We consider a very similar projection process as the au-
thors of [5], which is illustrated in Figure 1. Taking into
account the projection process, additive noise and visibil-
ity constraints, our normal field formation model can be
expressed by:

vi(x̃i) = n(x)+ηi, ∀x ∈
{

x|ψi,∂M(x) = 1
}

(1)

where n(x) is normal of the point x, ηi is the corresponding
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1. Compute the vector field ~V

(a) Initialize the model by silhouette carving

(b) Compute the visibility

(c) Project normal fields

2. Compute the divergence of ~V

3. Construct a graph

(a) Establish n-links (Adjacent nodes)

(b) Establish t-links (Terminals)

4. Compute the Min-Cut on the constructed graph using
the TouchExpand algorithm [18]

5. Extract the isosurface using Marching Cubes

Table 1: The main steps of our algorithm.

additive noise and

ψi,∂M(x) .
=

{
1, x is visible from the camera Ci

0, else
(2)

is a visibility function that indicates whether the point x is
visible from the camera Ci. Like in [5], we also address
inferring the true coordinates of all points x ∈ ∂M from
estimated noisy normal fields and reconstructing the full
3D solid M as accurate as possible.

4 Proposed Algorithm

The problem domain is discretized on a regular grid. Then,
the vector field ~V is computed and the energy functional
is transformed to a graph. Subsequently, we compute the
surface ∂M as a Min-Cut on the energy graph. The polyg-
onal mesh is obtained using the Marching Cubes algorithm
[19]. The main steps of our algorithm are listed in Table
1 and detailed explanations of all steps are provided in the
following subsections.

4.1 Energy Minimization Framework

Energy minimization is a very popular approach and often
used for surface reconstruction, both in the field of single-
view normal field integration [23] and surface reconstruc-
tion from point clouds [13, 4, 18]. In the first paper (to the
best of our knowledge) addressing the problem of multi-
view normal integration [5], the problem is formulated in
terms of energy minimization as well. Our formulation is
based on the very similar energy functional.

The authors of [5] are motivated by the approach de-
scribed in [22], where a relief surface is reconstructed from
a single normal field in the following way:

E(Z) .
=
∫

Z
(∇x− v(x̃))dA (3)

where the integral is over the planar (image) domain Z. In-
tuitively, the energy functional penalizes discrepancy be-
tween the gradient of the surface we would like to obtain
and the observed normal field. The authors of [5] extend
the idea to the domain of the surface ∂M. Taking into ac-
count the visibility constraints, their energy functional is
as follows:

E(∂M)
.
=
∫

∂M

1
N∂M(x)

N

∑
i=1

ψi,∂M(x)‖n(x)− vi(x̃i)‖2 dA

(4)
where the term

N∂M(x) .
=

N

∑
i=1

ψi,∂M(x) (5)

denotes the number of cameras in which the surface point
x was seen. The proposed energy functional minimizes
differences between the normals n(x) of the surface points
x ∈ ∂M and all observed normal samples, from all cam-
eras. The normal sample of the point x, seen by the cam-
era Ci, corresponds to the normal of the projection of x to
the i-th image plane. Additionally, for each camera, we
take into account only the visible points and we normalize
the total deviation by the number of cameras the point was
seen from.

Alternatively, we are again looking for the surface
whose gradients match best to the observed normals in a
least squares sense under the visibility constraints. The
authors of [5] observed, that minimizing Equation (4) is
equivalent to maximizing the flux through the surface and
simultaneously minimizing the surface area. Hence, we
obtain a similar energy functional as proposed in [18],
which consists of a data term and a regularization term:

E(∂M) = λ1R(∂M)−λ2D(∂M). (6)

Here,
R(∂M) =

∫

∂M
dA (7)

denotes the area over the surface, and

D(∂M) =
∫

∂M
n(x)~V (x)dA, (8)

describes the flux through the surface ∂M. Considering
the visibility from each camera, the vector field ~V can be
computed according to

~V (x) .
=

∑i ψi,∂M(x)vi(x̃)
N∂M(x)

. (9)

The implementation of the vector field computation will
be discussed in the next section.

Additionally, we weight both terms. Intuitively, by min-
imizing this energy functional, we are aligning the surface
∂M with the vector field ~V , and with the regularization
term, we avoid over-fitting and make the optimization pro-
cess robust to noise and outliers.
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4.2 Computation of the Vector Field

The computation of the vector field ~V , as stated in Equa-
tion (4), requires summing over all observed normal fields
while accounting for visibility and occlusion. That is a
non-trivial task, since we do not know where the true sur-
face ∂M lies, i.e. we do not have any information about
the real position of the surface points. We approach the

Figure 2: A silhouette carving process. Result of carving
using 4 cameras (top left) and result using 20 cameras (top
right).

problem by exploiting an additional visual cue about the
geometry of our solid M that the estimated normal fields
provide. To be exact, we compute the visual hull of the
object based on the silhouettes obtained from the normal
fields [17]. The silhouette carving process is visualized in
Figure 2.

We discretize our domain of interest using a regular
grid. For this, we first extract the area of interest by in-
tersecting the volumes of all cameras. Then we narrow
down this area of interest by performing an initial carv-
ing. Doing so, we obtain a rough carved object. We take
the maximal and minimal point of this object and we use
them to initialize the final bounding volume, on which we
perform a fine carving.

Based on the visual hull, which is computed on the ini-
tialized voxel grid, an approximation of the visibility func-
tion can be computed. Note, that in order to compute the
exact visibility function and account for all occlusions pre-
cisely, we would need the actual surface ∂M, which is just
what we want to obtain. The approximate visibility for
the camera Ci is computed by casting rays from the focal
point of Ci to the centres of all voxels in the voxel grid.
The visibility is determined by intersecting each ray with
a triangular mesh representing the visual hull, obtained by
Marching Cubes [19]. The location of the exact surface
∂M is not known at this stage, but we know that it must be
somewhere close to the visual hull. Furthermore, we know
that the actual surface can only be smaller than the visual
hull. For that reason, we do not only consider border vox-
els as visible, but we rather take into account visible bands
of voxels, as shown in Figures 3 and 4. A visible band
consists of the border voxels, directly visible from camera
Ci and the voxels that are for a band-depth ε away from
the border voxels towards inner region of the model in the
direction of the rays. The effects of the parameter ε will
be discussed in Section 5.

Figure 3: Slice of the computed visibility on the voxel grid
from the i-th camera. Dark (blue) voxels correspond to
the visual hull and bright (green) voxels are visible from
camera Ci.

Figure 4: Normal projection from the image plane to the
visible band (green). Note, that the surface ∂M is un-
known, but we estimate, that it lies within the visible band.

At this point, the computation of the vector field ~V is
simple. From each camera, we project the observed nor-
mal fields to the visible band of the voxels, as demon-
strated in Figure 4. This is efficiently computed using
the back-projection of voxels to the image planes. Note,
that in case of silhouette carving [17], each voxel is back-
projected to the image plane of each camera. Based on
a lookup to the silhouette map, a voxel is either kept or
rejected, depending on silhouette consistency. In the nor-
mal projection case, for each camera, we project all voxels
that are in the visible band to the image plane and make a
lookup to the color-coded normal map, which is visualized
in Figure 5. The obtained normal is then assigned to the
voxel being projected. The value at each voxel is divided
by the total number of cameras the voxel was seen from.
As a consequence of this step, we obtain the vector field
~V , which is discretized on a regular grid. Alternatively,
this projection process can be seen as normal voting. We
assign votes to voxels near the visual hull for being real
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Figure 5: A color-coded normal field observed from the
i-th camera and the corresponding silhouette.

surface voxels. The next step is the optimization of the
flux through the surface represented by the vector field ~V
using a Graph-Cut technique, which is described in the
next section.

4.3 Energy Optimization using Graph-Cuts

Graph-Cuts have been successfully applied to various
computer vision problems such as image restoration [3],
stereo vision [3] and segmentation [14]. In [15], it is
shown, that it is possible to globally optimize a wide class
of geometrically motivated hypersurface functionals with
Graph-Cuts. Specifically, it is shown that that any func-
tional that consists of a combination of area/length and
flux of the given vector field can be optimized by Graph-
Cuts, which is just what we need in our case. Motivated
by the successful application of Graph-Cuts to the prob-
lem of reconstructing a surface from oriented point clouds
[18], we decided to optimize our energy functional (6),
also consisting of area and flux term, via Graph-Cuts.

As pointed out in [18], maximizing the flux term of
the energy functional (8) is equivalent to optimizing the
divergence of the vector field ~V in the interior (Gauss-
Ostrogradsky a.k.a. Divergence theorem). Thus, the final
energy we are optimizing is:

E(∂M) = λ1

∫

∂M
dA−λ2

∫

M
div(~V (x))dV. (10)

This energy can be simply converted into a graph. Adja-
cent nodes, which are corresponding to voxels in a voxel
grid, are connected by n-links, and additionally, the nodes
are connected to terminals s and t, based on the divergence
of ~V (see Figure 6). In the constructed graph, t-links are
weighted proportional to the absolute value of the diver-
gence at each voxel. Furthermore, voxels with positive
volumetric potentials are connected to the source node and
voxels with negative volumetric potential are connected to
the terminal node. To minimize metrification artifacts, the
voxel nodes are linked not only to directly adjacent nodes,
but to larger neighbourhoods. The size of the actual neigh-
bourhood can be considered as a parameter. In most of our
experiments, we considered neighbourhoods of 26 nodes.
The weights of the n-links are proportional to the weight
λ1. For detailed information on the weight computation,
we refer to [1]. The solution can then be obtained by com-
puting an s/t-cut on the graph. In a sense, we are solving

Figure 6: Slice of the computed divergence on the voxel
grid from (left). Simple graph constructed on a voxel grid
(right). Green nodes correspond to the voxels, red (left-
most) node and blue (rightmost) node represent the termi-
nals.

a segmentation problem: we are segmenting voxels that
belong to the model M from the background.

There exists a variety of efficient algorithms for solv-
ing the Min-Cut/Max-Flow problem, starting with Ford-
Fulkerson [7] and ”push-relabel” [10]. In [2], an ex-
haustive overview of Min-Cut/Max-Flow algorithms is
given, focusing on computer vision problems. The au-
thors of [18] observed, that due to high-resolution grid de-
mands for surface reconstruction, the use of existing Min-
Cut/Max-Flow algorithms on a regular grid is practically
infeasible and proposed a novel TouchExpand algorithm.
Their algorithm computes a global cut while it keeps in
memory only local graphs. Because of our regular-grid
based discretization, the TouchExpand is method of choice
for our surface reconstruction purpose, although it would
be an even better idea to use an adaptive grid and thus
reduce size of the graph drastically. This way, use of algo-
rithms discussed in [2] would be feasible.

5 Results

To validate our approach, we conducted several experi-
ments. As we do not address the estimation of normal
fields but instead assume having such information, we
evaluate our approach only on synthetic data, generated
with our testing environment, described in Section 5.1. In
order to test the robustness of our algorithm, we also added
noise to our data sets. We performed tests on the Utah
Teapot and Cyberware Dinosaur model (Figure 7).

We implemented our algorithm in Matlab and partially,
in C++, and executed it on a PC with a Core2Duo 6600
CPU (2.4GHz) processor and 4GB RAM. While the opti-
mization process takes less than one minute (30 seconds
on average), the naive visibility computation can take up
to several hours, depending on the number of cameras. In
case of 16 cameras, it takes about 1.5 hours.

Because of our Matlab implementation, we had to limit
our grid size. The actual resolution depends on the dimen-
sions of the model.
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Figure 7: The ground truth: Utah Teapot model (left) and
Cyberware Dinosaur model (right).

5.1 Testing Environment

We generated our synthetic data sets with a testing envi-
ronment we developed for the evaluation of our algorithm.
The testing application allows the user to place a 3D model
into a scene and virtual cameras around it. From these vir-
tual cameras, ground-truth normal images are created by
colouring pixels according to their true normals using a
simple pixel shader program. In addition, the testing envi-
ronment is also capable of simulating noisy measurements
by adding Gaussian or salt&pepper noise to the rendered
normal images.

The generation of synthetic normal fields is not the only
purpose of our testing application. We are also planning
to make use of it for testing out different techniques for
normal estimation of different materials (highly-specular,
glass, etc.). Different surface reflectance behaviours can
be simply simulated by selecting a different shader pro-
gram.

5.2 Results on Synthetic Data

In our initial experiments, we used a virtual setup where
the object is surrounded by several cameras, as shown on
Figure 1. The results using different numbers of cameras
and depth parameters ε are visualized in Figures 8, 10,
9 and 11. We observe, that our algorithm is able to pro-
duce reasonable reconstructions even when using only a
few cameras. Using normal information, also concave re-
gions can be recovered as shown in the Dinosaur example
on Figures 8, 9 and 10.

However, the algorithm at this stage is somehow sen-
sitive to the choice of the parameter ε . For thinner bands
(ε = 3), it may happen that normals are not projected to the
voxels where the surface ∂M actually is located. The ef-
fect is visible at the eye of the Cyberware Dinosaur’s head
in Figure 10. Although the concave region around the eye
is recovered to some degree, the algorithm clearly does
not reach the desired surface ∂M in this region. In case of
choosing deeper bands (ε = 6), the concave region around
eye is reconstructed well. For visibility bands of arbitrary
depth, reconstruction artifacts (marked with the blue cir-
cle) may occur. The reason for this is that in some regions,
normal votes from different sides may interfere with each
other. How to solve problems related to visibility-band

depth parameter will be discussed in Section 6.
Just as in the algorithm presented in [5], our algorithm is

also dependent on the initial surface. How to resolve that
issue, is also addressed in Section 6. In fact, we believe
that with very simple improvements, we will be able to
completely skip the silhouette carving step.

In case of Utah Teapot dataset we observe, that the
Graph-Cut was able to deal easily with the large uncar-
ved area in the bottom of the Teapot. That region did not
receive any normal votes, so the Graph-Cut simply pro-
duced the minimal surface at the bottom of the cup. Over-
all we obtain a nice reconstruction of the Teacup, although
we can observe discretization artifacts due to the limited
voxel grid size.

In a real-world situation, due to the acquisition process,
normal estimates will always contain noise, this is why
we corrupted our perfect normal maps with Gaussian and
salt&pepper noise. It should also be noted, that normal es-
timates may be erroneous and that normal fields will not
neccessarily match on the real input data. There are also
other possible sources of errors that we do not consider
here, for example, systematic error due to imprecise cam-
era calibration, errors caused by lighting conditions, out-
liers, etc. In Figure 12 we can observe, that in presence of
light salt&pepper noise and Gaussian noise with standard
deviation σ = 0.05, reconstruction results are not signifi-
cantly affected. In case of strong Gaussian noise (σ = 0.2),
we observe reconstruction artifacts, but still the algorithm
is able to recover the rough shape. From these tests we
conclude, that our algorithm is reasonably robust to the
noise.

6 Conclusions and Future Work

In this paper, we propose an approach to solve the mul-
tiview normal integration problem via Graph-Cuts. For
the discretized version of the utilized energy functional
under the given approximation of the visibility, our ap-
proach produces a globally optimal solution. Furthermore,
the energy optimization with Graph-Cuts using the Touch-
Expand algorithm is very efficient. The bottle-neck of our
approach is the visibility computation, which can be easily
optimized and remains our future work. We show, that our
algorithm performs reasonably well even on challenging
models like the Cyberware’s Dinosaur and is very robust
to the noise.

One drawback of our approach is its sensitivity to the
band parameter and dependence on the visual hull. To re-
solve this issue, we are planning to implement an iterative
approach. In that case, the normals will be projected to the
model reconstruction from the last iteration, Mk−1, using
a very thin visibility band. At each iteration, the visibility
will be computed and the Graph-Cut will be applied again
to iteratively refine the reconstruction. Such an iterative
approach also allows to skip the silhouette carving pro-
cess. Further improvements should also consider a higher
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Figure 8: Reconstructions of the Cyberware Dinosaur
datasets with band parameter ε = 6. First column: vi-
sual hull, reconstruction using 6 cameras and reconstruc-
tion using 16 cameras. Second column: reconstructions
using 16 cameras. The blue circle marks area that was not
seen by the cameras.

grid resolution in order to achieve more accurate recon-
struction results.

We also observe, that it is more likely that the surface
∂M coincides with voxels, where projected normals i.e.
normal votes match. For that reason, we are planning to
incorporate an additional energy functional term, that pe-
nalizes differences between the normal votes and the mean
normal at each voxel.
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Abstract

In this paper, we examine the challenges of implement-
ing priority-based task management with respect to user-
defined preferential attributes on a graphics processing
unit (GPU). Previous approaches usually rely on constant
synchronization with the CPU to determine the proper
chronological sequence for execution. We transfer the re-
sponsibility for evaluating and arranging planned tasks to
the GPU where they are continuously processed in a per-
sistent kernel. By implementing a dynamic work queue
with segments of variable size, we introduce possibili-
ties for gradually improving the overall order and iden-
tify necessary meta data required to avoid write-read con-
flicts in a massively parallel environment. We employ an
autonomous controller module to allow queue manage-
ment to run concurrently with task execution. We revise
Batcher’s bitonic merge sort and show its eligibility for
sorting partitioned work queues. The performance of the
algorithm for tasks with constant execution time is evalu-
ated with respect to multiple setups and priority types. An
implementation of a Monte Carlo Ray-Tracing engine is
presented in which we use appropriate priority functions
to direct the available resources of the GPU to areas of in-
terest. The results show increased precision for the desired
features at early rendering stages, demonstrating the selec-
tive preference established by our management system.

Keywords: GPGPU, megakernel, GPU sorting, priority-
based task management, dynamic work queue, Monte
Carlo Ray-Tracing

1 Introduction

Parallel computing has become a valuable tool for han-
dling time-consuming procedures that contain a high num-
ber of homogeneous, independent operations. Since the
rise of the Unified Shader Model which features explicit
programmability of GPUs, exploiting data level paral-
lelism on a customary personal computer has become
increasingly straightforward. The advent of NVIDIA’s
GeForce 8 Series introduced the first release of the CUDA
∗kerbl@student.tugraz.at
†steinberger@icg.tugraz.at

architecture and associated compilers for industry stan-
dard programming languages. With respect to certain re-
strictions, the architecture enables programmers to run
general purpose computations on compatible devices in
parallel. Newer models of GPUs supporting these features
are therefore often referred to as general purpose graph-
ics processing units (GPGPU). Several hundred Stream
Processors (SP), also referred to as thread blocks, which
are grouped in clusters called Streaming Multiprocessors
(SM) can be instructed to execute commands at the same
time – the programmer simply specifies the number of nec-
essary threads when launching a GPGPU kernel. The com-
bined capacities of these SPs have produced a significant
gap in raw speed between high-end GPUs and CPUs [12].
However, using the available resources to their full poten-
tial is not an easy task. Memory latencies, insufficient
parallelization or unfavorable occupancy at runtime may
cause implementations to fall short of their ideal behavior.

One particular cause of poor efficiency in CUDA ker-
nels is unbalanced work load distribution, which can have
a limiting effect on performance, especially when consid-
ering problems that exhibit irregular behavior, e. g. adap-
tive ray-tracing techniques [2]. Instead of relying on the
built-in CUDA work distribution units, custom task man-
agement strategies can be implemented to address these is-
sues [4]. One specific example is given in the OptiX Ray-
Tracing Engine and its dynamically load-balanced GPU
execution model [14].

In this context, the term megakernel refers to a solution
where improved work load distribution is achieved using
a persistent kernel in order to benefit from uninterrupted
computational activity. One or more queues are commonly
used to store tasks that are constantly being fetched and ex-
ecuted until the queues are empty. For static work queues,
tasks can only be added in between megakernel launches,
while dynamic implementations also allow for insertion of
new tasks at runtime [4].

When using a megakernel for processing diverse prob-
lems and the implied task level parallelism, assigning
meaningful priorities to each task can have a positive ef-
fect. Especially procedures that involve rendering may ex-
perience a considerable boost in usability through proper
task classification. Considering applications with guaran-
teed frame rates, the perceived quality of each frame can

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



be improved by focusing on areas that exhibit prominent
features [9]. High quality initial views of rendered scenes
can be generated by directing the resources of the GPU
based on priorities. In an interactive environment with
a modifiable view model, early perception of the visible
dataset enables efficient adjustment of the extrinsic param-
eters in order to obtain a desired setup. Similarly, priori-
tizing user interactions achieves faster response to input
commands and postpones time-consuming rendering pro-
cedures that are otherwise wasted on a setup that is inade-
quate.

Previous approaches based on priorities commonly ex-
ploit the sophisticated sorting methods on the CPU and
establish means for communicating the favored order of
execution to the GPU [10, 6]. Moving the responsi-
bility of organizing the runtime agenda to the GPU ex-
pectably eliminates the otherwise significant overhead of
inter-component communication. Therefore, we aim to
provide a functional autonomic task management system
for dynamic work queues on the GPU, in order to enable
adaptive behavior for CUDA applications without inter-
rupting the execution of tasks.

2 Previous Work

While analyzing the influences of possible limiting fac-
tors on ray-tracing kernels, Aila and Laine experimentally
bypassed the default CUDA work distribution units, sug-
gesting that this approach might show an improvement for
tasks with varying durations [2]. In their implementation,
they use a work queue from which tasks are constantly
fetched and executed in individual thread blocks, which
proved to be very effective. A detailed analysis of possi-
ble techniques for using work queues in a GPGPU kernel
was authored by Cederman and Tsigas, addressing sophis-
ticated load balancing schemes which are made possible
through the atomic hardware primitives supported by the
CUDA architecture [4].

In [14], Parker et al. successfully employed a self-
provided strategy for balancing work load with the goal of
improving efficiency in a ray-tracing engine using a per-
sistent megakernel. Furthermore, they use static prioriti-
zation to achieve fine-grained internal scheduling for tasks
to avoid penalties resulting from state divergence.

A recent example for a priority-based solution that
achieves GPU task management in real-time is TimeGraph
[10]. The routine relies on interrupts and substantial com-
munication between the GPU and the CPU which acts
as an executive supervisor. A similar system was imple-
mented by Chen et al., in which queues are shared and
accessed regularly by the CPU and GPU [6]. In recent de-
velopments, Kainz et al. employed prioritization in a ren-
dering application by sorting work queues between kernel
launches to achieve improved richness of detail for prede-
termined frame rates [9].

Efficient sorting algorithms for parallel systems, espe-

cially targeting GPGPUs, have become a popular research
topic. Following the implementations of Batcher’s bitonic
merge sort which was developed for parallel sorting net-
works [3], other algorithms designed for use on massive
datasets were adopted for the GPU as well [5, 7, 13, 15].

3 GPU Megakernel System

3.1 Available Resources and Challenges

We target dynamic GPGPU task management by introduc-
ing a global, self-organizing work queue in a megakernel
system which allows for arbitrary tasks to be added at run-
time. Apart from the functions to be invoked upon exe-
cution of a task, each queue entry provides additional at-
tributes that are considered during different stages of the
management process. Sorting the queue is a time-critical
problem, since the megakernel system constantly removes
the frontmost entries and processes the associated behav-
ior in the available SPs to achieve proper workload distri-
bution.

Due to the intended autonomy of our management sys-
tem, we cannot rely on the CPU to rearrange queue entries
based on their priorities. Instead, one thread block is re-
served and used as a controlling unit which is responsible
for sorting the queue at runtime. The remaining thread
blocks are henceforth referred to as working module to
clarify their intended purpose. Since both modules con-
stantly process the shared contents of the queue, leaving
them unprotected would cause interference and lead to se-
vere runtime errors. Therefore, we require secure methods
for classifying queue entries and deciding whether they are
safe to be processed by either module.

3.2 Work Queue Segmentation

Since the contents of a dynamic work queue are poten-
tially volatile, we partition the queue and thereby enable
faster detection of segments that are unlikely to change in
the near future. Consequently, the controller can quickly
select segments that are not yet in use and perform sorting
while the working module constantly removes entries from
segments in the front of the queue. Treating segments as
instances of classes gives us the advantage of storing ad-
ditional information about the contained queue entries as
attributes, such as a reference to the task with the shortest
execution time or current availability.

For using segments to restructure the work queue, we
identify two additional constraints in order to avoid access
conflicts. First, only full segments qualify as appropriate
candidates for sorting, which leads to entries at the back
being ignored if they are located in a partially populated
segment. Second, since we must not tamper with the en-
tries of segments whose contents are currently being ex-
ecuted, we cannot sort the tasks at the very front, which
leads to inevitable disarray for the leading segments.
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Considering these limitations and their effects on ker-
nel execution, we provide settings to adapt the behavior
of the controller as required. The user may select a spe-
cific segment size for a particular purpose: while a smaller
size generates a finer granularity and reduces the number
of neglected entries both in the front and in the back of
the queue, it requires high organizational overhead and in-
creases the time needed for establishing a decent order. A
bigger segment size may improve the sorting performance
for a higher number of queue entries, but at the same time
larger chunks of the queue will be ignored due to incom-
plete segments.

3.3 Mutual Exclusion

Even though we established that unused segments can
be quickly identified by the controller using only work
queue partitioning, we need to consider overlapping ac-
cesses since sorting algorithms are time-consuming as
well and may take even longer than task execution. Deal-
ing with these situations requires an unambiguous system-
wide regulation for deciding which module is currently
allowed access to a segment. We decided to introduce
a thread-safe policy for checking and setting the current
availability state of a segment, combining two common
approaches in a multipurpose attribute variable.

The CUDA instruction set provides means to change the
contents of the attribute variable atomically. Each SP in
the system tests the state of a particular segment before
accessing its contents. For the working module, the state
variable behaves like a semaphore, allowing a specified
number of accesses before resetting it to the initial zero
value. If the controller requires the contents of an avail-
able segment, it exchanges the current state with a negative
integer. Threads in the working module that are trying to
acquire the contents of segments that are being sorted will
perform a busy wait until the controller signals comple-
tion of the sorting algorithm by assigning a positive value
to the variable.

4 Sorting the Queue

4.1 Bitonic Merge Sort

Our controller utilizes an adaptation of the bitonic merge
sort to rearrange the contents of the work queue. The al-
gorithm was devised by Ken Batcher for parallel sorting
networks as an alternative to the odd-even merge sort and
operates by constructing bitonic sequences of increasing
lengths and merging them to generate sorted output [3]. A
simple setup demonstrating the procedure for applying the
algorithm in parallel is illustrated in Figure 1. For an array
of length N and T concurrent threads, the algorithm re-
quires O(N

T · log2 N) parallel comparison operations. Pop-
ular fields of application include collision detection and
visibility calculation in particle systems [11]. The most

Figure 1: One possible implementation of the bitonic
merge sort using one thread per element index. The col-
ored rectangles indicate different comparison operators
being used for evaluating whether two values should be
exchanged. By forming bitonic sequences in each step,
the merge phases are applied consecutively until the input
is sorted in descending order.

efficient GPU implementations of the bitonic merge sort
were able to outperform the sophisticated std::sort meth-
ods on contemporary CPUs [15]. Recently developed
algorithms for sorting on the GPU are more commonly
based on radix or bucket sort, although some frameworks
implement hybrid variants in order to exploit the charac-
teristics of bitonic sequences [13, 7, 16].

4.2 Benefits

We aim to provide the user with the possibility of choosing
custom priority values. The bitonic merge sort is compari-
son based and is therefore applicable for any data type that
supports the logical operators < and >.

For smaller data sets, the bitonic merge sort is one of
the fastest algorithms if the underlying architecture is op-
timally exploited [8]. Ideally, the thread block size equals
the number of elements to be sorted. In such a case,
N
T = 1.0 and the algorithm requires exactly log2 N parallel
steps to execute.

Concatenating two arrays sorted in distinct order yields
a bitonic sequence by definition, which corresponds to
the input in the final top-level merge phase of the bitonic
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Figure 2: A pair-wise sorting algorithm applied to the seg-
ments in a queue. Neighboring segments are combined to
achieve gradual restructuring of the contents, starting from
the back and advancing towards the front. If a segment
is encountered that is currently unavailable, the algorithm
restarts from the back.

merge sort. Based on these properties, we can reduce
the number of necessary comparison operations signifi-
cantly when sorting two preprocessed arrays by inverting
one array and appending it to the other, thereby creating a
bitonic sequence. For fusing two sorted arrays of length
N
2 , the worst-case complexity can thus be expressed as
O(N

T · log N).

4.3 Using Bitonic Merge Sort on Segments

We use an optimized bitonic merge sort to rearrange seg-
ments of the work queue sequentially in successive passes.
For each pass, we need to acquire available segments and
apply the bitonic algorithm to their combined data set. The
key-index pairs are retrieved from the work queue using
the segment indices as offsets for addressing the associated
tasks. We identified two basic qualities that the controller
should exhibit when sorting segments:

• Constant refinement: the accuracy of the resulting se-
quence should increase with the number of passes

• Effectiveness: high-priority work packages should
advance towards the front as soon as possible

The basic idea to improve the overall order is to com-
pare each segment with its predecessor iteratively. For a
work queue with N segments of size S, we need N − 1
passes to move the S most important tasks to the lead-
ing segment. This approach, though basic, continually im-
proves the order in the queue. If we reach a segment where

no predecessor can be acquired, we reinitiate the proce-
dure starting from the back, which is illustrated in Figure
2. The resulting accuracy of the sort is proportional to
the number of passes performed. Obtaining a fully sorted
list would require a total of N2+N

2 passes, but approximate
sorting with an emphasis on prioritizing important tasks
over regular ones is sufficient to induce adaptive behav-
ior. Also, as mentioned in Section 4.2, partially sorted
input can be processed much faster. This property trans-
lates well to the segment-based approach: by monitoring
a boolean member variable that is true for segments that
are revisited, we can decide whether it is sufficient to ap-
ply a top-level bitonic merge. We consider three different
combinations of segments and provide an optimized sort-
ing method for each of the following pairings:

• Unsorted – Unsorted

• Unsorted – Sorted or Sorted – Unsorted

• Sorted – Sorted

5 Time Management

5.1 Motivation

The system described thus far is capable of managing
queued tasks based on their priorities without assistance by
external components. However, due to the necessary syn-
chronization of controller and working module by mutual
exclusion, a significant delay is added to the total megak-
ernel execution time whenever a SP in the working mod-
ule transitions into a state of busy waiting, caused by seg-
ments being unavailable as they are currently being sorted.
We target this issue by implementing a management strat-
egy using time-based regulations for avoiding collisions
of the working module and the controller when accessing
the work queue. The chosen approach requires collection
and maintenance of related meta data for task duration and
sorting performance.

5.2 Avoiding Collisions

Usually, the primary objective of a megakernel is to ex-
ploit the resources of the GPU. Hence, we do not put any
additional constraints on accesses made by the working
module. Instead, the controller performs advanced san-
ity checks before locking two segments for sorting. Fol-
lowing the algorithm described in Section 4.3, we select
two qualified segments. The time needed for performing
the bitonic merge sort on the selected segments is stored
in timesorting. We then proceed to probe the anterior sec-
tions of the queue: segments in between the chosen can-
didates for sorting and those that are currently being exe-
cuted are regarded as time buffers. The required amount of
time for the working module to process a buffer segment is
estimated by the execution time of the shortest contained
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task. The respective variables are read for each segment
and accumulated from back to front in a second variable
timebu f f ers. Once the condition timebu f f ers ≥ timesorting
is fulfilled, we abort the traversal stage and initiate the
bitonic merge sort procedure. If the available time is not
sufficient for sorting, the procedure is reinitiated at the
back of the queue to prevent possible collisions.

5.3 Collecting Meta Data

5.3.1 Task Execution

For each task, the working module records the time needed
for execution and compares it to previous results by de-
fault. It is necessary to monitor these values constantly
for automatic runtime detection since the execution time
of a task may fluctuate considerably and cannot be pre-
dicted without error. Whenever a new task is added to the
work queue, the corresponding segment updates its esti-
mated buffering effect based on these measurements. In
order to minimize the probability of collisions, we choose
the pessimistic approach and exclusively store the shortest
duration for each task measured so far.

5.3.2 Sorting Methods

For each of the three sorting modes, we measure and up-
date the number of clock cycles needed by the respective
method whenever it is invoked. The timesorting variable
can thus be estimated more accurately by the controller
based on the orderliness of tasks in the segments that are
selected for sorting. As opposed to task execution, mea-
surements are discarded if they are lower than previous re-
sults, although sorting performance is less likely to change
over time. This approach further reduces the likelihood of
collisions in the work queue, since always the longest du-
ration is assumed for each sorting method.

5.4 Custom Timing Settings

As an alternative to the default pessimistic behavior, we
provide settings for the advanced user to customize the
internal time management. A more flexible strategy can
be achieved by defining a global multiplier for the time
buffers. If a task is known to have a reliable average du-
ration or requires a fixed number of clock cycles defined
by its inherent complexity, the automatic runtime detec-
tion may be disabled selectively. Instead, a static value
can be provided to indicate how many clock cycles should
be assumed for execution.

For projects where priority sorting is of utmost impor-
tance, meta data acquisition may be disabled for all tasks.
The user can then define a constant global variable that is
substituted for each buffer segment.
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Figure 3: Comparison of performance for the tested sorters
with the standard CUDPP radix sort for unsigned integers.
Our implementation of the bitonic merge sort yields al-
most constant results for setups where the number of ele-
ments does not exceed the number of threads used.

6 Results

6.1 Bitonic Merge Sort Performance

The performance of the bitonic merge sort in our system
is based on two factors, namely the segment size and the
number of active threads. The segment size can be mod-
ified in order to achieve a desired granularity for the sort.
Furthermore, the selected block size for a kernel also de-
fines the dimension of the controller. The algorithm was
therefore evaluated using a representative selection of set-
tings. In order to compare its potential efficiency to ex-
isting sophisticated routines, the optimized bitonic merge
sort was executed using a single thread block for sorting a
limited number of keys outside of the megakernel system.
This procedure is equivalent to a sorting pass of the con-
troller module and thus models the expected behavior for
sorting two segments. We chose thread block dimensions
and array lengths as powers of 2. Thread block dimensions
range from common CUDA warp size of 32 threads to the
largest possible block size of 512 threads. Array lengths
start at 32 and end at 1024 elements, which equates to dou-
ble the maximum segment size in our megakernel system.
The tests were conducted using a GeForce 560 Ti. A visu-
alization of the parametrized setups and the resulting run-
times for sorting unsigned integers can be found in Figure
3. We compared our results with the recorded times from
the CUDPP test suite [1]. Even for our most unfavorable
setting with 32 threads sorting an array of 1024 values,
the optimized bitonic merge sort beat the CUDPP radix
sort by little over 100 µs (∼ 20%). For more balanced
setups, our implementation was up to 56 times faster in
comparison. We would like to point out that the CUDPP
project targets larger data sets and is indeed very potent
for lengthy input [16]. Considering the non-linear growth
rates, the emergent trend suggests that with increasing ar-
ray sizes the bitonic sorter will eventually be bested. How-
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Figure 4: Algorithm performance with a fixed task dura-
tion of 100 µs. Starting at 10,000 tasks, we observe a
steady decline in accuracy. This suggests that although the
negative influence of unreachable segments is constantly
reduced, the performance eventually drops due to insuffi-
cient time buffers.

ever, given that we intend to frequently sort pairs of seg-
ments containing 512 tasks or less using only one thread
block, it appears to be a very suitable solution.

6.2 Sorting the Queue at Runtime

We evaluated the performance of the presented strategy
for sorting the queue segment-wise in our megakernel sys-
tem. Since the duration of a megakernel is implicitly de-
termined by the tasks it executes, we assessed the accuracy
of our management system for a given number of tasks in-
stead. We used blocking tasks to occupy thread blocks for
a specified number of clock cycles. The segment size for
the work queue was set to 256 tasks in order to balance
granularity and sorting efficiency. Since both modules in
the megakernel start simultaneously, the leading segments
are immediately locked by the working module and can
never be processed by the controller, which makes it im-
possible to achieve a fully sorted queue at runtime. Re-
garding these constraints, we estimated the actual perfor-
mance by rating each executed task based on its predeces-
sors. We enabled automatic runtime detection and stored
the priorities of executed tasks chronologically in a list of
entries L which was subsequently evaluated. Ideally, we
anticipate a descending sequence of values where an entry
at index i (starting from 0) has i previous entries represent-
ing tasks with higher priorities. Hence, the score for each
tested setup with the specified number of tasks n is defined
as follows:

S(n) =

n−1
∑

i=1

i−1
∑
j=0

f (i, j)

n−1
, f (a,b) =

{
1
a , if L(b)≥ L(a)
0, else

Assuming worst case conditions for our test setup, the
queue was initiated with task priorities in ascending order,
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Figure 5: Evaluation of the algorithm performance for
complex tasks with runtimes exceeding 1 ms. For smaller
thread block sizes, we observe an early decline due to the
increased effort for sorting a high number of entries with
fewer threads. The highest recorded score of 95% is ob-
tained using 512 threads.

which would yield a total score of 0. The results for a
given number of entries where each associated task took
at least 100 µs are illustrated in Figure 4. The accuracy
of the order in which they were executed peaked at 74%
when using a block size of 512 threads for 10,000 tasks.
Lower values preceding the apex of each function were
caused by the statistical influence of the reserved leading
segments which were not sorted before execution.

Due to device-related delays between fetching and pro-
cessing, tasks may not be executed precisely in the same
order as they are ranked in the queue. The resulting ef-
fect caused slightly lower scores when using 512 threads
compared with a block size of 256 threads for a higher
number of tasks. For time-consuming procedures, such
as those found in elaborate ray-tracing engines, we con-
sidered the results after raising the blocking interval to 1
ms (see Figure 5). With the highest possible number of
threads, we achieve a maximum score of 95% for 80,000
entries. Based on these results, we can conclude that the
accuracy in the order of execution increases with the com-
plexity of planned tasks, since the prolonged execution
time can be utilized to issue additional sorting passes.

6.3 Adaptive Monte Carlo Ray-Tracing

We demonstrate the effects of using custom priorities in
a progressive Monte Carlo Ray-Tracing engine and two
different scenes. The engine evaluates 512 paths per pixel
with a resolution of 800x600 and checks intersections with
objects iteratively. Pixels are grouped as patches of 4x4
and each patch is assigned to a designated task instead of
using one task for each pixel. The reduced number of work
queue entries to be sorted improves the efficiency of the
task management system. A task that is executed com-
putes two random traversal paths for each pixel in a patch
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and evaluates the new priority based on different strate-
gies, two of which are presented in this section. Tasks
repeatedly append themselves to the end of the queue un-
til all rays for the associated pixels have been cast. We
provide representative snapshots of both scenes after ex-
ecuting ∼60% of all planned tasks. In order to illustrate
the associated progress, we use heat maps to indicate the
number of rays cast for each pixel patch.

Figure 6: Snapshot of a scene containing objects whose
eventual surface colors are influenced by illumination and
reflection. Prioritizing patches with high accumulated in-
tensity leads to selective rendering of light sources and
white surfaces, which enables a faster perception of details
in these areas.

In our first test case, color values returned by rays for
each pixel were simply accumulated and the image was
then rendered using maximum to white mapping. The
examined scene shows the interior of a softly lit room
containing reflecting objects and light sources. We used
our task management system to focus on high intensity
color values. This eventually led to a global preference of
brighter areas. Figure 6 shows the scene at an intermediate
stage. We can clearly discern the objects that are emitting
or reflecting light and observe the increased detail for the
left sphere and the ceiling. The priority for each patch was
calculated using priority = ∑pixels

i=1 color.

Figure 7: Using difference values as priorities leads to
preference of patches with low convergence rates. We
observe more rays being cast early on for reflections of
spheres on the floor since the surface generates diverse
color values depending on the direction of rebounded rays.

For our second example, the output was normalized at
each pixel using the heat map data. The selected setup al-
lowed for detection of pixel patches with low convergence
rates and prioritization of these areas to achieve enhanced
initial views. A large portion of the scene could be ne-

glected at first due to an opaque, unlit wall at the far end
of the room (see Figure 7). In Figure 8, we emphasize im-
proved image quality when compared with uniform ren-
dering by magnifying the affected regions of images gen-
erated 210 ms after initiation. The applied priority formula
can be as expressed as priority=∑pixels

i=1 (color−colorold).

Figure 8: We compare the conventional approach of dis-
tributing rays uniformly with the priority-based procedure.
The left side shows an early closeup of the scene using the
default method and exhibits more noise than the image on
the right, which features smooth color reflections as a re-
sult of proper task management.

We used the normalized output images from the second
test case to assess the mean squared error (MSE) for de-
fault and priority-based rendering when compared to the
ground truth. Even though evaluating the priority formula
required expensive atomic operations, we noticed a clear
reduction of the MSE at each point in time (see Figure 9).

7 Conclusion

We presented a priority-based task management system
with elaborate timing strategies to enable adaptive behav-
ior for GPGPU programs. We successfully incorporate a
controller module in a megakernel system and prevent it
from interfering with the continuous execution of queued
tasks. We eliminate inter-component communication and
the associated overhead by sorting the contents of our dy-
namic work queue at runtime using a designated thread
block. By optimizing the bitonic merge sort algorithm, we
establish a basis for iteratively rearranging the segments of
the queue. We evaluate the effectiveness of the sorting al-
gorithm by invoking large numbers of tasks and compare
performance for tasks with different durations. For more
complex tasks, we reach promising scores regarding the
order of execution even in unfavorable setups. A Monte
Carlo Ray-Tracing engine running in our system shows
adaptive behavior and demonstrates how prioritization in
a rendering application can speed up the assessment of de-
sired features in a scene. Adaptive rendering offers an ex-
tensive field of research for possible priority functions and
their impact on image quality. Since the effects of complex
formulas do not necessarily outweigh the corresponding
overhead, the development of new, efficient priorities re-
quires profound research and sophisticated methodology.
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Figure 9: We calculate the mean squared error by subtract-
ing snapshots of the rendered scene generated at regular
intervals from the ground truth and evaluating the differ-
ence of pixel values. Prioritization of pixel patches that
return ambiguous color values leads to improved results
for our second test case.
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Abstract

One of the areas of realistic image synthesis is in mod-
eling cameras. The goal is to provide a visual cue with
depth of field and to achieve a photographic look with
bokeh (out-of-focus highlights), tilt-shift and optical aber-
rations of real-world lenses. We provide a comparison of
existing methods and fundamental approaches for depth-
of-field rendering, including the recent methods, such as
the image-based ray tracing. We propose a novel repre-
sentation of ray transfer within complex lenses suitable for
optimizing the ray generation. The open problems in this
research area are presented along with sketches of possible
solutions.

Keywords: Depth of Field, Lens, Photorealistic Render-
ing

1 Introduction

One of the areas of photo-realistic image synthesis is the
image capture via camera models. Both human eyes and
photographic cameras naturally depict some parts of the
scene sharply while the rest is gradually blurred. It helps
the viewers perceive the spatial arrangement of the scene.
Simulating this depth of field as well as other effects
caused by more or less complex lens systems in a phys-
ically plausible way helps in achieving more realism in
rendering.

The paper is structured as follows: In chapter 2 we in-
troduce the desired effects and the camera models used in
photo-realistic rendering. Chapter 3 summarizes the most
important approaches and methods for depth-of-field ren-
dering and makes a comparison. In chapter 4 we propose
a novel representation of ray transfer within complex lens
systems. And finally the major open problems we found
in this area are presented in chapter 5.

∗bohumir.zamecnik@gmail.com
†alexander@wilkie.at

2 Camera models

In order to make useful images of a radiance field in the
scene we use models conceptually based on real-world
cameras. A camera consists of a sensor and an aperture
or a lens system. The sensor is usually a rectangular grid
of pixels which accumulate the incoming radiance to com-
pute the total radiant energy. The aperture or lens system
limits and/or transforms the rays of light going to the sen-
sor in order to make an image of a part of the scene.

The most basic and widespread is model of an ideal
pinhole with a point-sized aperture. It implements the
perspective projection and produces all-sharp images. In
practice a finite aperture is needed to pass enough light in.
The solution to provide sharp images is in using refrac-
tive lenses able to focus rays emanating from a point in
the scene to a point on the sensor so that a contribution of
multiple light paths can be integrated.

The idealized model of a refractive lens is the thin lens
model. It can be either described by a 1st order approxima-
tion of the Snell’s law of refraction or by a matrix transfor-
mation in homogeneous coordinates. Generally the lenses
trade off allowing more light paths for being unable to im-
age the whole scene sharply. In the thin lens model just
a single plane is sharp, the focus plane, the image of the
sensor plane via the lens transformation.

Basically the sensor plane is perpendicular to the view-
ing direction, the optical axis which intersects its center.
Focusing can be done by moving the sensor back and forth
in the optical axis. The sensor is called shifted in case it
is moved laterally (within the sensor plane) and tilted if it
is not oriented perpendicularly to the optical axis. We call
this the camera configuration.

In contrast to most consumer cameras the older view
cameras and some special or home-made lenses offer tilt-
shift configurations. This enables the photographers to fo-
cus on an arbitrary plane or change the perspective, which
can be useful for artistic purposes.

Points on the focus plane are projected at points on
the sensor, while the rest as sections of the cone of light
through the aperture with the sensor plane. For non-
tilt configurations of the thin lens model the out-of-focus
points are imaged as circles (also called circles of confu-
sion – CoC) which leads to blur.
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The perceived sharpness depends on the spatial resolu-
tion of the sensor. For a fixed camera configuration the
CoC radius as a function of position in the scene makes
up a 3D scalar field. The isosurfaces of this field mark
out the boundary of the depth of field (DoF). By limiting
the maximum blur amount we get a region bounded by the
corresponding isosurfaces and objects within such a region
can be considered in-focus.

The intensity of images of out-of-focus points quickly
decreases with the amount of defocus as the radiant power
is spread over a quadratically larger area. For a very bright
point light its out-of-focus image is clearly distinguishable
and is called bokeh in photographic jargon.

The thin lens model is not capable of producing all the
characteristic effects caused by physical design of real-
world complex lens systems. Due to physical reasons,
technological trade-offs and the usage of real-world ma-
terials such lenses might not be always capable of perfect
focusing. This leads to optical aberrations and geometric
distortions and it also has an impact on the imaging quality
including the bokeh quality.

In optical engineering as well as in computer graphics
the complex lens systems are described by a sequence of
analytical surfaces, their mutual position and materials af-
ter each surface [17, 28]. Predominantly are used spher-
ical caps for lens surfaces and circles or other shapes for
diaphragms. It is the diaphragm shape which affects the
bokeh quality the most.

Other lens properties such as coatings and lens ef-
fects such as lens flare (caused by internal reflections and
diffraction) are out of the scope of this paper. More infor-
mation can be found in [28, 15].

3 Methods of DoF rendering

In the ideal pinhole model the light goes through a sin-
gular center of projection. In contrast, other lens models
allow the light paths to pass through a finite area of the
aperture stop.Thus all depth-of-field rendering algorithms
when solving the rendering equation [16] or its approxi-
mation must additionally integrate the light transfer over
this area.

There are two main approaches how rendering algo-
rithms solve visibility, i.e. deciding which scene primitives
contribute to each pixel and vice versa. They differ in the
order of nested loops over scene objects and image pixels
[12]. Object-based algorithms compute the illumination
for each object for each pixel and image-based ones con-
versely. Scan-line rasterization is an example of the first
approach while ray tracing and its variants of the latter.

Another criterion to distinguish the rendering algo-
rithms lies in the scene representation. Distributed ray
tracing and rasterization belong to the group of rendering
algorithms which operate on geometrically represented
scenes. On the other hand post-processing methods (to-
gether with point-based rendering methods), such as filter-

ing and image-based ray tracing, operate on sample-based
representation of the scene [12], eg. layered depth images
[26].

Most methods make assumptions on the sensor orien-
tation so that it might be hard to extend them to support
tilt-shift configurations. The most flexible in those situa-
tions is the plain ray tracing.

For more detailed information on the various DoF ren-
dering methods and camera models used in computer
graphics the reader should also consult the existing sur-
veys [2, 3, 10, 4, 19].

3.1 Monte Carlo ray tracing

Ray tracing methods estimate the radiant energy going to
a pixel by sampling the radiance along incoming rays. In
general the light transfer is recursively evaluated at the
points of ray-scene intersection. Although the variants like
distribution ray tracing [7], path tracing [16] and others
differ in the strategy of tracing rays while evaluating the
incoming radiance the ray generation is usually similar.
Instead of a singular pinhole a more complex lens model
is added between the sensor and the scene [17, 28]. Since
the light paths have to pass the lens elements in a known
order the complex lens system can be put outside the or-
dinary acceleration structures. See fig. 1d for an example
image from our CPU implementation.

The important thing is that the lens model has a non-
zero area which has to be sampled as well. In theory it is
the image of the aperture stop, the exit resp. entrance pupil
(when looking from the back or from the front). Those two
pupils are defined only for on-axis rays. For off-axis rays
in ideal thin lenses the pupil remains the same and can be
sampled directly. However, in complex lens systems not
only the aperture stop can block the light passage which re-
sults in the view-dependent effective pupil – projection of
the visibility through the lens on a given plane. Sampling
the precomputed effective pupil or at least its bounding cir-
cle leads to decreasing the amount of rays blocked inside
the lens [28] and thus also the image variance. A simpler
but not as efficient technique is to sample the whole sur-
face of the outer lens element.

The circular pupils can be sampled by mapping sam-
ples from a unit square onto a unit circle with a suitable
square to circle mapping [27]. For more complicated aper-
ture shapes this can be combined with rejection sampling.

This approach can give the ground-truth results with no
artifacts other than noise and it is thus considered the ref-
erence one.

3.2 Multi-view accumulation

The multi-view accumulation method [13] is based on the
observation that each view through a single point on the
entrance pupil of a thin lens is equivalent to some pin-
hole projection with an off-axis frustum [6]. Those pin-
hole views can be then rasterized by the GPU as usual. By
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Figure 1: Example images from out implementation of various DoF rendering methods. Left to right: (a) image-based
ray tracing with tilt-shift thin lens model, (b) image-based ray tracing handling partial occlusion with bokeh, (c) bokeh in
multi-view accumulation, (d) sequential lens ray tracing with a biconvex lens.

sampling the entrance pupil and accumulating the raster-
ized views the image with depth of field is obtained. The
key for the off-axis frusta construction is that they must in-
tersect each other at the image of the sensor (on the focus
plane).

The original method used the hardware accumulation
buffer (with cca 12-bit integer precision). For accumulat-
ing thousands of views (to obtain correct bokeh) render-
ing to textures (eg. via OpenGL’s Frame Buffer Objects)
with at least 32-bit floating point precision and manual ac-
cumulation is needed [29]. This also allows incremental
rendering where the intermediate results are displayed in
real-time during the longer convergence. See fig. 1c.

The basic method is very simple but is limited to the
thin lens model. Tilted configurations were shown to be
supported in [5], unfortunately without any details, and
are discussed in section 5. An extension to approximate
complex lens systems is described in [14].

Advantages of this method compared to post-processing
methods are that it displays all parts of the scene visible
from the entrance pupil (not only from its center) and the
visibility is already solved (by the z-buffer). A disadvan-
tage is that the entrance pupil is sampled per-image, not
per-pixel, so the convergence is slow.

3.3 Layers and their extraction

Before we can describe the DoF post-processing methods
themselves we need to learn more about their input data.

In a pinhole image (perspective projection) only the
parts of the scene which are directly visible from the cen-
ter of projection can contribute to the output image. On
the other hand for a lens with a finite aperture even parts
of the scene which are occluded in the central pinhole view
can become visible in other views and thus take part in the
output image. Since both the directly visible and occluded
parts of the scene cannot be represented in a single image,
they must be stored in several layers.

Each image represents a 2D table of samples of the in-
cident radiance function from the scene to the center of
projection. Each sample might be then understood as a
single light source. Except that the sampled color (or pre-
cisely radiance) from the scene is not enough for depth of
field rendering since the effect of a light source on the im-
age also depends on its depth. Thus each layer consists

of a color image and a depth image. Usually the layers
store the results of frustum transformation normalized to
the [0.0;1.0]3 cube.

The sampled radiance is valid only for a single direc-
tion. Assuming that the exitant radiance of scene surfaces
does not vary too much when changing the viewing direc-
tion a little the sampled radiance can approximate the true
radiance from another viewpoint (on the front element of
the lens) quite well. This problem can be solved with de-
ferred shading [20] where surface properties are sampled
and radiance from given viewpoint is computed later.

There are two approaches in extracting layers from the
scene – depth interval layers [25, 1] and depth-peeled lay-
ers [11] – each with its pros and cons.

In depth-interval layer extraction the scene is divided
into disjoint intervals of depth and each layer contains the
surfaces visible in that layer. This results in that the whole
images are ordered by depth which could be exploited in
some methods.

On the other hand depth peeling [11] produces layers
where each pixel is ordered by depth independently. The
first layer contains what is visible directly, the second what
is hidden after the first layer and so on. This results in
fewer layers, since the number of layers is limited only by
the depth complexity of the scene. The difficulty is that a
patch of pixels from one surface might be interspersed in
many layers.

In general the depth peeled layers provide a more com-
pact representation than depth interval layers, since there
are fewer empty areas. Thus a lesser number of layers is
needed, saving some memory.

The layers can be rendered by a GPU scan-line raster-
izer or with a ray tracer modified with additional depth
checks, resp. taking k-th intersections instead of the first
ones.

For accurate rendering of strong bokeh it is necessary
that the color images in the layers are HDR images, eg.
represented with floating-point numbers. The resulting
output image might be then tone-mapped to LDR.

3.4 Image-based ray tracing

A recent technique to accelerate depth-of-field rendering
via a combination of rasterization and ray tracing is the
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image-based ray tracing [20, 21]. The main idea is to ras-
terize a part of the scene visible from the lens and use it
as a sample-based representation of the scene for the ray
tracing stage. Shading of the visible scene objects is done
once and then reused for the views from the many lens
samples. Thus the time complexity of the ray tracing stage
depends on the image resolution not on the scene complex-
ity. From this point of view the method is most suitable for
very complex scenes.

Since the rasterization hardware only supports the ideal
pinhole model the view-dependent scene representation is
based on a single image from the center of the entrance
pupil with the field of view approximated from the original
lens model. From the other sample points on the entrance
pupil might be visible some parts of the scene ”around the
corner”, so that several layered depth images have to be
extracted. The layers contain both color and depth images
which are afterwards treated as height-fields and can be
intersected instead of the original scene objects.

The two methods differ in the kind of layered depth
images used, [20] works with depth-interval layers, while
[21] is based on depth-peeled layers. Properties of the lay-
ers further determine the algorithms such as height-field
intersection or layer extraction and possible camera mod-
els. We will describe the second approach. Example im-
ages from our GPU implementation of this method can be
seen in fig. 1a and fig. 1b.

First the perspective frustum from the entrance pupil
center needs to be found, which will be used for sampling
the scene into the rasterized layers. For non-tilt configura-
tions and the thin lens model the sensor image defines the
frustum shape. Similarly for a shifted sensor an off-axis
frustum is constructed. For a tilted sensor a technique ref-
erenced in chapter 5 might be used. More complex lenses
have to be approximated by thin or thick lens models for
this purpose.

Having the frustum matrix the layers can be extracted by
depth peeling [11]. Compared to the original method the
depth peeling process is easier on current hardware since it
is possible to utilize floating-point render textures and pro-
grammable shaders. In short, in each iteration the previous
layer’s depth image is utilized as a secondary z-buffer with
an additional depth test to discard the nearer geometry. In
practice the depth peeling code can be prefixed to ordinary
material shaders. OpenGL’s Array Textures can be used
for storing the layers. The depth images can be stored sep-
arately, packed by four channels into one image for more
efficient texture lookup later.

The ray tracing stage then consists of ray generation,
intersection with the height-field layers and color accumu-
lation. In case the GPU does not support random num-
ber generation we need to provide them in a texture. In
practice we tried a 3D texture of size 642 ×N samples
(where N is the number of samples of a single pixel) with-
out excessive artifacts from tiling. The chosen area on the
lens should be sampled and the ray transfer within the lens
model evaluated as in the ordinary Monte Carlo ray trac-

ing. The rays need to be transformed by the frustum matrix
to match the space of the height-field layers.

In the depth-peeled layers we cannot assume that the
height-fields are continuous or in disjoint depth intervals.
A robust technique for intersecting such height-fields is
per-pixel traversal of the ray footprint, ie. the pixels under
its orthographic 2D projection, along with a robust inter-
section test. The 2D version of the DDA algorithm for
voxel traversal can be used with some modifications for
more robustness in singular cases [29]. Since we treat
the height-fields with nearest-neighbor interpolation the
intersection tests must be extended by some epsilon tol-
erance. To reduce memory bandwidth the depth layers can
be packed and the intersection test must be modified to
work with 4-component vectors.

Several acceleration techniques have been proposed in
the original method [21]. First, some geometry does not
need be extracted into the layers since it can be shown that
it is not visible from any point on the entrance pupil. This
extended umbra depth peeling technique can lead to a high
speedup, but on the other hand it assumes the thin lens
model and makes the height-field treatment more compli-
cated due to the introduction of undefined values. Sec-
ond, the ray footprint traversal can be accelerated by it-
eratively clipping the ray extents with the knowledge of
minimal and maximal height-field values under the ray
footprint. Those values can be efficiently evaluated by N-
buffers [9] constructed from the depth layers. Also the
N-buffer queries can be done for multiple rays at once.

3.5 Filtering

The filtering approach is based on the concept of point
spreading function (PSF) known from Fourier optics
where the lens system is considered a linear system. The
PSF is an impulse response of the system to a point light.
Then the image on the sensor is given by the convolution
of the exitant radiance function of the scene with the PSF.
However, the model assumes no occlusion, so the visibil-
ity has to be solved by other means. Also the PSF is non-
constant and depends many factors. When neglecting the
wave-optics effects like diffraction the PSF is mostly af-
fected by the aperture stop shape and directly influences
the appearance of bokeh.

Most of the methods for interactive depth-of-field ren-
dering are based on the convolution of some PSF kernel
with a sample-based scene representation – a rasterized
pinhole view. Many of them lead to physically incorrect
results and artifacts. One reason is the lack of solving vis-
ibility, the other is in using some PSF kernels with an in-
appropriate convolution method.

It has been recently shown that for convolution with
spatially varying kernels there is a difference and duality
between gathering and spreading filters [19]. The image
formation corresponds to spreading filters and using those
PSF in the gathering context causes major artifacts (and
vice versa).
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For some restricted classes of PSFs there exist accel-
eration techniques (fast spreading filters) for reducing the
convolution complexity from O(n2) to O(n) or even O(1)
with respect to the rasterized kernel radius [19].

The visibility in context of filtering is usually solved by
representing the visible part of the scene with multiple lay-
ers and alpha compositing them after being filtered. Since
the layers are rendered by another technique such as ras-
terization or ray tracing the filtering methods are denoted
as post-processing methods.

3.6 Comparison of ray tracing and filtering

We can compare the two approaches to DoF rendering.
Ray tracing methods solve visibility correctly but have
problems with optimal sampling. Filtering methods of-
fer optimal sampling but have difficulties with solving the
visibility within scene (occlusion).

Getting a large CoC sampled properly in ray tracing re-
quires many samples to reduce noise to tolerable levels,
while for in-focus areas a single sample might be suffi-
cient. Unfortunately, for a given pixel on the sensor we
are not aware of a method of efficiently generating lens
rays ordered by decreasing contribution of light intensity.
Eg. importance sampling successfully employed in image-
based lighting [24] cannot be readily used due to possibly
complex ray transformations within the lens and limited
scene visibility from a pixel.

On the other hand spreading filters can rasterize the PSF
according to the sensor resolution, spreading the light ex-
actly to the affected pixels without noise present in Monte
Carlo methods. The cost is that occlusion has to be solved
by other means.

Another view is on supported PSFs. Ray tracing meth-
ods can support arbitrary lens models with various PSFs,
but have to evaluate the propagation of rays in the lens sys-
tems which might be costly. Filtering methods are limited
by the complexity of PSFs and their efficient representa-
tion, evaluation and spreading.

Ray tracing of the original scene and multi-view accu-
mulation has also the advantage over image-based meth-
ods that they provide implicit anti-aliasing via multi-
sampling. Methods working with discretized images
eg. have no information of exact position of a highlight
smaller than a pixel. Thus a bokeh pattern from such a
highlight might be slightly translated in the image-based
methods compared to more accurate results of the multi-
sampling methods. Also CoCs from light sources outside
the pinhole field of view might be missing there.

4 Complex lens representation

An ideal thin lens can be fully described just by its fo-
cal length and its aperture stop (a circle, polygon, raster
bitmap, etc.). For real-world complex lens systems typi-
cally a simplified representation must be given. The tradi-

tional representation is followed in [17, 28] – a sequence
of spherical caps or planar stops and subsequent materials.
The ray transfer is evaluated by sequential ray tracing with
analytical intersections and refractions. The complexity is
O(n) with respect to the number of elements. Given an
incoming ray it is either transformed into an outgoing ray
or absorbed inside the lens.

We present a conceptually novel representation of ray
transfer behavior of lenses. Rays can pass through a lens
either from front to back (along the optical axis) or in the
opposite direction, this corresponds to forward and back-
ward ray tracing. The ray transfer in either of the two
directions can be treated as a mathematical function, a
lens ray transfer function (LRTF), which maps incoming
rays to outgoing rays and which is defined only for rays
that pass. A single lens system can be described by vari-
ous LRTFs depending on the particular parametrization of
rays.

An LRTF can be defined either implicitly and evaluated
procedurally as in sequential ray tracing or it can also be
sampled into a table and evaluated approximately by inter-
polation. The ray transfer can be then evaluated in O(1)
time with respect to the number of lens elements. Precom-
putation of the LRTF can be utilized for optimizing the ray
generation in both real-time and off-line rendering. An-
other benefit is the lack of need for specialized intersection
routines for different types of lens elements in the evalu-
ation stage. An interesting possibility is in measuring the
ray transfer function from real world lenses without being
aware of the internal design!

Given some assumptions we propose one of the LRTF
parametrizations which we find useful. A ray in the 3D
Euclidean space can be parametrized by a 3D position and
a 3D direction. For the direction there are in fact only two
degrees of freedom (eg. when using spheric coordinates).
Similarly the ray position can be related to the outer sur-
face of the lens which is assumed to be a smooth finite 2D
surface (rays that do not intersect it cannot pass through
the lens). The rays (both incoming and outgoing) can be
thus parametrized by four parameters in total.

From the many possible ways of parametrizing the ray
position we have chosen the hemispherical coordinates of
the ray intersection with the bounding hemisphere over the
aperture of the outer lens element surface (eg. the base cir-
cle of a hemispherical cap). It is independent on the exact
shape of the outer lens surface and can be constructed even
when only the aperture radius of the outer lens surface is
known. Rotation around the optical axis is simple. The po-
sitions of the front and back lens apertures on the optical
axis should be taken into account in the transformations
for the bounding hemispheres.

In this parametrization we assume the range of ray di-
rections is limited to a hemisphere pointing outwards from
the lens. This should be no problem for the majority of
lenses except for some fish-eye lenses. The obvious way
to represent ray directions would be spherical coordinates,
but their drawback is a singularity at the pole which results
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in poor sampling of the most important region.
It is better to transform the point on the unit hemisphere

(direction) to a unit circle via stereographic projection [8].
The rotation around the optical axis is still easy and the
projection is without a singularity.

We define the ray direction to be represented relatively
to the intersection position (the position on the unit circle
is merely rotated). We can then denote the parametrized
ray as (θ ,φ ,sx,sy), where θ and φ are declination and
azimuth of the position and (sx,sy) are stereographic co-
ordinates of the direction; θ ∈ [0; π

2 ];φ ∈ [0;2π];sx,sy ∈
[−1,1].

It can be shown that for lenses rotationally symmetric
around the optical axis the LRTF in this parametrization
is also rotationally symmetric. In particular if we denote
the LRTF as L it holds L(θ ,φ ,sx,sy) = L(θ ,0,sx,sy) +
(0,φ ,0,0). This can be exploited to reduce the sampled
table dimension to three, with the values remaining a 4-
vector.

For the purposes of evaluating the function values from
3D texture we can rescale the parameter ranges to [0;1]. In
case of ray absorption the LRTF is undefined and this can
be represented with a special value; to minimize disconti-
nuities (1,0,0,0) might be a good candidate.

In summary, the ray transfer through a complex lens
system might be described by a sampled LRTF table, radii
of the front and back lens element apertures and their dis-
tance along the optical axis. The LRTF table can be pre-
computed and then utilized to speed up the ray generation
phase of ray tracing. A ray has to be procedurally trans-
formed to the parametric form before the LRTF evaluation
and back to the standard form afterwards. The concept
maps well to the current GPU architectures as each sam-
pled function value can be precomputed in parallel and the
evaluation is based on texture lookup and interpolation, the
most optimized operations on a GPU.

5 Open problems

Depth of field How to define blur amount and depth of
field for tilt-shift configurations? For thin lenses the CoC
might be of an arbitrary conic section shape (including
infinite-size hyperbolas).

Multi-view accumulation Although it was shown that
this method can be extended to support tilt-shift config-
urations [5] no details were provided. We found the key
is still that the frusta from the lens sample point intersect
at the image of the sensor which is a general quadrilateral.
In order to obtain a rectangular frustum for rasterization
a proper orientation of the near plane must be found. A
promising way of finding the correct transformation ma-
trices is described in a method from the computer vision
area [23].

The method approximating the image from a complex
lens system with many blended pinhole views [14] should

be tested again on the modern hardware and compared
with the other methods. Anyway, it would probably have
similar limitations as the original multi-view accumula-
tion.

Image-based ray tracing A single pinhole frustum
might not contain all parts of the scene visible from other
viewpoints on the lens. This might be a problem especially
for very wide angle lenses and also for near objects. The
conditions when the error is significant should be exam-
ined.

The depth-interval layer decomposition is dependent on
the CoC size which is well-defined only for non-tilt con-
figurations. Given a blur metric for tilt-shift configurations
could the method with this kind of layers produce correct
results?

Obtaining layered depth images via ray tracing instead
of rasterization in the depth-peeling phase should be ex-
plored. The sampled scene representation would still al-
low cheaper intersections for large scenes and rendering
the layered depth images would be simpler for tilted con-
figurations as there would be no need for computing suit-
able frustum matrices.

Lens ray transfer function Better parametrizations of
the LRTF should be given. The one proposed here is lim-
ited by the range of ray directions and might waste some
memory with larger undefined areas. As for the range of
directions on a spherical cap larger than a hemisphere the
stereographic projection is general enough to produce just
a larger circle which can be rescaled to the unit size.

Also the practical LRTF application to accelerate ray
generation in a ray tracer should be measured for accuracy
and performance.

The LRTF might be measured from real-world lenses
for which a method and an apparatus need be constructed.
This could allow eg. to match the lens characteristics of a
real film footage with synthesized images without know-
ing the exact internal lens design.

By changing the aperture stop size or shape only the
domain of the LRTF is affected not the values. Thus a
variable-sized diaphragm even with an asymmetric shape
could be represented outside the LRTF table. Also the
properties of the LRTF domain might be exploited for a
more compact representation (eg. a boundary of a compact
region).

Does the LRTF provide enough information for lens
flare rendering or what additional information is needed
to produce correct results without having the original lens
design?

Can the LRTF model be extended to support movable
element groups (zoom lenses, focusing by group move-
ments) without an excessive memory usage?

Currently, this LRTF parametrization assumes ray trans-
fer at a single wavelength which would lead to a lack of
chromatic aberration. Would it be possible to exploit some
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coherence to support wavelength dependence without in-
creasing the dimensionality of the precomputed LRTF ta-
ble?

Rendering with wavefront aberrations was shown in the
filtering approach [1]. Could they be used to represent ray
transfer in complex lenses? As the list of Zernike polyno-
mial coefficients directly represents the amount of the var-
ious optical aberrations this representation might enable
modifying the behavior of existing lenses and synthesizing
new ones without the need to have a geometrical design.
Also the memory consumption could be quite low.

Lens sampling Sampling of the effective pupil of com-
plex lenses should be revised for real-time rendering. In
[28] the pupil is precomputed for each pixel on the sensor
which is valid only for a single sensor plane. A more com-
pact representation of an approximate effective pupil func-
tion for an arbitrary sensor plane should be explored, along
with its precomputation and usage for sampling. The as-
sumption of rotation symmetry can again be used for di-
mension reduction.

Filtering and PSFs The usage of PSFs of complex lens
systems with filtering methods (representation, precompu-
tation, evaluation, etc.) should be further explored.

The comparison of the fundamental approaches leads to
a question for a hybrid method of ray tracing and filter-
ing which would offer optimal sampling while computing
visibility easily. One of the possibilities might be in mod-
ifying the PSF kernel on the fly – invisible parts (decided
by ray tracing) would be ”cut off” from the rasterized PSF
kernel, then it would be differentiated and spread.

Is it possible to modify spreading filters to work with
physically correct PSFs of tilt-shift configurations? Note
that the rotated sensor plane may result in infinite conic
section PSFs even for a simple thin lens and also the ra-
diometric situation with natural vignetting is more com-
plicated.

Can PSFs in polynomial spreading filters be represented
by orthogonal polynomials (eg. Zernike polynomials) with
strictly limited values in order to suppress numerical pre-
cision problems?

It should be verified whether fast spreading filters are
really compatible with solving visibility by per-pixel lay-
ers using depth-peeled image layers. Their advantage is in
requiring fewer layers compared to depth-interval layers.
Per-pixel layers [22] seem to be suitable for spreading fil-
ters since in the original method a kind of spreading was
done, albeit by different means. Unfortunately, [18] only
mention per-pixel layers without providing details whether
they in fact used per-image or per-pixel layers.

Per-pixel layers do not seem to be fully compatible with
precomputed rasterized PSF differences since some per-
pixel computations has to be made. Note that for decid-
ing the output for a pixel of the rasterized CoC we need
to know the source and destination pixel depths. The in-

formation on source pixels cannot be restored during the
phase of spreading of PSF differences. A way to combine
those two methods which seems to be possible is the fol-
lowing procedure:

1. take the original rasterized PSF

2. for each of its pixels make decision to which output
layer it should go, which produces three clipped PSFs

3. differentiate each of them

4. spread each of them into the corresponding layer

Ie. spreading could be done after deciding the output layer
and for each part of the PSF separately.

6 Conclusion

In this paper we have presented the various approaches to
interactive physically-based depth-of-field rendering and
compared them in several aspects. We have proposed an
alternative representation of the ray transfer behavior of
complex lens systems which might be useful for accelerat-
ing the ray generation in ray tracing methods. Most impor-
tantly we have shown many open problems in the area of
rendering with complex camera models which could serve
as a basis for further research.
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Abstract

Computer vision algorithms typically process real world
image data acquired by cameras or video cameras. Such
image data suffer from imperfections caused by the acqui-
sition process. This paper focuses on simulation of the
acquisition process in order to enable rendering of images
based on a 3D generated model that are as close to the
images acquired by cameras or video cameras as possi-
ble. Its main purpose is simulation of video input for com-
puter vision applications, e.g. robot navigation. Imperfec-
tions, such as geometry distortion, chromatic aberration,
depth of field effect, motion blur, exposure automation,
vignetting, inner lens reflections, and also imperfections
caused by image sensor features are considered.

The paper, besides description of imperfections of the
acquisition process and description of imperfections si-
mulation, also presents results of the simulation software
through illustrative figures produced by the software.

Keywords: Camera Imperfections Simulation, Depth of
Field Effect, Distortion, Motion Blur, Vignetting, Lens
Flare, Image Sensor Features

1 Introduction

Computer vision is a field of computer graphics that al-
lows for acquiring, analyzing, and understanding images.
An input of computer vision algorithm is a set of images,
which are typically captured by camera or video camera.
An output is a symbolic information, e.g. information
about identity of subject in the image or any other valu-
able information. Input images are not perfect copies of
the reality since they are affected by many camera features.
A ”perfect” image of the real world is modified and cam-
era features add imperfections to the image. The imper-
fections strongly influence success of the algorithms, so
in general, the algorithms need to take into account these
imperfections.

Implementations of computer vision algorithms in real
world application work with images or sequences of im-

∗xkucis00@stud.fit.vutbr.cz
†zemcik@fit.vutbr.cz

ages, which are usually captured by a camera. Such can
be e.g. a security camera or a robot camera. Also, the
implementations have to be trained and tested on a set of
images. The more similar the test images and the images
captured in the real world application are, the more precise
the results of algorithms are.

The best way to acquire similar data is to use a camera,
which would be used in the real world application. How-
ever, this option is often either expensive or unavailable.
The second option is to use a dataset of images, which was
acquired by a different camera or cameras. The images
would be affected by different camera imperfections, so
the result would be worse. The third option is to generate
data by computer and use it as input images. The gene-
rated images and dataset of images are generally cheaper,
but the results of such solution would be worse as well.

A good way how to get better results is to modify com-
puter generated ”perfect” images to look similar to the im-
ages created by a target device. This paper describes a si-
mulation method for acquiring target device like images.

2 Related work

No complex simulator with all the desired features was
known up to the date, but there are relatively many pub-
lications that describe the camera features and simulation
methods for some of the features [4, 5, 8, 10].

Distortion is a general problem of lenses. Measurement
and correction of the distortion are described in [12]. Si-
mulation of distortion is just a reversed process. Detection
and elimination of a chromatic abberation (a form of dis-
tortion) is shown in [5].

Depth of field effect problem is widely explored. Many
algorithms that simulate the effect are known. Basic de-
scription of these methods can be found in [3, 6, 10]. De-
tailed description of the interactive depth of field diffusion
method is described in [2]. This method is interesting be-
cause it does not suffer from some problems that appear in
the other post-processing methods.

Many camera sensors capture color images using a color
filter array. Description of this feature and its effect to the
output is described in [11]. Another problem of the sensors
is noise. Noise evaluation of CCD sensors is shown in [9].
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Characteristics of many cameras and sensors are described
by EMVA Standard 1288 [1].

3 Description of simulation

The proposed algorithm consists of application of several
effects, which simulate the described features. All the si-
mulated effects are described in the following sections and
every one can be adjusted by using parameters. Default or-
der of the effects application is shown in Figure 2. (In the
implemented software, the parameters of the effects and
their order are described with configuration file.) Input
of the simulator is a (high-dynamic range) color image, a
depth map, and an environment map. The color image is
a ”perfect” image that will be modified by the simulator.
The image is shown in Figure 1. The depth map defines
distance between a pixel in real world and a camera. This
map is used by the depth of field effect and the motion blur
effect.

Figure 1: Input color image; this image is modified by the
simulator

4 Lens features

This section describes lens features: distortion, chromatic
abberation, vignetting, and lens flares. The camera lens is
an optical system that affects more phenomena like spheri-
cal aberration, astigmatism, coma and more, but in general
their influence in the camera lens is not considered or it is
rarely considered. Therefore, we have not included these
phenomena.

4.1 Distortion

The camera image is a 2D-projection of the real world. In
optics, distortion is a deviation from rectlinear projection.
This projection guarantees straight lines remain straight
after the projection.

Figure 2: Algorithm of the simulation. The effect ’Blurs’
links up depth of field effect, motion blur, and structural
blur. The effect ’Sensor features’ links up noise and color
filter array.

The most commonly encountered distortion is radially
symmetric distortion. This type of distortion arises from
the symmetry of the camera lens and the symmetry of the
camera optical system. In this case, the distortion can be
simulated by the radial distortion model. The radial dis-
tortion model uses 6-7 real-valued variables which specify
the distortion. [12] contains a description of this model.

Radial distortion model can be expressed as:

rd = f (r), (1)

where: rd – destination distance of input pixel position
r – source distance
f – distortion function

If the distortion is not symmetric, it cannot be simulated
by the radial distortion model. In that case, warping is
used that as described in [7, 14].

The distortion simulation uses a 2D filter to remap the
input pixels to the output pixels. For better results, we use
the Lanczos filter in the current version.
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4.2 Chromatic abberation

Chromatic abberation is a type of distortion in which the
lens is not able to focus all colors to the same convergence
point. This distortion is caused by different refractive in-
dexes for different light wavelengths. The distortion is
mainly observed in the edges between a bright light and
a shadow.

The abberation can be simulated by modification of the
distortion model. Every color channel of the input image
is deformed by a slightly different distortion. The result
is a color contour in the edge of the bright and dark areas.
The abberation is radially symmetric. Therefore, it can be
implemented by radial distortion model and also by warp-
ing.

We simulate the abberation by:

r′color = fcolor(r), (2)

where: r′color – distance between the output pixel po-
sition and a center of the image

r – distance between the input pixel and
the center

fcolor(r) – central distortion model for color

4.3 Vignetting

Vignetting is a reduction of an image’s brightness at the
image periphery. The vignetting is mainly radially sym-
metrical, but rarely it can be also radially asymmetrical.
The simulation of this feature is straight-forward. Pixels
of the input image are multiplied by the pixels of a vi-
gnetting mask image. The vignetting mask is defined by
the used camera and can be obtained by measuring. It can
be measured in a scene where only one solid color occurs
(e.g. a white paper). In this case, an image brightness
is the vignetting mask. The example of the vignetting is
shown in Figure 3.

Vignetting is calculated as:

B(x,y) = m(x,y)S(x,y), (3)

where: B – output image
m – vignetting mask
S – input image

If it is centrally symetric vignetting, m is computed:

m(x,y) = m′
(

4
(x− sx/2)2 +(y− sy/2)2

sx2 + sy2

)
, (4)

where: (sx,sy) – image size
m – vignetting mask

4.4 Lens flare

Lens flare is an unwanted light in lens system caused by in-
homogeneities in the lens. The source of the lens flare are

Figure 3: Vignetting; the corners are darker than the center

unwanted internal reflections or scattered reflection inside
the lens. It is difficult to describe all phenomena and their
effects to the output image due to complex construction of
the lens. Every lens creates different artifacts. Even the
same type of the lens can create different artifacts under
different conditions. In addition, the different position of
the light source in the image can create different artifacts
as well.

Lens flare manifests itself as a haze across the image or
as visible artifacts. The haze can be simply simulated by
adding color to all pixels in the image. The visible artifacts
can be caused by a reflection on the aperture, inner reflec-
tions in the camera lens, refraction on inhomogeneities in
the lens etc. Bright light source can create a star or can be
mirrored etc.

A simple simulation of the lens flare artifacts is shown
in Figure 4. We simulate this effect in following way:

B = S∗K, (5)

where: B – output image
S – input image
∗ – convolution
K – convolution kernel

In Figure 4, a mirrored ghost is shown in the red circle.
The ghost is created by:

B(x,y) = S(x,y)+αxyS(sx− x,sy− y), (6)

where: B – output image
S – input image
αxy – intensity of the ghost
(sx,sy) – size of the image

5 Aperture features

This section describes the simulated aperture features that
affects the output image. It describes mechanisms of the
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Figure 4: Lens flare effect; a bright light causes lens flare,
the mirrored ghost of the light is shown in the circle

aperture adaptation and depth of field effects. This section
also describes structural blur. This imperfection is not an
aperture feature, but it can be simply simulated by a modi-
fied depth of field effect.

5.1 Aperture adaptation

Image brightness is influenced by three parameters in the
real world application: an exposure time, a film speed and
a f-number. The exposure time affects the motion blur.
The film speed affects the sensor noise. The f-number de-
scribes a radius of the aperture. Moreover, the f-number
affects the depth of field effect. With growing f-number,
the depth of field effect becomes more visible (we sup-
pose the f-number in form f/1.2, f/2, etc.). To calculate
the output pixel color, we use these parameters in the fol-
lowing equation:

yi j = xi j c
t s
b2 , (7)

where: yi j – output pixel color
xi j – input pixel color
c – constant
t – exposure time
s – ISO film speed
b – f-number

The aperture adaptation calculates the f-number to get
equal average grayscale value of image and middle gray.
Middle gray is the universal measurement standard in pho-
tographic cameras and it stands a tone that is about half
way between black and white. We compute an average
image brightness by:

yavg =
∑i ∑ j wi j xi j

∑i ∑ j wi j
, (8)

where: yavg – average color
x – input image
wi j – weight of the pixel

In general, pixels of our interest, e.g. in the center of the
image, have bigger weight than the other pixels.

We implement two ways of adaptations. First one is in
form:

bnew =
√

yavg, (9)

where: bnew – f-number
yavg – average color of the image

The second method works iteratively. The drawback
is, that the whole simulation has to be performed multi-
ple times to get a valid f-number. On the other hand, the
method usually converges to the true f-number. In addi-
tion, this method allows separate computation of average
color and adaptation. The average color can be computed
from the simulation input or the simulation output. This
method is performed via a PID controller. The controller
calculates an error value as the difference between the ave-
rage color and the middle gray and it adapts the f-number
to minimize the error. The formula is:

bn = bn−1 +K p
√

en +Ki
n−1

∑
j=0

√
e j, (10)

where: bn – n-th f-number in the iterative computation
K p – proportional gain
Ki – integral gain
en – difference between the middle gray and

the average color with f-number equal bn

5.2 Depth of field effect

Computer graphics methods for 3D scenes rendering typi-
cally use a pinhole camera model. The model leads to ren-
dering entire scene in perfect focus. An image in the real
world application is formed in an optical system where the
light from a point in the scene converges at only one depth
behind the lens. This depth is not necessarily equal to the
sensor depth (Figure 5). The point in the real world ap-
pears spread over a region in the image. The region is
called the circle of confusion (CoC). A computation of
the circle of confusion is described in [3]. Simulation
techniques of depth of field effect can be divided into ob-
ject space methods and image space methods. The ob-
ject space methods operate on a 3D scene representation.
In general, the object space methods create more realis-
tic results than image-space methods. The image-space
methods operate on a 2D image of the scene. The image-
space methods are postprocessing filters. The image is
blurred with the aid of a depth map.

The simulator processes only 2D images, thus we are
just interested in the image-space methods. We use two
methods. The first method is based on the 2D linear filter
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Figure 5: A point in the scene is projected as a disc on the
image sensor plane, leading to depth of field effects

and it is called ”Reverse-mapped Z-buffer depth of field”.
This method is shown in [6]. We use:

B(x,y) = ∑
i

∑
j

ps f (x,y, i, j)S(i, j), (11)

where: B – output image
S – input image
ps f – point spread function

The ps f function is a point spread function, which relies
on the circle of confusion computation.

The second implemented method is the depth of field
using simulated diffusion (Figure 6). This method is based
on principles of heat diffusion in an anisotropic environ-
ment. The algorithm is performed in two separate phases.
In first phase, the diffusion is performed for each separate
line. We create following equation for every pixel in the
line:

yi− xi = βi+1(yi+1− yi)+βi(yy−1− yi), (12)

βi = min(CoC2
i−1,CoC2

i ), (13)

where: CoCi – circle of confusion for i-th pixel
xi – i-th input pixel
yi – i-th output pixel

We get system of the equations that describes diffusion in
the line. Then, we compute diffusion for every line of the
image. In second phase, we compute diffusion for each
column in the same way. This method is described in [2].

5.3 Structural blur

A perfect lens is able to project a point in the real world to
an image point. A real world lens is not able to focus a real
world point into an image point; therefore, the image of the
point is blurred. We call this phenomenon the structural
blur. We simulate this feature by modification of the depth
of field effect computation. We just substitute circle of
confusion computation by a structural blur ratio. Output
of the structural blur is shown in Figure 7.

Figure 6: Depth of field effect; the camera is focused to
the roof

Figure 7: Structural blur effect; the corners are more
blurred than the center

6 Motion blur

In real world application, when a camera creates an image,
the scene captured by the camera is not always static.
Changes in the scene during the exposure are recorded to
the image. Moving objects are blurred along their relative
motion. This effect is called motion blur. Motion blur can
be also caused by a camera motion. In such case, moving
objects can be blurred and static objects must be blurred
(the blur occurs along the change of the camera’s view-
port). An example of motion blur is shown in Figure 8.
Motion blur is affected by the exposure time. Longer ex-
posure time causes bigger blur effect.

The simulator expects to get input images representing
of static scene with no motion blur even if the objects are in
motion. The simulator uses fullscreen motion blur based
on the algorithm in [13]. It allows us to simulate a camera
motion.
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Figure 8: Motion blur; the motion of the camera’s view is
simulated

We compute motion blur by a following equation per
every pixel:

out =
1
n

n−1

∑
i=0

S
(

xs + xr
i

n−1
,ys + yr

i
n−1

)
, (14)

xr = xd− xs, (15)

yr = yd− ys, (16)

where: out – output color pixel
n – number of steps
(xs,ys) – source coordinate of motion
(xd ,yd) – destination coordinate of motion
S – input image

7 Sensor features

An output image is influenced by a sensor and its features.
These features are noise, non-uniform response, and color
filter array with demosaic filter. There are more features
like blooming and artefacts caused by a transport in the
sensor. In the current version, we simulate noise and color
filter array with demosaic filter. Parameters of these fea-
tures are known for many cameras unlike the other fea-
tures.

7.1 Noise

Image noise is a random variation of brightness in images.
The noise fundamentally limits the distinguishable content
in the images. More information about CCD noise and
evaluation of CCD sensor noise can be found in [9]. Euro-
pean machine vision association has also published EMVA
Standard 1288[1] that describes the method of measure-
ment and description noise of sold sensors and cameras.
Simulated noise is shown in Figure 9.

In current version, we simulate noise the using:

B(x,y) = S(x,y)+ r( f (S(x,y))), (17)

Figure 9: Noise; temporal noise is added to the image

where: B – output image
S – input image
r(i) – random number generator (e.g. Gaussian

deistribution with a standard deviation i)
f – signal to noise ratio function

7.2 Color filter array

Most modern digital cameras acquire images using a sin-
gle sensor overlaid with a color filter array. Each pixel
on a camera sensor contains photo elements. The eleme-
nents are monochromatic light sensitive and they do not
distinguish wavelength of light. The output of the sensor
is monochromatic image. Therefore, a color filter array is
positioned on top of the sensor to filter out the component
of light by the wavelength. The very common filter is the
GRGB Bayer filter.

We simulate color filter array effect in two steps. We
create a color mosaic image:

Bcolor(x,y) = Scolor(x,y) ·Mcolor(x,y), (18)

where: B – color mosaic image
S – input image
M – mosaic mask

The result of the color mosaicing is demosaiced by the
following process:

Bcolor = Scolor ∗Kcolor, (19)

where: B – output image
S – input image
K – convolution kernel
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If we want to simulate GRGB Bayer filter array, we use:

Mred(x,y) =

{
1 if x and y is odd
0 otherwise (20)

Mgreen(x,y) =

{
1 if x+ y is odd
0 otherwise (21)

Mblue(x,y) =

{
1 if x and y is even
0 otherwise (22)

Kblue = Kred =




0.25 0.5 0.25
0.5 1 0.5

0.25 0.5 0.25


 (23)

Kgreen =




0 0.25 0
0.25 1 0.25

0 0.25 0


 (24)

In this case, simulated GRGB Bayer array is demosaiced
by linear interpolation.

8 Conclusions and future work

This paper presents simulation of camera imperfections
applied to computer generated images. The purpose of the
simulation is to get computer generated images with fea-
tures close to the features of images captured by real ca-
meras. Such images can be used for image processing and
computer vision applications testing. Some of the simula-
ted imperfections can also be applied to high quality cam-
era images to simulate output from lower quality cameras.
The simulation of the camera imperfections is complex
and presented solution still can be improved. Some of the
features, such as distortion, chromatic abberation or vi-
gnetting can be simulated successfully. On the other hand,
some others, such as lens flare, are very difficult to simu-
late because every camera has slightly different lenses that
require individual and rather complex model.

Current version of the simulator is capable to process
0.9 frames per second. The test was performed with use of
Intel(R) Core(TM)2 Duo P7350 2GHz on the image with
resolution 640x480. In the future, we will optimize some
of the algorithms, expecting an increase in performance.

Future versions of the simulator will allow simulation of
more features, such as CCD sensor blooming, CCD streak-
ing and more. Future works will also include modification
of noise model. In order to improve the simulation, we
will modify the implementation of the lens flare and we
also will use more complex models of some imperfections.
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nakladatelstvı́ technické literatury, 1959. L16-A-4-
II/6227. (In Czech).

[9] Kenji Irie, Alan E. McKinnon, Keith Unsworth, and
Ian M. Woodhead. A technique for evaluation of ccd
video-camera noise. 2008.

[10] Todd J. Kosloff and Brian A. Barsky. Three tech-
niques for rendering generalized depth of field ef-
fects. In Proceedings of the Fourth SIAM Conference
on Mathematics for Industry: Challenges and Fron-
tiers (MI09).

[11] Xin Li, Bahadir Gunturk, and Lei Zhang. Image de-
mosaicing: A systematic survey.

[12] Lili Ma, Yangquan Chen, and Kevin L. Moore. A
new analytical radial distortion model for camera cal-
ibration. CoRR.

[13] Hubert Nguyen. Gpu gems 3. Addison-Wesley Pro-
fessional, 1st edition, 2007.
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Abstract 
Nowadays, increasing interest in computer graphics leads 
to higher demand for digital 3D models. It motivates the 
research in area of automatic 3D reconstruction. We 
present a system SMISS (Scalable Multifunctional 
Indoor Scanning System) based on structured light 
projection for automatic 3D reconstruction in metric 
space. We address the problem of low dynamic range of 
similar systems, which leads to incorrect measurements 
and we propose a novel approach to scan high dynamic 
range scenes with just a constant increase in scanning 
time using simple additional hardware. Our designed 
method uses the dynamic range of digital projector to 
suppress a scanning scene dynamic range. In result, our 
setup can be used as a flexible tool for future 
improvements of structured light scanning systems. 

 
Keywords: 3D Scanning, HDR, Metrology, 
Reconstruction, Triangulation, Polarization, Multiple 
View Geometry, Computer Vision, Projector, Camera, 
Structured light 

1 Introduction 
The capability of contemporary computers, smart phones 
and tablets leads to an increase in popularity of the 3D 
content, which is now accessible in real time, thanks to 
increasing graphic performance. To satisfy this trend, we 
need a fast and easy enough method for creating the 3D 
content. Manual tools are slow and require skilled and 
trained designers, so there are a lot of methods for 
automatic 3D reconstruction of real objects. For 
extensive overview of methods and systems for 
automatic 3D reconstruction, we recommend [1]. 

For a long period of time, laser scanning has been an 
industrial standard for automatic 3D reconstruction and 
metrology. However, technology leap in modulating light 
trough digital projectors leads to method called 
structured light scanning. This method is becoming more 
popular even in industry, because of its flexibility and 
speed.  

Despite all efforts, a system capable of full 3D 
reconstruction producing physically correct renders is 
still not available. To reach this stage, a lot of problems 

need to be solved. Significant limitation of current 
systems is an insufficient dynamic range for the general 
scene. This limitation is caused by bounded dynamic 
range of a digital camera, which is an essential part of 
structured light scanning systems. In addition, objects 
composed of highly contrast materials are common, 
because of pleasing visual appearance. 

To address consulted needs and to deal with 
commented limitations, we offer: 
• Flexible and easy to use 3D scanner SMISS, based on 

Gray Coded structured light, capable of fully 
automatic point cloud reconstruction. 

• Innovative approach to increase DR of structured 
light scanning systems, using new hardware and 
algorithms. 

• Optical co-axial setup, which can be used for future 
improvements consulted in chapter 8. 

2 Related work 
The first inspiration for our work was caused by a paper 
[2], in which authors created cost-effective system for 
scanning of non-colored objects. They used color coded 
Gray patterns projected by a digital projector and 
captured by a conventional camera. 

Similar principle, the Gray coded patterns, was also 
used in [3], where authors offer tutorial for creating 
simple 3D scanning device. 

Considerable effort has been invested in development 
of phase-shifting methods, we recommend [4], [5].  

In [6], [7] authors separate specular and diffuse light 
components using polarization of the projected light, as 
well as the light captured by the camera. 

Scanning under strong inter-reflection is a topic of a 
paper by [8], where authors use special logically coded 
pattern to negate the effect of short and long range inter-
reflections. 

Similar hardware setup, which we  implement in this 
paper, was also used in [9] for capturing the geometry 
and reflectance and in [10], where authors used 
projector-camera setting as a tool for optical computing 
of matrix vector products in Krylov subspace to 
approximate the transport matrix for relighting. 
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3 Theory 

3.1 Geometry 
Every system based on structured light scanning uses a 
theory from projective geometry, triangulation, pinhole 
camera model, multiple view geometry and 
correspondence between camera and projector image 
space. This knowledge can be found in [11]. 

In our system, we work with analytical model of real 
camera, which also describes a lens distortion. For this 
purpose, the camera and projector have to be calibrated. 
We use method found in [12].  

3.2 Lighting 
During 3D scanning, the captured object is lighted by 3 
types of light. 

Surrounding lighting originates from light sources, 
which do not belong to the system. 

Direct lighting is the part of light energy, which 
leaves projector and is directly reflected to the sensor 
after first reflection. 

Indirect lighting is the remaining radiance measured 
by the camera. It could be caused by additional 
reflections, subsurface scattering and more.  

Image captured by camera can be formalized as an 
addition of these 3 images, corresponding to different 
type of lighting. Surrounding light could be suppressed 
by subtracting frame with projector light turned off. To 
separate direct and indirect (global) components, we use 
[13] method. 

3.3 Structured light 
The structured light reconstruction is based on spatial 
geometrical coding of space trough geometrically coded 
patterns projected by projector. There are 2 main groups 
of patterns, phase shifting and binary. Both are fringe 
patterns. It means that the patterns are 2D images build 
from vertical or horizontal fringes. So in one direction, 
the patterns are constant. In second direction, the patterns 
are defined by 1 dimensional functions. 

In the phase shifting patterns, the 1D function is 
often sinus with specified period. The goal is, to 
determine phase and period number for camera pixels, 
which correspond with part of an object surface lit by the 
pattern. 

The binary patterns consist of fringes. Every fringe 
of the pattern has an index (vertical/horizontal position in 
image). Every index is coded into binary vector, so we 
need a vector size n = log2k, where k is the total fringe 
count (resolution of the projector). Than we construct n 
patterns to code individual bits of binary vectors. In 
practice, the best general binary coding for this purpose 
is Gray mirror coding. For example, projector with 
image resolution 1024x768 has 1024 vertical fringes, so 
we need 10 bits to code the fringe index. This means, we 
create 10 patterns, 1 for every bit of information. We 

offer figure 1 for better understanding. In figure 3, there 
is scanned face under illumination of 3 different Gray 
coded patterns. 

 

Figure 1: Gray mirror patterns for 16 fringes 

HDR 
In this paper, we present a novel method to reconstruct 
high dynamic range scenes. To understand the 
methodology of conventional HDR capturing, we 
recommend the book [14]. 

3.4 Our methods 
In our solution, we develop a method for shadow 
detection and detection of highly reflective surfaces. We 
designed a fast iterative algorithm for compensating 
projector optical distortion. We also made methods for 
decoding Gray binary patterns using direct/global light 
separation, adaptive thresholding and negative image 
comparison. These methods could be found in [15]. 

4 SMISS 
System SMISS is our implemented solution, which uses 
combination of digital camera and projector to capture 
object geometry. It shares the same geometrical 
principles as a two camera stereo setting, but instead of 
one camera, we use a digital projector. You can see 
schematic drawing and our most recent prototype in 
figure 2. 

 

Figure 2: Schematic draw (left) and built prototype 
(right) 

126



 

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed) 

With the projector, we can control the light flow in 
the scene, projecting Gray binary patterns to spatially 
code the space. With the camera, instead of finding 
natural features of the object texture, we decode 
projected information. This means, we just need to 
receive enough information from projector, and we are 
not dependent on the object texture. 

4.1 Calibration 
The first important step in 3D reconstruction is the 

calibration process. In system SMISS, we use our 
designed easy to use calibration method. The whole 
calibration is done at once, using planar check board 
patterns with a known size. The full calibration requires a 
few images of calibration pattern in different position 
and rotation in space. In every iteration of calibration 
process, we found check board corners positions in the 
camera image. We than use Gray binary coded patterns 
to determine corners position in projector image space. 

After the calibration process, we compute intrinsic 
camera matrices for the camera and the projector, which 
is inverse camera model and has the same optical 
principle. We are now able to compute matrix of 
extrinsic parameters to specify relative position and 
orientation between the devices in metric space. 
Calibration parameters are constant, as soon as the 
position of the camera and the projector is fixed and 
optics does not change. 

4.2 Scanning 
After the calibration, the system allows us to start a 
scanning program. The system SMISS implements the 
Gray Binary Code Scanning program, which allows pixel 
precision output. 

In the scanning pipeline, in each iteration, specific 
structured light pattern is projected and the scene is 
captured by the camera under its illumination. 

 

Figure 3:  Scanned face 

The full scanning pipeline consists of capturing black 
frame for surrounding light suppression. Then the 
mentioned method for direct/global light separation is 
used for shadow detection and detection of highly 
reflective surfaces. Camera pixels, which correspond to 
these areas, are omitted from the processing. After this, 
the Gray code pattern sequence is projected.  

In the main loop, we decode the binary vector for 
every camera pixel (1 bit for a frame), which gives us 
correspondence between camera pixels and projector 
fringes. If we consider the image pixels as atomic parts, 
this uniquely defines curved plane (projector fringe 

projection) and line in space (camera pixel projection). In 
our situation, those have 1 unique intersection. The 
coordinates of this intersection defines object surface 
point. 

Whole measurement, with texture information is then 
stored for a future use. 

4.3 Limitations 
To ensure the correct behavior of algorithms, we need to 
set a right camera exposure for the scanning. This means, 
that camera image cannot be overexposed, so we have to 
adjust exposure to fit highest response values. Because of 
bounded camera dynamic range, the low response areas 
of a scene could not be measured correctly (they are on a 
level of noise). For correct behavior, we need a sufficient 
signal to noise ratio for camera pixels. We offer HDR 
image of tripod wheel in figure 4. 

 

Figure 4: HDR camera image values captured with HDR 
SMISS. We use logarithmic mapping for visualization 

Other limitation is caused by inter-reflections. We are 
able to detect highly reflective surfaces and dispose them 
from processing. These highly reflective surfaces, in our 
meaning, are mirror like surfaces or glossy surfaces with 
strong specular component. These attributes cause a 
small dependency on direct reflection and a strong 
dependency on global light reflection. This means that 
these surfaces could be more affected by light reflected 
from surrounding geometry, than by light directly from 
projector. Inverse problem of these materials is caused by 
focus reflection of projector light energy to other 
surfaces. Even if we detect this surfaces in camera image, 
the projector still send light to this surfaces, so those 
affect surrounding geometry a lot. 

5 HDR SMISS 
To address the problem of low dynamic range, we could 
use standard method of more expositions of the camera 
[16]. This method is popular for capturing HDR images 
in photography or for capturing environment maps for 
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relighting. This method has several disadvantages and 
limitations: 
• It needs to be applied for every projected pattern, so 

we would need n-times more frames to gather (n is in 
respect of scene DR). 

• Blooming effect caused by light scattering due to 
imperfect optics and CCD Blooming in highly 
contrast parts of the image. 

• Does not offer solution for problems with reflective 
surfaces. 

To get rid of those disadvantages and limitations of the 
standard method, our innovative solution uses 
combination of camera’s and projector’s DR. During the 
scanning process, in every projectors frame, every pixel 
of the camera image gathers the photons from the same 
area. This area is lighted by a set of projector’s pixels. 

For a camera pixel, let the integral of SVBRDF over 
the pixels corresponding object surface area, the set of 
out-coming angles (reaching sensor) and a set of 
incoming light angles (exiting projector) be γ, which is 
constant over the scanning process. Instead of modifying 
cameras DR, we will change the light energy incoming to 
this area. We will send less light to the area with higher γ 
(high reflective materials), and more light to the surface 
part with lower γ (low reflective materials). This means, 
that the total dynamic range of our system will be the 
product of camera’s and projector’s DR. With this 
method, we will shrink the dynamic range of the scene, 
so it will fit into the camera’s dynamic range. To 
modulate the projector’s light energy, we develop a 
method for creating projector image weight map. 

Moreover, we could send no light to strongly specular 
surfaces to reduce the effect of high frequency inter-
reflections. 

5.1 Projector image weight map 
Projector image weight map consists of floats. It has a 
weight value for every projector pixel, which symbolizes 
the portion of energy to be used for each dedicated pixel. 
This weight map cannot be applied directly, because 
image value in projector image is not in linear relation 
with energy. The mapping between image value and 
energy is described by gamma curve (the power of 2.2 is 
often use in commercial digital projectors). In our 
solution, this mapping is accurately measured during 
calibration. 

This mapping could be specified by bijection g, 
which will map grayscale projector image values to 
values with linear response to the light energy. If the I is 
an arbitrary projector image and W is the weight map to 
be applied. We can compute final projected image as 

I’ = g-1[g(I)*W] 

The star symbol means multiplication per pixel. 

5.2 Creating projector weight map 
We can segment the overexposed and underexposed 
regions in camera image. To create the weight map, we 

need to know the correspondence mapping between 
camera and projector image space. Because, if we want 
to modify response of specific camera pixel, we have to 
choose correct projector pixel (pixels, because of 
aliasing), whose projection illuminates corresponding 
surface point. This correspondence is in general 
equivalent to surface reconstruction.  

Point correspondence between the projector and the 
camera image space is dependent on the scene’s 
geometry in general case. However, there exists one 
special position, in which the correspondence is constant. 
If we put camera in such a position, that camera and 
projector focal points are aligned. 

5.3 Coaxial optical setup 
Physical aligning of focal points is not possible, but we 
can simulate this with right optical solution, using 
beamsplitter and additional camera. The beamsplitter will 
split projector optical axis into 2. We will place new 
camera on optically created axis as it is shown in figure 
5. 

 

Figure 5: Our coaxial optical setup. Bottom camera is 
used for 3D reconstruction (Geometry camera). The 

additional camera is in the left 

Light flow from the projector will be split into 2 
parts. The reflected part needs to be eliminated by dark 
material, because it could possibly be reflected to the 
camera and create a noise. The transmitted part will 
illuminate the scene in the same way as in SMISS. The 
light reflected form the scene will hit beamsplitter. A part 
of it will lighten the projector, but a part of it will be 
reflected to the new camera. 

If the added camera’s focal point is placed to the 
projection of projector’s focal point trough plane 
symmetry defined by beamsplitter plane of reflection, the 
correspondence between camera and projector image 
spaces will be constant and scene independent. 

5.4 Image space correspondence 
When we have our setting, we can calibrate the point 
correspondence between new camera and projector on 
theoretically arbitrary scene, but white diffuse flat table 
is recommended. For this purpose, we project Gray code 
patterns, both horizontal and vertical, so that every 
projector pixel has a unique binary vector code. 
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After this process, we have a mapping from camera 
image space to projector image space. This mapping is 
not injective in general, but we do not need inverse 
mapping. For every pixel of the projector, we count how 
many camera pixels point to it. These connections are 
then weighted accordingly. In practice, the camera 
resolution is often higher than the projector’s. This 
means that more camera pixels could point to the same 
projector pixel. It is possible that some projector pixels 
become unaddressed, because of aliasing. For these 
points, the weight value will be set as an average of 
surrounding.  

This calibration has to be done just once, because the 
correspondence does not depend on the scanned objects.  

5.5 Iterative algorithm 
This algorithm is executed before scanning. Images in 
algorithm are grayscale, and we use real numbers for 
value. In 8-bit image, the 255 correspond to 1 in our 
algorithm. For the camera, we have the default exposure, 
which is set according to the situation. The less 
responsive part of the camera image, which is directly lit 
by the projector (with full power), has to have a signal to 
noise ratio on sufficient level under the default exposure. 
This is because we can just scale down the power of 
projector lighting, so we need the default exposure, under 
which we can capture even the less responsive part of the 
image. We use conventional acquisition of HDR image 
for camera and the response values in this image are for 
the default exposure, so the image values could exceed 1. 
W <- 1 //projector weight map 

I <- 1 //Full white frame 

Projector.Project(g'(g(I) * W)) 

P = Camera.CaptureHDR  

  //Use conventional HDR   method 

do 

  W' <- 0 //new projector weight map 

  foreach pixel in P do 

    s <- 0.5 / pixel.value  

      //scale power to the middle of dynamic 

      //range  

    W'[pixel.correspondence] <- 

      W'[pixel.correspondence] +  

      s * pixel.correspondence.weight 

      //if there are for example 3  

      //connections to pixel.correspondence,  

      //the pixel.correspondnce.weight is  

      //1/3 

  //End foreach 

  Compute weights for unaddressed points in      

    W' from surrounding pixels 

  Gauss(W')  

    //Apply Gauss filter to W' with constant 

    //sigma to compensate aliasing  

  W <- W * W' 

  Projector.Project(g'(g(I) * W)) 

  P = Camera.Capture  

    //Use conventional method 

until P do not contain overexposed points  

  or maximum number of iterations was reached 

After the algorithm ends, the final weight map is used for 
scanning program. In our prototype, we use 3 iterations 
as a maximum. Iterations in algorithm are used for 
adjusting defects of global HDR method. The result can 
be seen in figure 6. 

 

 

Figure 6: Top-left: camera image under constant white 
illumination. Top-right: camera image under projector 
map illumination. Bottom: calculated projector weight 

map 

5.6 Weight map for geometry camera 
We described how to create the projector weight map, 
using additional camera. However, we need the projector 
weight map benefit for geometry camera. If the whole 
scene is built from diffuse materials, than we can use the 
map directly. In reality, the image captured from 
geometry camera can be different, because specular part 
of light is view dependent. 

For this purpose, we use technique for separation of 
diffuse and specular light component using polarization. 
We use linear polarizer to polarize the outcoming light 
from the projector. Let it have s-polarization. This light 
hits the scene. Diffuse like reflection is formed by light 
scattering in material microstructure. This type of 
reflection depolarizes the light polarization. On the other 
hand, the specular reflection maintains polarization, so 
the reflected light has the same angle of polarization, s-
polarization. We have linear polarization filters on 
cameras, also. But the angle of polarization of the 
cameras filters is perpendicular to one in front of the 
projector. These filters transmit p-polarized light and 
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block s-polarized light. This means that the specular light 
component is blocked on polarization filters of the 
cameras. The diffuse part of light reflection, which is 
important for scanning, is un-polarized, so statistically, 
half of the energy goes through polarization filters (30 – 
40 % in practice). 

The technique also scales down the dynamic range of 
the scene, because it removes specular highlights. You 
can see the effect of the method on figure 7. 

 

Figure 7: Scene without and with polarization filters 

After application of this method, we could use our 
generated projector weight map for geometric camera. 

6 Implementation 
We implement the system presented in this paper from a 
scratch, both, hardware and software.  

In our prototypes, we use conventional digital 
projector with combination of industrial grade digital 
cameras with linear light response. Whole setup is fixed 
on construction, so the relative position between 
components is constant. 

The prototype of HDR SMISS was constructed 
independently of the system SMISS and the final fusion 
is planned for this year, because it requires new 
construction. Our co-axial prototype setting uses 
conventional beamsplitter, linear polarizers, dark surface 
to suppress reflected light, digital projector and camera. 
The whole setup could be found on figure 8. Our co-axial 
prototype setting has limited functionality, because 
projector light reflected from beamsplitter creates small 
systematic additive noise in HDR camera image.  

 

Figure 8: Our coaxial setup 

In final setup, we plan to use a polarizing 
beamsplitter to optimize the optical flow efficiency, so 

only a minor part of projector polarized light will be 
reflected out of the system. The whole setup needs to be 
minimized, to get possible dust part on beamsplitter out 
of camera depth of field. We also consider setting, in 
which the beamsplitter is situated between projector 
modulating chip and its optics. In this setting, the 
additional camera chip shares the projector optics and 
everything is encapsulated in projector box. 

Over the hardware, we create a seamless software 
solution, which encapsulate camera and projector 
control, calibration, data acquisition, scanning and 
processing. The system SMISS is designed to be a 
flexible platform, so addition of new methods is easy and 
straightforward. 

Whole software was written in C++ (communication 
and processing) and C++/CLI (GUI), using OpenCV as a 
core library for image processing. The whole solution 
consists of more than 20 000 lines of code. 

We implement easy to use semi automatic calibration 
process of intrinsic and extrinsic matrices for camera and 
projector, and also the calibration tool for calibrating 
projector response curve (gamma correction). 

Our user interface is easy to use and can be controlled 
by conventional computer user without knowledge of 3D 
reconstruction, as the whole scanning process is 
automatic. 

For visualization purposes, we use our OpenGL 
application, for which we develop fast quadratic 
interpolation method for filling of geometrical holes. We 
also construct our view dependent stereo vision setup for 
presentations. 

7 Results 
If we consider the noise level of high quality 8-bit 
grayscale camera to be 5, the camera dynamic range 
would be 255 / 5, what is approximately 50:1. As we 
show in figure 4, the dynamic range of general scene 
could reach more than 400:1. If we consider the response 
from direct reflections, the dynamic range of general 
scene could be far more than 10 000:1. This is caused by 
varying material properties and different angle of 
incidence between projector light rays and the surface. 

To capture scene with dynamic range of 400:1 with 
our camera and standard method, we would need 3 = 
log2(400 / 50) times more frames. With our solution, we 
can build projector weight map with just 6 addition 
frames. Which means 36 frames in our full scanning 
setup, against 90 (30 * 3). So in this situation, our 
solution is 250 percent faster. 

A conventional projector has dynamic range (contrast 
ration) approximately 1000:1. With our technique, we 
could theoretically scan scenes with dynamic range of 
50 000:1. In practice, we can reach 10 000:1 because of 
projector noise. 

Average accuracy of our system was measured as 0.5 
millimeter, when we scan a flat ceramic table in distance 
of 800 millimeters. 
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We offer a few final renders of scanned models in 
figure 9. The triangulated mashes were scanned with 
SMISS setting from figure 2 (right) with digital projector 
and color camera aligned vertically inside of the box. 

 

 

 

Figure 9: Rendered models captured with our 3D 
scanning solution 

8 Discussion and future work 
Our setting can be used to adaptively adjust scanning 
procedure. In [8], authors use different binary coding for 
materials affected by variable types of inter-reflection. 
The procedure consists of scanning object more times 
with different coding. In our future work, we plan to 
separate projector image regions according to affect of 
inter-reflection, and compose scene dependent optimal 
coding, so the scanning process will use just one set of 
new codes. 

We are working on new sub-pixel precision method 
with use of defocused phase-shifting patterns (continuous 
pattern information). With pixel-precision geometry 
output from our system, we could compute the amount of 
defocus from Point Spread Function of the projector. 

For now, our solution uses structured light emitted 
from point source to the scanned object. If the scanned 
object consisted of shiny (mirror like) surfaces, it would 
be impossible to scan the surface with our, or similar 
optical method. For this we want to extend the system for 
dual scanning method. The key idea is to illuminate the 
surface from globe around the object modulated by 
structured light. With this method, we want to measure 
surface normals, as an approximation of surface first 
derivation. We then want to use this dual information to 
relax the position of scanned geometry to satisfy scanned 
normals. This principle will lead to massive increase in 
scanning precision. An advantage of this method is also 
the possibility to scan glossy and mirror surfaces, so we 
will be able to approximate the geometry of object parts, 
which will consist of those materials. 

With the similar setting, we plan to capture the 
approximation of BRDF function for individual surface 
point. With this knowledge, we will be able to produce 
physically correct photorealistic renders. This 
information can also be used for material description and 
segmentation, which could be important information for 
future 3D printers (description of building material for 
individual object parts). 

This year, we plan to create construction and 
algorithms for full 3D scanning. The full 3D model will 
be merged from multiple scans from different position. 
For this purpose, we plan to track object position using 
Speckle Sense technology [17]. 

9 Conclusions 
We present a novel approach to extend the addressed 
problem of the low dynamic range of scanning systems 
based on the structured light. 

Our designed solution, with its co-axial setup is an 
easy to use, low cost platform for future improvements of 
the scanning process. Because of known camera – 
projector image correspondence, we could segment the 
scanning range to disjunctive parts, and process them 
individually. With different light power value, coding, or 
we can divide the scanning process in consequence of 
strong inter-reflections. 

This paper is as an interim result of our research, but 
our SMISS prototype is fully functional and ready to use 
for basic shape and texture reconstruction, as we prove in 
Virtualny Svet (Virtual World) 2012 in Slovakia and Tire 
Technology Expo 2012 Exhibition in Germany, under 
the ME-Inspection company. 
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Abstract

Material recognition is an important subtask in computer

vision. In this paper, we aim for the identification of ma-

terial categories from a single image captured under un-

known illumination and view conditions. Therefore, we

use several features which cover various aspects of mate-

rial appearance and perform supervised classification us-

ing Support Vector Machines. We demonstrate the feasi-

bility of our approach by testing on the challenging Flickr

Material Database. Based on this dataset, we also carry

out a comparison to a previously published work [Liu et

al., ”Exploring Features in a Bayesian Framework for Ma-

terial Recognition”, CVPR 2010] which uses Bayesian in-

ference and reaches a recognition rate of 44.6% on this

dataset and represents the current state-of the-art. With our

SVM approach we obtain 53.1% and hence, significantly

outperform this approach.

Keywords: Material recognition, Texture classification,

SVMs

1 Introduction

Understanding materials enables us to interact with the

real world and influence our decisions in everyday life, e.g.

where to drive a bike on a wet muddy road or whether a

fabric in textile shop is smooth enough for cushion cover.

These daily examples show the importance of material

recognition for humans. In the fields of computer vision

and computer graphics, one goal is to develop systems

which can automatically perform this task. Identifying the

respective material of object surfaces for instance allows

to handle the object appropriately within a supply chain

or to select the corresponding appearance properties for

photo-realistic rendering.

For humans material recognition comes naturally. Since

one can touch and feel the material surface if it is smooth

or rough, hard or soft, take a look from different directions,

from close or far distance and observe if it is shiny or dull.

The key observation is that the visual appearance of a sur-

∗badami@informatik.uni-bonn.de
†mw@cs.uni-bonn.de
‡rk@cs.uni-bonn.de

fabric foliage

glass leather

metal paper

plastic stone

water wood

Figure 1: We used Flickr Material Database [27]. This

database captures a wide range of appearance of 10 differ-

ent materials.

face in an image depends on several different factors such

as the illumination conditions, the geometric structure of

the surface sample at several spatial scales, and the surface

reflectance properties, often characterized by the bidirec-

tional reflectance distribution function (BRDF) [23] and

its variants [10, 15, 24].

In order to capture such characteristics recent investiga-

tions [20] combine a large number of different low-level

and mid-level features, which are commonly used in re-

lated areas such as object and texture recognition tasks,

in a Bayesian framework. The authors demonstrated that

their approach outperforms previous state-of-the-art meth-

ods [29] on a more challenging database [27].

Support Vector Machines (SVMs) [28, 7] have become

popular for classification tasks, since they offer advantages

such as, ease of generalization of the problem, its ability
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to handle high-dimensional feature spaces and the absence

of local minima [3]. As we want to focus on the com-

parison between the classification using the Bayesian ap-

proach in [20] and one based on SVMs, we combine the

idea of using the image features from [20] within a SVM

framework and exhaustively compare the achieved classi-

fication rates to the ones reported in [20]. For this, we

also evaluate our approach on the challenging MIT Flickr

Material Database [27]. We observe that with our system

the recognition rate improves from 44.6% to 53.1%. We

also evaluate our system on the KTH TIPS2 dataset [4].

The rest of this paper is organized as follows: In Sec-

tion 2, we describe the present state of methods used in

the area. In Section 3, we introduce feature pools used for

classification. In Section 4, we explain the support vec-

tor machine classification model in the context of material

recognition. Finally, in Section 5, we examine our system

on the Flickr Material Database and discuss the results. In

Section 6, we conclude.

2 Previous work

Learning high-level material categories such as foliage,

stone or metal is related to object and texture classification

but differs in several aspects. Several approaches address

material recognition by focusing on purely texture based

image features.

Texture has been defined in terms of dimensions like

periodicity, orientedness and randomness [21]. A recent

work on 3D textons [19] addresses material recognition

using multiple images of varying viewpoint and lightning

conditions. Cula and Dana [8] adapted the method of [19]

to 2D textons where each histogram is obtained from a

single image in the training set. For their evaluation they

used the CUReT database [10] consisting of images of

61 different texture samples under 205 different viewing

and illumination conditions. A high classification rate of

more than 95% is reported in [29] with 2D textons on the

CUReT dataset using the NN classifier. In [4] it is shown

that the SVM based classifier achieves 98.5% accuracy

on the KTH TIPS2 [4] database consisting of 11 material

categories with 4 texture samples in each category pho-

tographed under various conditions. Although texture is a

characterizing feature cue it is not sufficient for represent-

ing material properties completely. It might happen that

an object made of different materials has a similar or even

the same texture.

Although information about objects can lead us to the

right guess concerning the material from which it is made

of, sometimes it is really misleading. For example a cup

can be made of plastic, metal or glass. In case of an artistic

cup it can be carved out of wood or stone as well. This

demonstrates the difference between material recognition

and object recognition.

The appearance of a material in an image highly de-

pends on the environment illumination and surface re-

flectance properties described by the BRDF. Material

recognition might be trivial in case of a known BRDF. But

it is very difficult to estimate the BRDF of the material

from a single image without simplifying assumptions [11].

Moreover, the appropriate choice regarding the classi-

fication method is also an influencing aspect. While a

few approaches make use of a Nearest Neighbor (NN)

classifier (e.g. [29]), the methods we consider as state of

the art rely on a Bayesian framework [20] or SVMs [4].

SVMs have been proven to consistently achieve good per-

formance in complex real-world problems such as text [16,

12] and image classification [6] and bioinformatics [30]

and biosequence [2] analysis. This motivates us to involve

SVMs as classifier. However, most of the methods that ad-

dress material classification are evaluated on datasets such

as [10] that are not well-suited for this task as they do

not contain the large variations in appearance which oc-

cur in real-world scenes and for this, classification rates

usually are very high. Hence, the real performance differ-

ences cannot be seen in a reliable way. The reason for this

is that they have been acquired using a controlled setup.

In contrast, [20] show the performance of a Bayesian ap-

proach on the significantly more challenging MIT Flickr

Material Database [27]. However, they only compare their

method against the NN classifier and not against SVMs.

We believe that a real comparison between different mate-

rial classification approaches has to be carried out on such

a challenging dataset. Hence, we compare our SVM based

technique to the method described in [20].

3 Feature Extraction

For the development of a reliable image based material

recognition system it is important to consider image fea-

tures which are representative and discriminative. How-

ever, it seems to be impossible to capture the variety of ma-

terial characteristics in a single feature descriptor, as com-

monly used descriptors usually are restricted to a certain

material property such as color, texture or reflectance be-

havior. As the different material properties are not equally

descriptive for different material classes, a variety of fea-

tures have to be considered in order to derive information

about the different materials of an object. If the object

appears shiny one might think that it is made of glass or

metal whereas an object surface covered by minute fibers

appear rough and together with the underlying weave pat-

tern leads to a specific textured representation within an

image. Wood is recognized usually with its brown color.

In order to take several characteristic material properties

into account, we follow the idea of [20] and use a pool

of features which are covering different aspects of appear-

ance. In general, for a fixed camera and object position,

the image can be determined by 1) BRDF, 2) surface struc-

ture, 3) color, 4) object shape and 5) environment illumi-

nation. As we want to obtain hints on the performance of

the SVM classifier in comparison to the Bayesian frame-
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work proposed in [20] we extract the same image features.

Figure 2: Features used in the classification [20].

Color is an important cue for recognizing materials. For

example foliage is green, wood is usually brown and stone

has less saturated color whereas fabric, plastic and paper

have saturated color. To capture local color information,

we store the RGB values in a local 3×3 neighborhood and

concatenate them to a vector of dimension 27 as in [20].

Furthermore, every material has a peculiar texture.

Wood has a ringing pattern, whereas fabric has a weaving

pattern. Like [20] we use two sets of features to charac-

terize texture. The first feature is SIFT [22] which is com-

monly used as a texture feature and also serves for tasks

such as object and scene recognition. The second set of

features is responses of an image through a set of Gaus-

sian filters of different scale and orientation, also known

as Jet [17]. We consider 2 Gaussian derivative filters at

3 scales and 6 orientations, i.e. 2× 3× 6 = 36 rotational

variant filters, and 8 Laplacian of Gaussian and 4 Gaus-

sian filters, i.e. 8+4 = 12 rotational invariant filters. We

combine all the filter responses in a single vector of size

48.

In addition, it is important to capture features not only

on a meso-level but also on a micro-level. The human vi-

sual perception system can impressively abstract minute

details of texture, e.g. smoothness of metal and glass sur-

faces, grains in paper and stone, the fibers of the fabric and

crinkles in leather. For extracting micro texture of an im-

age we follow the idea in [1] where the image is smoothed

by a bilateral filter [13] and the residual is obtained by sub-

tracting the smoothed image from the original image. The

obtained residual image is used for further analysis as it re-

veals the information of texture on a finer scale. We derive

descriptors that capture such micro details by computing

SIFT and Jet over the residual image. For micro-texture,

the Jet filter bank is evaluated on the same set of orienta-

tions but on a different set of scales in comparison to the

Jet applied to the original image.

Materials can be molded to any arbitrary shape to create

different objects, but still the outline shape of an object and

its material category are often related, for e.g. fabric and

glass have a curvy structure whereas metal, wood, stone

can have straight edges and sharp corners. The edges and

corners can be acquired from edge maps. We extract such

edge maps by applying the canny edge detectors [14] to the

base image. Furthermore, we only consider edges having

a certain minimum length. Corresponding examples are

shown in Figure 3. The curvature along these edges can

be used to represent the orientation of the outline shape

of a certain material, we calculate this specific descriptor

by sampling the edges at three different scales (see Fig-

ure 4(a)), which results in a 3D-vector. As we are inter-

ested in a dense sampling, we calculate such a descriptor

for every second pixel along the edges.

(a) Curvature (b) Edge-Slice(HOG) (c) Edge-Ribbon(HOG)

Figure 4: Curvature is calculated over three different scale,

Edge-Slice and Edge-Ribbon are calculated in 6 cells [20]

at edges.

Furthermore, reflectance behavior is also an important

cue for classifying material categories. Water and glass

are translucent, metal is shiny, wood and stone are dull

and opaque. Such properties can be observed in form of

distinctive intensity changes at the edges in an image. We

follow [20] in computing histograms of oriented gradients

(HOG) [9] in the vicinity of the edges. More precisely,

we first select a slice of a certain width along the normal

direction of the edge and compute the gradient at all of

the pixels inside the slice. In order to calculate HOG, the

slice is divided into 6 cells where the gradient orientation

is quantized into 12 bins. We combine the histogram of

all 6 cells in a vector of length 72, which will be referred

as Edge-Slice [20]. In addition, we use the same method

and employ a slice along the tangent direction of the edge

in order to obtain the Edge-Ribbon feature [20](see Fig-

ure 4(b) and 4(c)).

So far, we described all the features which we use to

characterize material appearance due to different proper-

ties. Figure 2 shows a flowchart how the features are

generated. Among these features color, SIFT and Jet are

low level features and can be calculated directly from the

image. In contrast, curvature, Edge-Slice, Edge-Ribbon,

micro-SIFT and micro-Jet are mid level features which

depend on the edge map and the base image respectively

(see Figure 3). In order to capture the relevant informa-

tion appropriately, we calculate color, SIFT, micro-SIFT,

Jet and micro-Jet on a evenly sampled grid in the image
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(a) Original (b) Base image(bilateral filter) (c) Edge map(Canny) (d) Residual (a)-(b)

Figure 3: Example images of how features are calculated in our system. From top to bottom the rows show examples

for fabric, glass and wood. On image (a) we apply bilateral filtering [13] to obtain the base image (b). We run the Canny

edge detector [14] on the base image and compute edge maps. Curvature, Edge-Slice and Edge-Ribbon are extracted as

a feature from the edge map. Subtracting (b) from (a), we get the residual image (d) that depicts micro structures of the

materials which are captured by micro-SIFT and micro-Jet features.

areas where the material has been annotated. The remain-

ing features are sampled at every second pixel along the

edges.

4 Classification with SVMs

Once the features have been calculated we want to build a

robust material recognition system. For this, we first apply

a quantization of the features to form characteristics clus-

ters whose centers are denoted as visual words. In the next

step, we use SVMs for material classification based on the

given inputs. In the following, we will describe these steps

in more detail.

4.1 Feature quantization and visual words

Before we start classifying our features we need to group

alike features to reduce the massive data into few repre-

sentative visual words. From training images we estimate

visual words which we can expect being present in the test

data as well. We use k-means clustering for the quanti-

zation. After quantizing individual features into k visual

words, the distribution of visual words per image is cal-

culated for all of the different features by assigning each

pixel in the image the nearest visual word index and cal-

culating the histogram over the frequency of the visual

words. Figure 5 shows some clusters for different feature

types.

To generate a common visual word dictionary, for all

the different types of features, suppose there are m fea-

tures in the feature pool (e.g. color, SIFT, Jet) and m cor-

responding dictionaries {Di}mi=1. Each dictionary has Vi
codewords (e.g color has 150, SIFT has 250), i.e. |Di| =
Vi. Since the features are quantized separately the words

generated by the i-th feature are {w(i)
1 , .....,w

(i)
Ni

}, where,
w

(i)
j is an index representing j-th cluster center of i-th fea-

ture, w
(i)
j ∈ {1,2, ...Vi} and Ni is the number of words. In

order to combine two features, the corresponding dictio-

naries are simply put together. For example, a document

of m sets of words

{w(1)
1 , ....,w

(1)
N1

},{w(2)
1 , ....,w

(2)
N2

}, .....,

{w(m)
1 , ....,w

(m)
Nm

} (1)

can be combined to one set

{w(1)
1 , ....,w

(1)
N1

,w
(2)
1 +V1, ....,w

(2)
N2

+V1, .....,

w
(m)
1 +

m−1

∑
i=1

Vi, ....,w
(m)
Nm

+
m−1

∑
i=1

Vi} (2)

with a joint dictionary D = ∪iDi, |D| = ∑
m
i=1Vi. In case

of combining color (V1 = 150) and SIFT (V2 = 250) the
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(a) Original (b) Color (c) SIFT (d) Jet (e) micro-SIFT (f) micro-Jet

Figure 5: Visualization of quantized features. After finding k cluster centroids of individual features, each pixel is

assigned an index of the closest visual word. In order to visualize how the cluster centers are distributed in an image,

the corresponding indices are color coded by RGB values. Same colors indicate that feature vectors corresponding to the

pixels lie in the same cluster.

first 150 entries of the dictionary (of size V1 +V2 = 400)

are codewords of color and the next 250 entries represent

codewords of SIFT. This way we can reduce the multi-

dictionary problem to a single dictionary problem.

4.2 Support Vector Machines

Being robust to noise [25] and being capable to general-

ize in case of a small training set [26], SVMs have be-

come a popular and commonly used classifier for recog-

nition tasks. A single SVM constructs a hyperplane or

set of hyperplanes in a high-dimensional space and allows

to distinguish between two linearly separable sets of sam-

ples. In order to deal with our multiple classes given in

the used data sets, there is a need for using an SVM for-

mulation which is capable of dealing with more than two

classes. This can be achieved by either using several pair-

wise classifiers arranged in trees [18], where each of the

nodes represents an SVM, or by using an one-vs-others

approach, where multiple SVMs are trained and each of

them separates a single class from all remaining ones. We

follow the first strategy and use the implementation in [5].

As SVMs perform a supervised learning, objects with

known class labels are used as samples for the train-

ing phase. We use the training data {xi,yi} with i =
1, . . . , l where xi represents the histogram of visual words

per image for a single feature type or a feature combi-

nation and yi describes the corresponding material cat-

egory in { f abric, f oliage, . . . ,water,wood}, i.e. yi ∈
{1,2, . . . ,10}. As kernel function, we use the Gaussian

RBF kernel

K(xi,x j) = e
−‖xi−x j‖2

2σ2 . (3)

5 Results

We run our system on two data sets namely MIT Flickr

Material Database [27] and KTH TIPS2 database [4].

First, we tested our system on the KTH TIPS2 database.

In this database there are 11 different materials namely

Crumpled aluminum foil, Cork, Wool, Lettuce leaf, Cor-

duroy, Linen, Cotton, Brown bread, White bread, Wood,

Cracker. There are 44 different material samples present

in the database in total. For each sample, images are taken

at 9 scales, 3 poses and 4 different illumination condi-

tions, hence there are 44×9×3×4= 4752 images in this

database.

We extract the same features and feature combinations

as in [20] for this database and the results are plotted

in Figure 8. The highest recognition rate is achieved by

99.4%.

As mentioned before, we do not consider this dataset

to be challenging enough to derive statements on perfor-

mance differences within complex scenes. For this, we

consider the MIT Flickr Material Database [27], where

there are 10 material categories namely fabric, foliage,

glass, leather, metal, plastic, paper, stone, wood, water.

Each category contains 100 images. 50 images show

close-up views of the materials and 50 show an object

made of the corresponding material. This dataset contains

also annotations where this specific material is located in

the image domain. Only pixels inside these areas are con-

sidered for feature calculation. For training, we randomly

choose 50 images per category and test the system on the

rest. For reliable results, we take 25 images showing close-

up views and 25 images showing the full object made of

the material. In addition, the training/testing process is re-

peated 5 times for different, randomly chosen training sets

and the classification rates are averaged.
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Figure 6: The per-class recognition rate (both training and test) with different sets of features for the MIT Flickr Material

Database [28], using the classification approach proposed in [20]. In each plot, the left, darker bar means training, the

right and the lighter bar means test. The two numbers right after the feature set label denote the recognition rate on the

entire training set and on the entire testing set.

Figure 7: The recognition rate of a randomly chosen split of training-testing shown for each single feature and some of the

feature combinations. Only the test rate per material category is mentioned, since the training rate with learned parameters

is very high and hence not of our interest. The highest recognition rate (53.6%) is achieved when all the features are used.

We extract the features color, SIFT, Jet, micro-SIFT and

micro-Jet on every 5-th pixel inside the given mask where

the material is present. Edge-Slice, Edge-Ribbon and cur-

vature are calculated on every second pixel on the edges in

the edge map. After calculating the features we perform

k-means clustering separately for each feature. We use

exactly the same number of clusters for each feature type

(150 for color, 250 for SIFT, 200 for Jet, 250 for micro-

SIFT, 200 for micro-Jet, 100 for curvature, 200 for Edge-

Slice, 200 for Edge-Ribbon).

After forming the dictionary for each feature we learn

visual word histograms based on the training images using

SVMs. First we train and test with single features and then

we combine the features as in [20]. We observe that our

best performing single averaged feature (SIFT = 42.2%)

has a recognition rate which is very close to the best per-

formance (44.6%) stated in [20]. Among all features and

feature combinations, in every trail we achieve the best

rates (53.2%, 53.6%, 53.8%, 53.6%, 51.6%) when all the

features are combined. A comparison of average recogni-

tion rates of individual features and feature combinations

is tabulated in Table 1. It can be seen that for most of the

features there is an improvement in recognition accuracy

of about 4 to 5 %. For the individual features, micro-SIFT

and micro-Jet and the combination of all the features there

is a significant improvement in the classification accuracy.

The confusion matrix in Figure 9 shows the accuracy of the

classification of individual material categories. The rates

of misclassification are also shown.

6 Conclusions

In this paper, we addressed the problem of material recog-

nition using various image features in combination with

a SVM framework and compared it to the Bayesian ap-

proach proposed in [20]. The recognition rate achieved by

our system is 53.1% in average on the MIT Flickr Mate-

rial Database and 99.4% on the KTH TIPS2 database. The

reason for the huge difference in recognition rate between

the two datasets is due to the larger intra-class variations
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Figure 8: The recognition rate of a randomly chosen split of training-testing for KTH TIPS2 database is shown for each

single feature and some of the feature combinations. Only the test rate per material category is mentioned, since the

training rate with learned parameters is nearly 100% for this dataset. The highest recognition rate (99.4%) is achieved

when all the features are used.

Figure 9: Confusion matrix for the Flickr Material

Database. Diagonal entries shows the percentage with

which each category is recognized. Rates are color coded

using gray scale values (black = 100% and white = 0%).

Each row sums to 100%.

in the Flickr Material Database. In contrast, KTH TIPS2

comprises images of the same material taken in different

view and lighting conditions in the same material cate-

gory. We showed that with the same pool of features as

given in [20], SVM classifies materials with a higher rate

in comparison to the Bayesian approach of [20]. We have

also analyzed the contribution of each feature in our sys-

tem to the performance gain. Future developments should

consider exploring different and better characteristic fea-

tures for materials. Improvements by integration of differ-

ent classification techniques can also be investigated.

Feature Ce Liu et.al

Our model

(avg. of

5 iterations)

Color 32.6 % 37.6%

Jet 29.6 % 34.0%

SIFT 35.2 % 42.2%

Curvature 26.4 % 21.6%

Micro-Jet 21.2 % 36.5%

Micro-SIFT 28.2 % 42.0%

Edge-Ribbon 30.0 % 36%

Edge-Slice 33.0 % 34.6%

Color+SIFT 43.6 % 48.6%

Color+SIFT+Edge-Slice 44.6 % 49.1%

Color+SIFT+Edge-Slice
42.0 % 49%

+Edge-Ribbon

All 38.8 % 53.1%

Table 1: Performance comparison between [20] and our

system.
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Abstract

Rendering realistic objects at interactive frame rates is a
necessary goal for many of today’s applications, especially
computer games. However, most rendering engines used
in these games induce certain limitations regarding mov-
ing of objects or the amount of lights used. We present
a rendering system that helps overcome these limitations
while the system is still able to render complex scenes at
60 FPS. Our system uses Deferred Shading with Shadow
Mapping for a more efficient way to synthesize lighting
coupled with Screen-Space Ambient Occlusion to fine-
tune the final shading. We also provide a way to render
transparent objects efficiently without encumbering the
CPU.

Keywords: Real-time Rendering, Deferred Shading,
High-dynamic range rendering, Tone-mapping, Order-
Independent Transparency, Ambient Occlusion, Screen-
Space Ambient Occlusion, Stencil Routed A-Buffer

1 Introduction

Our rendering engine is based on concept of Deferred
Shading [3], which avoids shading occluded pixels and by
postponing the lighting evaluation allows one pixel to be
affected by hundreds of lights.

Our system uses HDR rendering coupled with the tone-
mapping operator by Reinhard et al. [11] and Bloom,
Shadow Mapping [16] to provide hard-edged shadows,
Screen Space Ambient Occlusion to simulate indirect
lighting and Stencil Routed A-Buffer [8] to render trans-
parent objects. All these techniques allow easy integration
into a deferred renderer while providing much more real-
istic display of scenes.

The main contribution of this paper is a complete
rendering pipeline incorporating these well-known tech-
niques. Our aim is to determine in which order these tech-
niques should be applied to avoid incorrect artifacts and
how to maintain reasonable quality while allowing real-
time display even on older hardware.

∗michalferko1@gmail.com
†michal.valient@guerilla-games.com

We are targeting OpenGL 3 capable hardware, because
we require the framebuffer object features as well as mul-
tiple render targets.

2 Related Work

There are many implementations of Deferred Shading and
this concept has been widely used in modern games [15]
[12] [5], coupled with techniques used in our paper as well
as certain other.

Deferred Shading does not directly allow rendering of
transparent objects and therefore, we need to use a differ-
ent method to render transparent objects. There are several
approaches to hardware-accelerated rendering of transpar-
ent objects without the need to sort geometry. This group
of algorithms is referred to as Order-Independent Trans-
parency.

An older approach is Depth Peeling [7] [4], which re-
quires N scene rendering passes to capture N layers of
transparent geometry. Dual Depth Peeling [1] improves
the algorithm by capturing two layers of geometry in
one pass. However, the objects still need to be rendered
multiple times and the performance is still unacceptable
for large scenes. Once the layers are captured, a final
fullscreen pass blends them together.

A newer approach, Stencil Routed A-Buffer [10], al-
lows capturing of up to 32 layers during one rendering pass
thanks to multisample render targets on OpenGL 3 hard-
ware. An additional pass for sorting the values is used.
This approach is part of our system.

With OpenGL 4 hardware, it is possible to actually have
per-pixel linked lists [13] and thus generate an arbitrary
number of layers and sort these samples afterwards in a
fullscreen pass. This approach is very similar to Sten-
cil Routed A-Buffer except for the way the samples are
stored. We did not use this approach due to the lack of
OpenGL 3 support.

To further improve the visual quality of rendered im-
ages, we include standard Shadow Mapping [16] for
shadow-casting lights and real-time Ambient Occlusion.
There has been much research done regarding real-time
Ambient Occlusion. In [2], the authors convert polygonal
meshes into disks, for which the occlusion computation
is simplified and allows dynamic rendering. In [6], the au-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Images of test scenes rendered with our system at interactive frame rates. Dragon scene (Left), House scene
(Middle) and Sponza scene (Right)

thors propose a method to generate fields around objects in
pre-processing. As long as the objects are not deformed,
the fields do not need to be recomputed. It thus allows
real-time estimation of occlusion. A similar technique [8]
performs a slightly different field generation in the geome-
try shader and allows for fully-dynamic ambient occlusion
even on deformable meshes.

Our work is based on Screen-Space Ambient Occlusion
[9] which uses the scene depth information captured dur-
ing the first stage of deferred shading to approximate scene
geometry and thus compute occlusion. The choice was
made mainly due to the fact that the previous methods are
scene-dependent and perform slower than SSAO when the
scene contains hundreds of thousands of triangles. SSAO’s
performance depends only on the number of samples taken
and the screen resolution, being totally independent from
the actual scene.

3 Deferred Shading

Deferred Shading [3] is an alternative to Forward Shading,
the traditional rendering where a fragment shader accesses
all light information at once and outputs the final light con-
tribution directly into the window’s framebuffer.

The main idea of Deferred Shading is separation of the
lighting calculations from the scene rendering pass (or
the geometry pass). During this pass, material and ob-
ject properties (usually albedo, depth, normal and specular
power) are stored into a geometry buffer (G-Buffer).

When compared to forward rendering or multi-pass ren-
dering, the scene is rendered only once and only the frag-
ments that are visible are shaded. No shading needs to be
evaluated for objects that are not affected by a certain light
(the object is outside of the light volume - part of the scene
that is affected by the light).

During the consecutive lighting pass, the light volumes
are rendered (cones for spot lights and spheres for point
lights) and during the fragment shader execution, the G-
Buffer data is read and used to synthesize lighting. The
light shapes are rendered with additive blending thanks to
the additive nature of light. The results can be displayed

on the screen, but usually more post-processing steps are
executed after this pass and the results should instead be
rendered into a texture - the lighting buffer (L-Buffer).

When rendering light shapes, we use front-face culling
to avoid problems when the camera is inside a light vol-
ume. Furthermore, for every pixel getting rendered, it is
needed to reconstruct the eye-space position correspond-
ing to the current pixel position and the depth stored in
the G-Buffer. For this position, we calculate whether it
actually is inside the light volume, since we might be ren-
dering nearby light volumes while the G-Buffer contains
information about distant objects unaffected by the light.

Deferred Shading mainly outperforms Forward Shading
when there are many lights that do not cover large por-
tions of the screen when being rendered. Many directional
lights (which affect the entire screen) pose a problem for
Deferred Shading, because we do extra work when com-
pared to Forward Shading. Therefore, some implementa-
tions evaluate directional lights using Forward Shading [5]
and all other lights using Deferred Shading.

In a typical outdoor scene there is usually one direc-
tional light representing the sun and in indoor scenes, di-
rectional lights are avoided altogether. Our system cal-
culates directional lights with forward shading during the
G-Buffer generation phase. Due to this fact, only a fixed
amount of directional lights can be forward shaded, for
more lights the system would have to switch to deferred
shading for the additional lights.

3.1 HDR and Tone-mapping

Having evaluated lighting in a texture adds direct support
for HDR rendering. Performing tone-mapping during the
L-Buffer generation phase is not possible, since the results
get additively blended and we cannot guarantee that a pixel
will not be affected by a large number of lights, resulting
in a sum of many tone-mapped values which result in a
luminance value higher than 1.

Our system is open to many tone-mapping operators.
Currently, we are using the global part of the operator by
Reinhard et al. [11]. As an input into the tone-mapping
stage, we have the L-Buffer which contains 16-bit floating
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Figure 2: Real-time Reinhard’s tonemapping. HDR im-
age before applying tonemapping (Left) and after applying
tonemapping (Right).

Figure 3: A scene with Bloom disabled (Left) and enabled
(Right). Notice the light leaking into the shadow.

point RGB values.
Reinhard’s operator analyzes the whole input image and

tries to estimate whether it is light or dark. Based on
the average luminance of the image L, the luminances are
tonemapped into a valid range.

We perform a traditional GPU accelerated calculation of
the average luminance of the L-Buffer by downscaling the
image up to a 1x1 texture (using mipmap generation) and
the value of this one pixel is the average image luminance.

3.2 Bloom

When looking at an object that is occluding a part of a
bright light source, the light rays appear to ”bend” at the
object’s edge and a fringe is visible on the occluding ob-
ject. This effect is called Bloom, and it is usually coupled
with HDR lighting since only very bright light sources
produce such an effect. A scene with and without Bloom
is shown in Figure 3.

Our implementation is tightly coupled with the tone-
mapping operator we use. After calculating the average
luminance L of the image, we subtract L from the inten-
sity of pixels in the L-Buffer (we ignore low-luminance
pixels) and store these as a tresholded image. Pixels with
luminance above average are marked in this image and we
perform a blur based on how much brighter the pixels are
when compared to average luminance.

Instead of performing a gaussian blur of different kernel
size in each pixel, we chose to generate mipmaps for the
tresholded image and sum values from multiple mipmaps,
while alpha blending into the final image based on result-
ing pixel luminance.

3.3 Shadow Mapping

Incorporating Shadow Mapping into a Deferred Renderer
is straightforward and allows for hard-edged shadow with-
out much effort.

Shadow Mapping [16] is a fully GPU accelerated
method for rendering real-time shadows. The entire scene
is rendered one additional time (from the light’s point
of view in the light’s direction) for every shadow-casting
light, storing the depth values generated during this ren-
dering.

Afterwards, when evaluating the lighting equation, the
world position of the current surface point is projected (us-
ing the same projection as was used during the shadow
map generation phase and remapping from [−1,1]3 range
into [0,1]3) which gives us the (x,y) coordinates in the
shadow map and a depth value z. The fragment shader
reads the depth value d at position (x,y) in the shadow
map and compares it to z. If z = d, the point with depth z
is the closest point to the light source and therefore is not
shadowed. If z > d, this point is behind a point with depth
d and is therefore not directly lit by the light.

Due to floating-point precision errors, a small offset
needs to be added to all values stored in the shadow map,
otherwise non-realistic self-shadowing artifacts occur.

Integrating Shadow Mapping into a Deferred Renderer
is simple. The scene is rendered one additional time for
every shadow-casting light and thanks to the fact that we
only access one light at a time in the fragment shader, we
can reuse one texture for multiple lights. Our system does
this by flip-flopping between shadow map generation and
L-Buffer generation. We first generate the shadow map
for the first light, then render the light’s shape into the L-
Buffer while accessing the map. We then clear the shadow
map, render from the second light’s point of view (into the
same shadow map), and render the second light’s shape
into the L-Buffer. For lots of shadow-casting lights, this is
a necessary approach due to the fact that we already took
up a lot of memory with the G-Buffer (and the L-Buffer).

4 Transparent Objects

The Deferred Shading approach does not support render-
ing of transparent objects. The G-Buffer contains informa-
tion only about the nearest pixels, but we require multiple
points per pixel when rendering transparent objects to cor-
rectly compute the final pixel color.

Due to the alpha blending equation:

color f inal = (1−αsrc)colorsrc +αsrccolordst , (1)

which is used for correct rendering of transparent objects,
the resulting color needs to be evaluated back-to-front
from the camera’s point of view. Therefore, a typical im-
plementation sorts all triangles in the scene and then ren-
ders these back-to-front. Problems are pairs of intersecting
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triangles which introduce the need to split at least one of
those triangles into two parts.

For static transparent objects, constructing a BSP tree
as a pre-processing step for all transparent triangles in the
scene is a common approach. During scene rendering, the
BSP tree is traversed back-to-front based on camera lo-
cation. However, when we consider dynamic objects, the
BSP tree needs to be maintained every frame (in worst-
case, the whole tree needs to be rebuilt), which is usually
a CPU intensive approach, especially for thousands of tri-
angles.

4.1 Stencil Routed A-Buffer

Our goal was to have fully dynamic scenes, therefore we
chose Stencil Routed A-Buffer [10] for rendering trans-
parent objects. Thanks to newer hardware supporting
OpenGL 3 and higher, it is possible to render to a multi-
sample framebuffer object (FBO) and use the stencil buffer
to fill each sample of a pixel with different values at dif-
ferent depths. This feature is called Stencil Routing.

At first, a multisample framebuffer with a depth, stencil
and color buffer is created - this will be our Alpha buffer
(A-Buffer). Then, every frame, the stencil values are ini-
tialized to n+1 for the n-th sample of a pixel by rendering
a full-screen quad once for every sample while allowing
writing only into the current sample.

During the rendering of transparent objects (with depth
write disabled), we set the stencil operation to decrease
whenever a fragment is being rendered and we set the sten-
cil function to equal with the reference value 2. When the
first fragment of a pixel is being rendered, the first sam-
ple (which has a stencil value of 2) is filled with color and
depth of the fragment and all stencil values are decreased
by one. Now the second sample has a stencil value of 2
and the next fragment being rendered for this pixel gets
stored in the second sample. This behavior is shown in
Figure 5.

Using this approach, we can compute n layers of trans-
parent objects in one rendering pass, where n is the number
of samples per pixel in our multisample FBO. Latest hard-
ware allows up to 32 samples per pixel, but older graphic
cards support 8 samples with no problems.

Finally, we need to display the transparent objects on the
screen. We render a fullscreen quad and in the fragment
shader, we access all the samples one by one and sort them
based on their depth value. Finally, the sorted samples
are blended in the fragment shader using standard alpha
blending and the result is displayed on the screen. A result
is shown in Figure 4.

Despite the improvement on speed of rendering, there
is still a problem with shading transparent objects. When
blending the fragments together, we need to shade them
accordingly, and this is a forward shading step, so it inher-
its all the limitations of forward shading. Therefore, only
a small amount of lights can be selected for shading the
transparent surfaces.

Figure 4: Stencil Routed A-Buffer - Result
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Figure 5: Stencil Routing - The 4 samples for a pixel after
initialization step ready to write to the sample with stencil
value S = 2 (top-left). When the first fragment is stored all
stencil values are decreased by one, color C and depth D
of the first fragment are written into the first sample (top-
right) and after next two steps (bottom-left, bottom-right)
we have three valid samples that can be blended together.

Problems can still occur when there are more samples
per pixel than the multisample buffer can hold. Sam-
ples get lost and there is the question of what to do when
an overflow occurs. One simple improvement is to use
bounding volumes which are probably used during view
frustum culling to estimate distance from camera and ren-
der sorted (not completely like with a BSP tree) geometry,
which causes the closest surfaces to be stored in our A-
Buffer before it overflows. Afterwards, overflown pixels
will probably be more distant and their final contribution
might be so small that the artefacts will not be visible.

5 Ambient Occlusion

Ambient occlusion is defined as the amount of ambient
light reaching a point in the scene. It is calculated by inte-
grating the visibility function over a hemisphere centered
at the target point and oriented according to the surface
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normal. Static ambient occlusion can be precomputed for
static objects (and dynamic lights, since the occlusion does
not depend on light sources), however it is a costly process
and it does not produce correct results when there are mov-
ing objects in the scene.

5.1 Screen-Space Ambient Occlusion

Dynamic pre-computation of ambient occlusion is impos-
sible especially when we don’t know how objects in the
scene will move. Therefore, we need a dynamic solution
that estimates occlusion every frame.

In Mittring’s work [9], the author proposed a method
called Screen-Space Ambient Occlusion (SSAO) which
uses the depth buffer (as rendered during the G-Buffer
phase) to approximate scene geometry and estimate oc-
clusion based on this inaccurate approximation.

The output of the algorithm is a one-channel 8-bit ac-
cessibility texture covering the entire screen. The value in
each pixel in range [0,1] is then used as a multiplication
factor for ambient light of the respective pixel.

The SSAO generation pass occurs after the G-Buffer
is generated and before we synthesize lighting, since we
want to use the occlusion values during the lighting phase.
We render a fullscreen quadrilateral and access the G-
Buffer depth and the G-Buffer normal. For every pixel
p with (x,y) coordinates and d depth, its 3D eye-space
position P is reconstructed using the depth value and po-
sition in the depth map. In a small sphere around this
3D point, a number of points Q0, ...,Qc are generated by
adding random vectors of length less than 1 multiplied by
the sphere’s radius r to the point’s position.

Afterwards, every point Qi is projected back into clip
space which gives us (xi,yi) coordinates to the depth map
and the actual depth di of point Qi. If the value stored at
position (xi,yi) in the depth map is smaller than di, there
is an object covering point Qi and it is a potential occluder
for point P.

Our approach utilizes the G-Buffer normal as well,
which increases the number of correct samples - samples
that are below the surface are false occluders. This is not
included in the Crytek implementation and it avoids self-
occlusion which generates occlusion values of 0.5 on flat
surfaces. In Figure 6, we have the scene’s depth buffer as
seen from the camera C. Point Q does not lie in the half-
space assigned by point P and the normal at P. There-
fore, any object containing Q should not be considered as
an occluder. The object in front of Q should be consid-
ered and we rely on the point distribution that at least one
of the sampling points will be inside the sphere and the
sphere will contribute to occlusion. Even if this is not the
case for one point, for neighbouring pixels it probably will
be and after blurring the occlusion value gets propagated
from those as well.

To avoid generating points behind the surface, we test
the angle between the surface normal and the offset vector

P
QR

C

Figure 6: The SSAO algorithm - When calculating occlu-
sion for the surface point P, we generate points such as Q
and R in the dotted sphere with radius r. Both Q and R
have depth larger than the value stored in the depth buffer,
therefore both points are considered as occluders.

v⃗ added to P. If larger than π
2 we simply take −⃗v as the

offset vector.
For every potential occluder, the occlusion factor is

computed as a function of the occluder’s distance d:

O(d) =
1

1+d2 . (2)

A necessary step during the SSAO computation is the
generation of random vectors that are added to P. If for
every pixel we use the same set of vectors, certain repeat-
ing patterns occur. A more acceptable solution is that the
vectors differ for neighboring pixel. We use a RGB texture
containing random values that are interpreted as a vector
and up to 32 uniformly distributed vector (stored as uni-
form variables during shader execution) in a unit sphere.
In the shader, all the uniformly distributed vectors are re-
flected by using the vector value read from our random
vector texture. This ensures different rotation of vectors
on the sphere for neighboring pixels.

The difference can be seen in Figure 7. The randomized
pattern gets blurred into a smoother result since it avoids
large portions of uniformly occluded areas, which would
not disappear after blurring.

The SSAO fragment shader performs a lot of operations.
However, the results are quite noisy even when using a
large number of samples and they still require a blurring
step. Therefore, using a w

2 × h
2 (where w × h is the cur-

rent resolution) sized SSAO texture is acceptable because
it will be blurred anyway. Some implementations even use
w
4 × h

4 SSAO textures.
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Figure 7: The difference when using randomized vector in
SSAO (Left) and same for each pixel (Right)

5.2 Cross-Bilateral Filtering

Actual occlusion is mostly smooth and without any kind
of noise. Therefore, we need to reduce noise somehow.
Simply blurring the SSAO texture with a gaussian blur is
not enough, because occlusion will “leak” through edges
in the screen which results in an unnatural behavior such
as the detaching of the occlusion in Figure 8.

Figure 8: Artifacts occuring when using gaussian blur
(Left) and elimination of those artifacts when using Cross-
Bilateral Filtering (Right)

To avoid blurring over edges, we use a modified gaus-
sian blur. What we want is an edge-aware blur that
does not blur edges in the image. A great help is the
depth buffer we have stored. The difference of depth val-
ues between two neighbouring pixels describes quite well
whether there is an edge between these two pixels or not.
If there is a tiny difference, the neighbouring pixels were
very close to each other before projection.

We use a version of cross-bilateral filtering [14] coupled
with a separable gaussian blur. We perform a horizontal
and vertical blurring pass on the SSAO texture while mul-
tiplying the gaussian coefficients with a simple function of
depth difference between the center sample dcenter and the
current sample dcurrent . We use the following function:

w(current) =
1

δ + |dcenter −dcurrent |
, (3)

δ > 0 is a small constant to avoid division by zero.
After multiplying all samples with their corresponding

weights, the sum of all weights is computed so we can
normalize the result.

The results of SSAO after performing a simple gaussian
blur and a cross-bilateral blur are shown in Figure 9.

Figure 10: Comparison of a final scene without SSAO
(Left) and with SSAO (Right)

In Figure 10, you can see the visual improvement pro-
vided by SSAO with a 15x15 cross-bilateral filter.

6 Complete rendering pipeline

Our implementation was written in C++ and OpenGL and
runs on hardware supporting OpenGL 3.3. When putting
together all the rendering parts described in this paper, the
steps of our pipeline are as follows:

1. Render non-transparent objects while generating the
G-Buffer.

2. Using the G-Buffer depth and normal textures, gen-
erate the SSAO accessibility texture.

3. Render transparent objects using Stencil Routed A-
Buffer into a multisample buffer and perform forward
shading on all pixels with the selected lights.

4. Render light volumes while generating the L-Buffer.
Access SSAO texture for ambient term.

5. Blend sorted samples from the multisample buffer
into the L-Buffer.

6. Compute log-average luminance and Lwhite from the
L-Buffer.

7. Prepare unfiltered bloom texture by subtracting val-
ues based on average luminance.

8. Compose final bloom image by averaging multiple
mipmaps.

9. Tonemap L-Buffer and display on screen.

10. Display Bloom on top of tonemapped data.

7 Performance and Results

We tested our rendering engine on several scenes, the test-
ing machine had an Intel Core i5 750 CPU, a NVIDIA
GeForce 9800 GT graphic card and 4GB of RAM. Our ap-
plication is single-threaded at the moment, it was utilizing
one core of the CPU.

We used three different quality settings of our engine
during the tests:
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Figure 9: Comparison of simple blurring (Left) and edge-preserving blurring (Right) of the accessibility texture. Both
images have been darkened for the effects to be visible. Most notable differences are around the dragon’s head

• Low - 800x600 resolution, using 1
16 sized SSAO tex-

ture with 16 samples per pixel and a 21x21 pixel wide
bilateral blur. Stencil Routed A-Buffer had 4 samples
per pixel. Using one 512x512 shadow map for sun-
light.

• Medium - 1280x720 resolution, using 1
4 sized SSAO

texture with 16 samples per pixel and a 61x61
pixel wide separable bilateral blur. Stencil Routed
A-Buffer had 8 samples per pixel. Using one
1024x1024 shadow map for sunlight.

• High - 1920x1080 resolution, using full-sized SSAO
texture with 16 samples per pixel and a 61x61
pixel wide separable bilateral blur. Stencil Routed
A-Buffer had 8 samples per pixel. Using one
2048x2048 shadow map for sunlight.

Furthermore, we used multiple presets to determine
which operations take how much performance.

• SSAO + SR - SSAO and transparent objects enabled

• SSAO - SSAO enabled and transparent objects dis-
abled

• SR - SSAO disabled and transparent objects enabled

• OFF - SSAO and transparent objects disabled

The results are shown in Table 1, listing average FPS
values. SSAO is the main time-consuming operation, es-
pecially on High settings when using a full-sized buffer.
However, on lower settings, the effects of SSAO were still
visually appealing and only an experienced user would no-
tice some artifacts due to the low resolution of the buffer.
We do not recommend doing SSAO in full-size, 1

4 sized
buffer is a good performance and quality trade-off.

Note that the performance of SSAO depends mainly
on screen resolution and samples per pixel. Since it is a

screen-space algorithm, it does not in any way depend on
scene complexity. This is one of the advantages of SSAO,
that it provides stable performance and no unexpected FPS
spikes.

Stencil Routed A-Buffer, on the other hand, depends on
how many transparent objects and layers are visible at the
moment. The more pixels, the more we need to sort and
the higher FPS spikes. In the Dragon scene, there were no
transparent objects, therefore the measurements are omit-
ted.

All testing scenes had 6 animated point lights and one
static directional light with Shadow Mapping as a good
base for Deferred Shading.

8 Conclusion

We have presented a fully-dynamic real-time rendering
system that overcomes any kind of pre-processing steps
and allows dynamic objects and lights. The system runs at
interactive frame-rates on newer hardware but it is com-
patible with OpenGL 3 hardware and it can be altered
(in terms of quality) to run at interactive frame rates on
older hardware as well. We have presented how the differ-
ent techniques fit together and provide visually appealing
quality.

Our system still has limitations to overcome, especially
allowing an arbitrary number of lights to affect transparent
objects without a performance hit. Other Real-time Ambi-
ent Occlusion techniques as well as Per-pixel Linked Lists
for Order Independent Transparency should also be inte-
grated into the system to evaluate the quality/speed trade-
off and provide other solutions for latest hardware.
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Scene Triangles Preset Low Medium High

Sponza 287 353

SSAO + SR 18.7 10.9 3.0
SSAO 20.9 13.8 3.6

SR 19.7 15.8 10.7
OFF 24.7 21.3 14.6

Dragon 201 075 SSAO 38.1 19.1 3.8
OFF 49.6 36.2 21.2

House 11 563

SSAO + SR 46.7 18.3 3.9
SSAO 60.1 26.0 4.6

SR 67.5 32.7 17.8
OFF 95.0 60.0 36.3

Table 1: Overall performance on three different scenes. Showing average FPS values for different settings of our engine
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Abstract

Efficient modeling of hair for realistic computer animation
is a difficult problem because of the sheer number of indi-
vidual hairs on a human head or an animal body. Random
placement of hair roots on an arbitrary triangle mesh is an
important sub-task of this problem. The main contribu-
tion of this paper is a simple, fast, and memory-efficient
algorithm for randomly distributing points on a triangular
mesh with a density specified by a two-dimensional tex-
ture. Our algorithm is many times faster than existing al-
ternatives, such as rejection sampling. Furthermore, we
describe a software architecture for procedural generation
of hair in render-time. This module can generate millions
of hairs during rendering from only a few guide hairs di-
rectly modeled by a 3d artist, which makes the rendering
process very efficient.

Keywords: Mesh sampling, sample density, hair model-
ing, procedural generation

1 Introduction

Recent 3D animated films contain creatures with lots of fur
and nowadays the trend in the film industry is to use CGI
for such creatures even in non-animated films. The key
question is how to effectively create hair (or fur) styling.
Modifying each hair individually by a 3d artist is not prac-
tical because it would take too much time and therefore
cost large amount of money. It is much easier for a 3d
artist to create and model only a subset of hair fibers from
which final hair will be automatically generated. The cur-
rent approach is to export the generated hair fibers of the
final hair into a large file that is then sent to the renderer
that produces the high quality frames. However, because
of the sheer number of individual hair fibers in the final
hair style, such a file can take up gigabytes of disk space
and therefore working with it becomes inefficient.

In this paper, we present a library that is able to gen-
erate final hair from a modeled subset of hair during ren-
der time, therefore skipping the export of hair to a scene
file. Furthermore our library is able to display thousands
of hair interactively. Hair generated by our library has also

∗martin sik@centrum.cz
†jaroslav@cgg.mff.cuni.cz

(a) Point samples (b) Generated hair

Figure 1: The left picture shows 100,000 point samples
that has been used in the right picture as hair roots posi-
tions.

a number of parameters that improve realism of hair, such
as creation of hair strands or influencing hair shape with a
noise.

One of our goals is to have very fast generation of hair.
The main bottleneck in hair generation is random place-
ment of hair positions on a model. To remove this prob-
lem, we have developed a new algorithm for fast sampling
of triangular meshes. Since real hair density may vary a lot
over a human or an animal skin, the main feature of our
sampling algorithm is that the density of generated sam-
ples can be defined by a two-dimensional texture mapped
on the model from which the hair grows.

Figure 1 shows an example of hair roots placement. Im-
age 1a demonstrates 100,000 points generated by our al-
gorithm while the image 1b shows hair procedurally gen-
erated by our library growing from these points.

In Section 2, we discuss the present state of the art in
mesh sampling algorithms and hair modeling. In Sec-
tion 3, we describe our new algorithm for sampling on tri-
angular meshes and present its results. In Section 4, we
present a software architecture for procedural generation
of hair. Finally, we conclude in Section 4 and present di-
rections for future work.

2 Related Work

2.1 Random Sample Generation

Random sample generation is a problem that has been a
point of interest in the field of computer graphics for a
long time, since it can benefit a variety of graphics applica-
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tions in texturing, rendering, remeshing, and point-based
graphics [6, 7, 10]. Our goal is fast generation of sam-
ples on a triangular mesh. This specific issue is addressed
by [2], however their priority is not efficiency, but rather
good distribution of generated samples. Apart from this
article there are other works (for example [4]) that address
fast generation of samples with good distribution, but they
generate samples in a plane and it is unclear how to ap-
ply them for generation of samples on a triangular mesh.
Standard methods like rejection sampling [6] can also be
used to generate samples on a triangular mesh, however
they are too slow for our purpose.

2.2 Modeling and Rendering Hair

Modeling and rendering of hair is an issue addressed by
numerous works, but they do not discuss the procedural
generation of hair in render-time. Among the tools used
for hair modeling in standard modeling programs (such
as Autodesk Maya), Shave and a Haircut1 allows the user
to model a subset of hair from which it then procedurally
generates hair. However Shave and a Haircut is unable to
execute the generation of hair in render-time without the
need of saving hair geometry to a scene file. Since Shave
and a Haircut is a commercial product, it is unknown how
it generates hair or places hair roots on a model. Gener-
ation of hair in render-time is mentioned in [8], however
their work is focused on speeding up rendering of hair in a
specific renderer and they omit how exactly is the genera-
tion of hair done.

3 Random Points Generation

In this section we describe our algorithm for randomly dis-
tributing points on a triangular mesh with a density speci-
fied by a two-dimensional texture. Note that the problem
would be trivial if the desired point density was uniform
over the surface: in such a case, we would simply pick a
triangle proportionally to its area (using the inversion of
a discrete cumulative distribution function) and place the
point uniformly in the selected triangle.

Figure 2: Recursive subdivision of a triangle.

However, since the point distribution probability density
must take into account both the density texture mapped
on the mesh surface and also each mesh triangle’s area
size, creation of the cumulative distribution function is not
trivial. We overcome this problem by recursively subdi-
viding each mesh triangle to sub-triangles (see Figure 2)

1http://www.joealter.com/

until every sub-triangle’s surface has uniform density. We
then calculate the probability that new sample will be cre-
ated on a given sub-triangle as the density texture value
integrated over the sub-triangle’s surface. We use these
probabilities to create the discrete cumulative distribution
function. Finally for every desired random point we first
use this cumulative distribution function to randomly se-
lect any sub-triangle from the mesh surface based on its
probability and then we uniformly sample the selected
sub-triangle to determine a generated point position.

3.1 Defining the sub-triangle probability dis-
tribution

In order to define the sub-triangle probability distribution
we iterate through all triangles of the given mesh surface.
As previously mentioned, we recursively subdivide each
triangle, however to make the subdivision a lot faster we
do not actually check if every sub-triangle’s surface has
uniform density, instead we will stop the subdivision if no
more than one texel of the density texture is mapped on
each sub-triangle. Thanks to this we can calculate a subdi-
vision depth for each triangle directly from number of the
density texture texels mapped on it. Also we do not need
to integrate the density texture over a sub-triangle to deter-
mine its probability, we only evaluate the density texture
at the sub-triangle’s barycenter.

As we will discuss later, both the speed and memory
cost of our algorithm depends on the total number of sub-
triangles. To decrease the number of sub-triangles we can
check the probabilities of four sub-triangle siblings and if
they have the same probability, we can use their parent
instead of them (see Figure 3). Again we can check the
parent’s siblings and continue until the probabilities differ
or we have reached a non-subdivided triangle. After these
steps are applied each sub-triangle is only divided if its
surface has not uniform density as it was mentioned in the
brief algorithm description.

0.4

0.1

0.1
0.1 0.1

Figure 3: If the four sub-triangle siblings have the same
probability, their parent may be used instead of them. The
numbers represent the probabilities.

As we have said before, the final step of our algorithm
is sampling the selected sub-triangle. In order to calculate
the sample point position on the triangle mesh we need to
store for each sub-triangle a reference to the parent mesh
triangle and where it is located inside the triangle (i.e. the
barycentric coordinates of the sub-triangle in the parent tri-
angle). This has to be done during the computation of the
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sub-triangle probability distribution. Since the subdivision
scheme is same for every triangle, we only need to give
unique index to each possible sub-triangle position inside
a triangle (see Figure 4) and store barycentric coordinates
of these sub-triangle positions in a separate data structure,
where they can be easily accessed by the position index.
This significantly reduces memory consumption, since we
only need to store two indices per sub-triangle (a parent
triangle index and a sub-triangle position index) and its
probability and therefore each sub-triangle takes up only
12 bytes in memory (considering the fact that all 3 val-
ues takes up 4 bytes). The size of the pre-computed data
structure which stores sub-triangle positions is negligible.

During a sub-triangle subdivision we will need to cal-
culate the index i of a sub-triangle position from the index
iparent of its parent sub-triangle position: i = 4(iparent +
1)+ j, where j ∈ [0,3] is the j-th sub-triangle of its subdi-
vided parent sub-triangle.

0
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Figure 4: Indices of sub-triangle positions inside a trian-
gle.

The complete algorithm for the computation of the sub-
triangle probability distribution is described in Figure 5.

3.2 Generating a Point Sample

As mentioned before, to generate a point sample we first
need to randomly select a sub-triangle based on its pre-
viously computed probability. To implement this random
selection we need to convert sub-triangles probabilities to
a cumulative distribution function.

The cumulative distribution function is defined as F =
P(X ≤ x), where P(X ≤ x) is the probability of X ≤ x
and X is a random variable from the distribution D. Since
we use only discrete version of the cumulative distribution
function, we can easily compute it:

F( j) =
j

∑
i=0

P(X = i) = F( j−1)+P(i),

where F(0) is defined as P(X = 0) and P(X = i) describes
the probability of a discrete random variable X being equal
to i. The discrete function F is then stored as an array.

Following [6], we find a sub-triangle as
argmini (F(i)> ξ ), where ξ is a random number
from U(0,maxF(x)). Because values of F(i) are increas-
ing with greater i, we can use the bisection algorithm to
find argmini (F(i)> ξ ). Finally, we generate a random
sample in the selected sub-triangle with uniform prob-
ability density, and map the sample to the barycentric

For each mesh triangle T :

1. Calculate the area of T . The subdivision depth i is now 0.
Mark the triangle T as the sub-triangle D0 (Di denotes sub-
triangle in the subdivision depth i).

2. If the subdivision depth i is less than maximum (more than
one texel of the density texture is mapped on the sub-
triangle Di):

(a) Subdivide the sub-triangle Di to four smaller sub-
triangles Di+1.

(b) For each sub-triangle Di+1 store the index of the tri-
angle T and the sub-triangle Di+1 position inside T .

(c) Increase the depth of recursion i by one and call step
2. for every sub-triangle Di+1 of the sub-triangle Di.

3. Otherwise (the maximum subdivision depth was reached):

(a) Calculate the probability PDi of the sub-triangle Di as
the area of Di multiplied by the density texture value
mapped on Di’s barycenter.

(b) While each of four sub-triangles Di with the same
parent sub-triangle Di−1 are not subdivided and have
the same probabilities PDi :

i. Discard sub-triangles Di and use their parent
Di−1 instead with the probability PDi−1 = 4PDi .

ii. Decrease the subdivision depth i by one and if
i = 0 exit the while-cycle.

(c) Store sub-triangles probabilities PDi .

Figure 5: The computation of the sub-triangle probability
distribution.

coordinates of the parent mesh triangle. The complete
algorithm for generating a point sample is described
in Figure 6.

3.3 Further Improvements

As described in Figure 6, for each sample we select a sub-
triangle using the bisection algorithm. The bisection al-
gorithm runs in logarithmic time proportional to the size
of the cumulative distribution function domain. Since the
domain of F is usually very large, even logarithmic time
for generating each sample may be quite a lot.

We improve speed of the sub-triangle selection by cre-
ating 1-dimensional uniform grid G over the F codomain
(see Figure 7). For each cell C of the grid we store two
indices Cbegin and Cend (elements of the F domain):

Cbegin = argmini {F(i) ∈C}
Cend = argmaxi {F(i) ∈C}

When generating a sample, we first generate a random
number ξ0 ∈ [0,maxF ] as before, but then we determine
a cell C of the uniform grid for which ξ0 ∈ C in constant
time, after that we select a sub-triangle using the bisection
algorithm only in limited domain of F : [Cbegin,Cend ].
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For every requested point sample:

1. Select a sub-triangle:

(a) Generate a random number ξ0 ∈ [0,maxF ].

(b) Select a sub-triangle as D = argmini F(i)> ξ0 using
the bisection algorithm.

2. Generate a sample in the selected sub-triangle

(a) Generate two uniform numbers ξ1, ξ2 ∈ [0,1].

(b) Calculate the barycentric coordinate uD = 1−
√

ξ1

(c) Calculate the barycentric coordinate vD = ξ2 ·
√

ξ1

3. Map the sample to the barycentric coordinates (u,v) in the
parent mesh triangle:

(a) From uD,vD calculate the barycentric coordinates of
a sample in the triangle T containing the selected
sub-triangle D:
u = uD ·u1 + vD ·u2 +(1−uD− vD) ·u3
v = uD · v1 + vD · v2 +(1−uD− vD) · v3
where ui,vi are the barycentric coordinates of D ver-
tices inside T . We obtain ui,vi by a lookup in the pre-
computed sub-triangle position data structure (Sec-
tion 3.1) using the sub-triangle index.

Figure 6: Generating a point sample.

C3

C2

C1

C0

F

C0
begin C0

end C2
begin C2

end=

Figure 7: The uniform grid G built over the cumulative
distribution function F codomain. The Cbegin and Cend rep-
resent indices stored for every grid cell C.

The number of cells in the uniform grid G will influence
samples generation performance. If grid has so many cells
that in each cell lies only single member of the F domain
then the selection of a sub-triangle will run in constant
time at the cost of an increased memory consumption.

3.4 Results

We test our sampling algorithm on a single core of a 3.07
GHz PC with 6 GB RAM running Windows 7 64bit. We
typically use the same number of cells of the uniform grid
as is the size of the F domain (i.e. the number of generated
sub-triangles) and a density texture with resolution 1024×
1024 except if noted otherwise.

3.4.1 Comparison to Rejection Sampling

We compare our algorithm against rejection sampling
since we were not able to find any other alternatives in the
existing literature. The rejection sampling first randomly
selects a triangle based on its area (for that purpose we use
in our implementation a cumulative distribution function),
then the triangle is uniformly sampled and the sample is
accepted if a random value is not lesser than the value of
the density texture at the sample point, otherwise it is re-
jected and rejection sampling generates a new sample.

Figure 8 plots the performance of our algorithm and the
rejection sampling algorithm tested for three models with
a uniform density texture. Since we have used a uniform
density texture, the rejection sampling algorithm never re-
jects any generated sample. Faster sampling rate of our
algorithm is therefore caused only by the usage of the uni-
form grid built over the cumulative distribution function
codomain: we can see that this technique provides a speed-
up between 3 and 6 for the tested cases. Usage of the uni-
form grid should remove the dependency on a model trian-
gle count, however if triangles’ areas differ greatly the cu-
mulative distribution function is non-linear and therefore
the uniform grid is not very efficient. All models are dis-
played in Figure 10 and their triangle counts can be found
in table 2.

Figure 8: The sampling rate (samples per second) for our
algorithm and for the rejection sampling algorithm. 3 dif-
ferent models with a uniform density texture were used in
this test. Dashed lines represent the sampling rate with-
out the preprocess time (i.e. triangle sub-division and the
cumulative distribution function construction).

We have also tested the influence of the uniform grid
resolution on the sampling performance. As shown in Ta-
ble 1, total time spent on the preprocess part of our algo-
rithm is only slightly influenced by the cell count, however
memory consumption grows significantly with increasing
number of the grid cells. The highest sampling rate is
achieved when the number of cells is two times higher than
the size of the cumulative distribution function domain.

Figure 9 also plots the performance of our algorithm and
the rejection sampling algorithm, but this time we have
tested them with 4 density textures with different average
values. The average value of a density texture corresponds
to the overall density of samples and also to the percentage
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Grid size #Samples CDF constr. Memory
0% 2365628 0.054s 1.33 MB
13% 5855405 0.055s 1.47 MB
25% 5951817 0.057s 1.60 MB
50% 5890408 0.058s 1.86 MB
100% 6387220 0.059s 2.39 MB
200% 6531778 0.061s 3.45 MB
400% 6447026 0.066s 5.57 MB

Table 1: The results of testing the preprocess part of our
algorithm and sampling speed for the bunny model with
different resolutions of the uniform grid. The grid size is
reported as percentage of the cumulative distribution func-
tion size. We have used a uniform density texture for this
test.

of samples accepted by the rejection sampling algorithm.
The plots show that the performance of our algorithm re-
mains roughly the same for all textures, but the perfor-
mance of rejection sampling algorithm depends linearly
on a decreasing texture average value.

Figure 9: The sampling rate (samples per second) for our
algorithm and for the rejection sampling algorithm. 4 den-
sity textures with different average values mapped on the
bunny model were used in this test. Dashed lines represent
the sampling rate without the preprocess time.

3.4.2 Performance

Table 2 shows the preprocess time for three different mod-
els with a uniform density texture. Both time and memory
consumed by the preprocess is roughly linear in the model
triangle count.

Model Preprocess Memory #4
Bunny 0.070s 2.39 MB 69k
Dragon 0.127s 8.68 MB 202k
Buddha 0.25s 51.26 MB 1087k

Table 2: The result of testing the preprocess part of our al-
gorithm for mesh surfaces with different triangle count.
The results of sampling performance are shown in Fig-
ure 9. All models were used with a Perlin noise density
texture.

Figure 10: Models used for testing.

Finally we have tested the influence of the density tex-
ture resolution. Table 3 demonstrates that time and mem-
ory spent on the preprocess part of our algorithm depends
linearly on a density texture texel count. Thanks to the
uniform grid the sampling rate is only diminished by the
longer preprocess time.

Resolution #Samples Preprocess. Memory
5122 6757501 0.019s 4.49 MB
10242 6306838 0.070s 5.33 MB
20482 4998126 0.253s 31.26 MB

Table 3: The results of testing our sampling algorithm
for the bunny model with different resolutions of a Perlin
noise density texture. The number of generated samples is
per second.

3.4.3 Visual Results

Figure 11 shows a uniform distribution of points on the
bunny model. The points distribution over the surface is
not particularly good, but that is the price we have to pay
for very fast sampling. Since the main purpose of this al-
gorithm is the placement of hair roots positions, the quality
of sampling is not so important. Figure 12 demonstrates a
distribution of points controlled by a simple density tex-
ture.

Figure 11: The bunny model with 8,000 uniform points
samples.
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Figure 12: The bunny model with 8,000 points samples of
increasing density from left to right.

4 Hair Modeling and Rendering

The procedural generator of hair we provide is a part of a
complete hair modeling plug-in for Autodesk Maya called
Stubble. We will first describe the pipeline of hair model-
ing used in Stubble in Section 4.1 and then we will closely
discuss the software architecture of the hair procedural
generator in Section 4.2.

4.1 Hair Modeling Pipeline

The main idea behind hair modeling with Stubble is to
let a 3d artist model only small subset of hair, called hair
guides, from which the rest of hair will be automatically
generated by Stubble. Creating hair with Stubble can be
divided into several steps:

1. Preparing hair guides: The first step is to create a
few hair guides on a selected triangular mesh. The
user may set the number of hair guides and their den-
sity over the mesh. Their roots positions are gen-
erated by our sampling algorithm described in Sec-
tion 3.

2. Modeling hair guides: Each hair guide is repre-
sented by a polyline and user can model it using spe-
cial tools which behave like comb or scissors.

3. Applying dynamics: After the basic modeling of
guides is done, hair guides can be animated by ap-
plying hair dynamics.

4. Hair properties: When hair guides are properly
modeled and animated, we procedurally generate the
final hair fibers based on the guides. In the ba-
sic form, the generated hair simply interpolate their
shape from nearby guides, but they may additionally
be affected by random noise, color and other param-
eters. Stubble plug-in can interactively display thou-
sands of generated hair during hair modeling in the

Maya viewport, so the 3d artist may see how the fi-
nal hair will look like. This is possible thanks to the
efficiency of our point distribution algorithm.

5. Rendering: Final step is rendering hair with spe-
cialized rendering software. During rendering hun-
dred thousands or even millions of hairs with selected
properties are generated by Stubble from hair guides.

Figure 13 demonstrates hair modeling on a human head.

(a) Hair guides model-
ing

(b) Interactive hair
generation

(c) Final render

Figure 13: Hair modeling pipeline

4.2 Procedural Generation of Hair

4.2.1 The Library Architecture

We have designed our procedural hair generator as a
dynamic-link library that can be executed by different ren-
derers. For each supported renderer, there is separate
entry-point which implements renderer specific require-
ments for libraries that generate scene geometry.

To improve performance of hair generation we want
to parallelize it. Since renderers are usually parallelized
themselves, we take advantage of that and parallelize hair
generation by calling our library separately from different
threads of a renderer. Each of these calls is responsible for
generating hair on one selected part of a triangular mesh
and runs in a single thread. User of Stubble sets the num-
ber of parts to which the mesh is split and therefore the
number of calls of our library. Is then up to the renderer to
decide on how many threads these calls will be executed.
It is important to mention that each frame of rendered an-
imation is handled completely separately. For example if
the mesh on which hair grows is split to 8 parts and we
render 4 frames, our library will be called 32 times.

Most of the renderers require to know the bounding box
of the geometry generated by any library before the library
is even called. For example RenderMan interface com-
pliant renderers use this information to optimize memory
consumption, which is key feature when rendering mil-
lions of hairs. It is mentioned in [8] that it is for the best
to calculate the tightest possible bounding box from com-
plete hair geometry no matter additional time consump-
tion. Therefore we generate hair geometry twice, first be-
fore rendering to calculate the bounding box and then dur-
ing rendering we generate the hair again for actual render-
ing purpose. Since we have split hair generation during
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rendering to several library calls, we have to calculate the
bounding box for each call separately, which is done in
parallel.

Generating hair twice could be avoided if we generated
hair before rendering and then supplied it to a renderer di-
rectly with the rest of a rendered scene. This approach
seems logical but it has one huge pitfall. We would have
to save all hair geometry to a scene file. Since there can
be millions of hairs, the scene file size could grow to sev-
eral gigabytes for a single frame. Because the hair gener-
ation is very efficient (which is partly thanks to the speed
of our point generation algorithm described in Section 3),
handling such files causes much worse performance than
generating hair twice, especially when these files usually
have to be moved from a 3d artist workstation to comput-
ers dedicated only to rendering.

There are many parameters that influence hair genera-
tion. The modeling part of Stubble is responsible for sav-
ing them to files which are then used by our library during
rendering. There are two types of these files. First of them
stores properties like hair color or width that are shared
among all library calls. The second type of file stores data
specific for one library call, such as the selected part of the
mesh and the number of hair generated by this library call.
All input files are compressed to save disk space. Since
Stubble enables interactive display of hair during model-
ing, hair parameters may be send to our library directly
from the modeling part of Stubble without the need of cre-
ating any files.

4.2.2 Hair Generation

In this section we describe how every single hair is gener-
ated by our library. Before we start describing hair gen-
eration, it is important to know how we represent each
hair. The most flexible way is to handle each hair as the
Catmull-Rom curve, an interpolation curve defined only
by the vertices it passes through. Furthermore, we specify
for each of these vertices color, opacity, curve width and
curve normal (an unit vector perpendicular to the curve
tangent at a given vertex), which are then interpolated
along the curve by a renderer.

The simplified flowchart in Figure 14 shows the gener-
ation of a single hair. It starts with creating a sample on
the triangular mesh with a density defined by a texture as
described in Section 3. The sample serves as the position
of a hair’s root. The generation of the sample must be very
fast, otherwise it would be a bottleneck in the generation
of hair.

When we know the position of hair, we generate its ba-
sic geometry by interpolation from few closest hair guides.
To determine the closest hair guides we use euclidean dis-
tances of hair root from hair guides roots. To speed up this
process, we store hair guides roots in a KD-Tree [3]. We
have already mentioned that each hair is a curve defined by
vertices and each hair guide is a polyline and therefore also
represented by vertices. The hair curve and each hair guide

Figure 14: Flowchart of the generation of a single hair.

has the same number of vertices, so we can easily interpo-
late the hair curve by interpolating its vertices from corre-
sponding hair guides vertices. To interpolate vertices we
use Scattered Data Interpolation, specifically the Shepard
method [9], which gives each guide hair a weight based on
the distance from the interpolated hair.

Interpolating the hair curve from hair guides is not
enough to make generated hair realistic, because the num-
ber of generated hair is far greater than the number of
hair guides. To improve hair realism, we randomize each
hair curve by adding random vectors generated from Perlin
noise [5] to hair curve’s vertices. The number of vectors
used on a single hair, vectors size and noise frequency are
user parameters. Figure 15 shows an example of a noise
influence on hair.

Figure 15: An example of a noise influence on straight
hair.

The next step is to define hair color, opacity and width.
The user specifies these attributes at hair root and tip and
we interpolate them to every hair vertex. Again we add
some noise to hair color to increase realism.

Finally we have to calculate hair curve normals. Since
curves are usually generated by a renderer as flat ribbons,
we have to define the rotation of the ribbon about the
curve. This is done by the curve normals. We use the
method described in [11] to calculate reasonable normals.
Computation of normals requires as input curve tangents,
which are easily calculated for a Catmull-Rom curve from
its vertices [1].

A single hair is now completely specified, we can ei-
ther output it as is or we can use it to generate a whole
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strand of hair. The user can specify if strands should be
generated and how many hairs are in a single strand. If we
generate a hair strand, we use the just generated hair as a
basic hair around which all hair from this strand is gener-
ated. Each hair from strand inherits its properties from the
basic hair and it is also influenced by the basic hair geom-
etry. Furthermore, user can define several parameters of
hair strands, that control the spread of hair roots and tips
from the basic hair, twisting of hair around the basic hair
and much more. Figure 16 demonstrates hair strands.

Figure 16: Generated hair strands.

Just before we output each hair to a renderer, we cut it.
How much is each hair cut is defined by a texture mapped
on the mesh from which the hair grows. The texture value
specifies a curve parameter at which the curve is cut. Ev-
ery user parameter controlling hair generation is also spec-
ified by a texture, which gives the user the ability to set
different parameters for each hair.

Figure 17 shows hair generated by our library. There is
1,600,000 hair on this animal and it took only 3.2 seconds
to generate it on a two core 3.07 GHz PC.

Figure 17: An animal with 1,600,000 hair generated by
our library.

5 Conclusions and Future Work

In summary, we have presented a sampling algorithm suit-
able for fast sampling on triangular meshes. The density
of samples generated by our algorithm is defined by a two-
dimensional texture. In our tests, our algorithm achieves a
3 – 33 speedup compared to the fastest available alterna-
tive - the rejection sampling.

Furthermore, we have described a hair generator library
that is able to generate millions of hairs in a few seconds
during rendering. Our library utilizes the presented sam-
pling algorithm for a very fast placement of hair roots.
Hair generated by our library is influenced by several prop-
erties and by a few hairs modeled directly by a 3d artist.

Our library is also able to display hair interactively in a
modeling program.

There are several limitations of our work that should be
addressed in future work. First, the uniformity of the gen-
erated samples should be improved. Second, we would
like to add several modifications to our hair generator li-
brary, such as generation of low quality hair if an object
with hair is motion blurred or is far away from a scene
camera.
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Abstract

Physically plausible simulation of fluids in real-time is

mostly achieved using approximations of the Navier-

Stokes equations. Recent methods simulate fluids by ex-

ploiting the capabilities of modern graphics processing

units. This article describes a method called Smoothed

Particle Hydrodynamics (SPH), which is a numerical ap-

proximation of the Navier-Stokes equations. The real-time

simulation allows for interactivity which is a great advan-

tage against the offline methods. Offline methods are not

running in real-time. The main goal of this project was

to experiment with the Smoothed Particle Hydrodynamics

running in realtime on the GPU.

Keywords: particle systems, fluid simulations, Navier-

Stokes equations, smoothed particle hydrodynamics,

CUDA, GPGPU, marching cubes

1 Introduction

Real-time simulation of fluids is a hot topic and major

challenge in computer graphics. Fluids like liquids and

gases are an important part of our life and environment. In

real-time grapics we tradicionally try to reproduce a part

of our world as visually realistic as possible, but unfortu-

nately it is hard to simulate. Researchers concentrate on

developing new, better and faster methods to simulate and

visualize fluids. It is commonly said to be one of the hard-

est phenomenon to simulate realistically and even harder

to simulate detailed fluids interactively. The offline meth-

ods which run not in real-time, can generate physically and

visually better results, but with no user interaction, which

is a disadvantage.

The mostly used method in computer graphics to sim-

ulate fluids is the Smoothed Particles Hydrodynamics

(SPH) [6]. SPH is based on the Navier–Stokes equations.

Because of the complexity of these equations, they can be

solved only in simple cases. Generally, they are solved by

a numerial method. The SPH method has good approxi-

mation which computes the most important properties of

fluids like density, pressure and viscosity.

The aim of this work was to experiment with the SPH

method on the CUDA platform. The experiments were

mostly focused on achieving a simulation running in real

time with different types of visualization methods and on

speeding up the slowest parts of the implemented algo-

rithms.

This work is structured as follows. In Section 2 we de-

scribe the present state of methods used in this area. Then

the Section 3 and 4 present theoretical aspects. Section 5

contains important implementation details. The results are

summarized in Section 6.

2 Related work

In 1822 Claude Navier and in 1845 George Stokes formu-

lated the famous Navier-Stokes equations that describe the

motion of the fluid substances [3]. With these equations

which describe the conservation of momentum together

with the two additional equations for the mass and energy

conservation, it is possible to simulate the fluid flow.

Simulations apply numerical methods to solve the non-

linear partial differential equations. One common way to

do this is to treat the fluid as a continuum, discretize the

spacial domain into a grid, and use the finite differences or

the finite volume method [16]. In the literature about the

fluid simulations, the grid-based fluid models are called

Eulerian models. The fluid is thought of as being com-

posed of fluid cells that form a uniform grid. Each cell

contains a number of fluid molecules, or particles. The

grid-based methods, as a matter of principle, have the

drawback of a bounded simulation space which is caused

by the finite memory of the computation devices. The fluid

can not flow freely in the virtual environment because it

can not exist outside the grid; it is locked in the grid.

The grid provides a solution to estimate the derivatives

using a finite difference method (FDM). For theoretical de-

tails on Eulerian fluids see [5, 8, 19]. Although the Eule-

rian method provides better description of some the prop-

erties of fluids (mass-density, pressure field) compared to

the Lagrangian method, but the major disadvantage is the

grid itself.

The particle-based methods in the literature are called

the Lagrangian models. These methods represent fluids

using a discrete set of particles. These particles simulate

the flow of the fluid by solving the particle hydrodynamics.

For the real-time applications this has some advantages
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against the grid-based methods. The biggest advantage is

that the fluid can spread freely in the simulation space. For

these reasons, we focus on the Lagrangian method based

on the Smoothed Particle Hydrodynamics [6], which is the

most popular solution for this kind of applications simulat-

ing the fluids. Each particle distributes its fluid properties

to the surronding particles in the near neighbourhood us-

ing a radial kernel function (the smoothing kernel). The

evaluated new property of a particle is the sum of property

quantities of neighbour particles weighted by the smooth-

ing kernel.

The Smoothed Particle Hydrodynamics method was in-

troduced in 1977 by Monaghan and Gingold [15] and in-

dependently by Lucy [9]. First, it was used in astrophysics

to simulate large scale gas dynamics [18]. Later, it was

applied to incompressible flow problems. In the real-time

applications, at first the Eulerian method was favoured.

Müller, Charypar and Gross [12] showed that the SPH is

well suitable for interactive real-time applications. Vizual-

ization of the results plays as important role as the main

simulation process in these applications. The most often

used methods for rendering are these: point splatting [12],

marching cubes or marching tetrahedra [21, 20], and ray-

casting [7].

3 Smoothed Particle Hydrodynam-

ics

This section is focused on the theoretical explanation of

the Lagrangian equations and how they are discretized.

The most important parts are symmetrizations of the

forces, like pressure and viscosity. The last part about the

smoothing kernels describes the force computations.

3.1 Lagrangian equations

This subsection describes the Lagrangian method of the

fluid simulation. The conservation of mass / continuity is

given by:
dρ

dt
= −ρ∇ ·v, (1)

where ρ is density, v velocity and t is time. Using the sub-

stantive derivative [4], which specifies: dv
dt

= ∂v
∂ t +v · ∇v,

it defines the strength of how viscous the fluid is. We get

the Lagrangian formulation of the conservation of momen-

tum:
dv

dt
= − 1

ρ
∇P+

1

ρ
∇ · τ + f, (2)

where v is the velocity field, ρ the density, P the pressure, f

are external forces and τ the viscosity coefficient. We can

ignore the mass conservation if we assume that the number

of particles in constant. Finally end with this expression:

ai = − 1

ρi

∇Pi+
1

ρi

∇ . τi+ fi = f
pressure
i + f stressi + f externali ,

(3)

where ai is the acceleration of a particle, f
pressure
i is the

pressure force, f stressi is the deviatoric stress (viscosity)

and f externali is the sum of external forces (e.g. gravity,

boundaries). The remaining equations are derivable from

previous equations or they can be found in [13, 11].

3.2 Discretization

The SPH can be used for any kind of fluid simulation.

This is an interpolation method for the particle systems.

In this method, the field quantities are only defined at dis-

crete particle locations and can be evaluated anywhere in

the space. For this purpose, the SPH distributes the prop-

erty quantities in the neighbourhood of any particle using

the smoothing kernel. In the SPH, a scalar quantity is in-

terpolated at a specific location by a weighted sum of the

contributions from all particles:

Ai (ri) = ∑
j

m j

A j

ρ j

W
(
ri − rj,h

)
, (4)

where j iterates over all particles, m j is the mass of the

particle, A j is the scalar property, r j is the position and h

is the radius of the smoothing kernel.

Figure 1: Lagrange particle-based fluid structure in 2D.

The particles are represented by the dots. The circles rep-

resent the volume of each particle.

The function W (r,h) is called the smoothing ker-

nel with the core radius h. The W must be even

(W (r,h) =W (−r,h)) and have finite support. If the W

is even and normalized, the interpolation is of second or-

der accuracy. The kernel is normalized if the following is

true: ∫
W (r)dr = 1. (5)

Each particle i represents a certain volume Vi = mi
ρi
;

this means they have mass and density. The mass mi of

each particle i is constant throughout the full simulation

process. The density ρi needs to be evaluated at every

timestep. With the substitution we get the following equa-
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Figure 2: The smoothing distance h and the surrounding

particles within it.

tion for the density at a given position r:

ρi (r) = ∑
j

m jW
(
ri − rj,h

)
(6)

In the SPH, the derivatives of the field need not to be

evaluated. These derivatives only affect the smoothing

kernels. The gradient of A is:

∇Ai (ri) = ∑
j

m j

A j

ρ j

∇W
(
ri − rj,h

)
, (7)

while the laplacian of A is given by:

∇2Ai (ri) = ∑
j

m j

A j

ρ j

∇2W
(
ri − rj,h

)
. (8)

The main problem of the SPH is that to derive the fluid

equation it is not guaranteed to satisfy all the physical prin-

ciples such as symmetry of the forces and conservation

of the momentum. The problems are solved via different

types of smoothing kernels [13], which are discussed in

the next chapters, see Fig. 3, 4, and 5.

3.3 Pressure

The applications of the SPH rule described in Eq. (1)

yields:

f
pressure
i = −∇p(ri) = −∑

j

p j

ρ j

∇W
(
ri − rj,h

)
(9)

As we mentioned in the previous subsection the force

would not be symmetric. It can be seen simply when only

two particles interact. The first particle i only uses the

pressure at particle j to compute its pressure force. Since

the pressures at the location of the two particles are not

equal in general, the pressure forces will not be symmet-

ric between them. Newton’s 2nd law states that, to every

action there is always an equal and opposite reaction: or

the forces of two bodies on each other are always equal

and are directed in opposite directions. There are differ-

ent types of solutions for this symmetrization problem in

the literature. Gross, Müller and Charypar [12] described

a simple and fast solution of this problem:

f
pressure
i = −∑

j

pi + p j

2ρ j

∇W
(
ri − rj,h

)
. (10)

Now the pressure force is symmetric because this equation

uses the aritmethic mean of the pressures of the interating

particles.

At first, the pressure need to be evaluated, which is done

in two steps. The first is density computation from Eq. (6).

Then the pressure can be computed via the ideal gas state

equation:

p = kρ , (11)

where k is the ideal gas constant that depends on the tem-

perature. Desbrun and Gascuel [10] suggest a modified

version of the pressure computation:

p = k (ρ −ρ0) , (12)

where ρ0 is the rest density. This modification does not

affect the pressure forces matematically. However, this

makes the simulation numerically more stable, because it

has influence only on the gradient field smoothed by the

SPH.

3.4 Viscosity

In the SPH, the viscosity yields:

f
viscosity
i = µ ∑

j

m j

v j

ρ j

∇2W
(
ri − rj,h

)
, (13)

where µ is the specific viscosity constant for the fluid.

The viscosity force is asymmetric, too. Since the viscosity

forces are only dependent on the velocity differences and

not on the absolute velocities, the solution of this prob-

lem is simple. It can be easily symmetrized by using the

velocity differences:

f
viscosity
i = µ ∑

j

m j

v j −vi

ρ j

∇2W
(
ri − rj,h

)
(14)

The particle is accelerated in the direction of the relative

speed of its environment.

3.5 Smoothing Kernels

The smoothing kernels used in the interpolations have a

great influence on speed, stability and physical plausibility

of the simulation and should be chosen wisely. Choosing

a good smoothing kernel can be important for several as-

pects of the simulation. The numerical accuracy is highly

dependent on the smoothing kernel and the research has

shown that certain kernels offer better results than oth-

ers [1]. The SPH uses different kernels for each calcula-

tion. Even though the Gaussian kernel has very nice math-

ematical properties, it is not always the best kernel to use.
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Figure 3: Smoothing kernel Wpoly6 from [12]. The thick

lines show the kernels, the thin lines their gradients in

the direction towards the center and the dashed lines the

Laplacian.

It does not have compact support, and requires the eval-

uation of computally expensive exponential function. In-

stead of that, the 6th degree polynomial kernel can be used,

which was suggested in [12] for density computation:

Wpoly6 (r,h) =
315

64πh9

(
h2 −|r|2

)3
(15)

An important feature of this kernel is that r appears only in

the squared form and can be evaluated without computing

square root in the distance calculations.

Figure 4: Smoothing kernel Wspiky from [12]. The thick

lines show the kernels, the thin lines their gradients in

the direction towards the center and the dashed lines the

Laplacian.

The gradient from the pressure field is used in the cal-

culation of the pressure force. For our pressure force eval-

uations between the particles we employ the spiky ker-

nel [12] as our pressure kernel, which yields:

Wspiky (r,h) =
15

πh6
(h−|r|)3 , (16)

which generates the necessary repulsion forces.

Figure 5: Smoothing kernelWvis from [12]. The thick lines

show the kernels, the thin lines their gradients in the direc-

tion towards the center and the dashed lines the Laplacian.

The viscosity of a fluid is a phenomenon which is

caused by the internal friction force between the particles.

It decreases the kinetic energy by converting it into heat.

This means that this force gives stability and smoothing

effect on the velocity field in fluids. The SPH variant at

the viscosity force term is:

Wvis (r,h) =
15

2πh3

(
−|r|3
2h3

+
|r|2
h2

+
h

2 |r| −1

)
(17)

The Laplacian of the smoothing kernel in Eq. (17) is con-

strained to be positive. This is required because the forces

due to viscosity to can increase the relative velocity, and

thereby introduce energy and instability into the system.

How to derive the remaining equation from the previ-

ous like the gradient and the laplacian of the smoothing

kernels, are discussed in [11, 16].

4 Surface Tracking and Visualization

An important part of the simulation process is rendering

and visualization its results. The choice of the rendering

method depends on many aspects. Two main types exist:

online (real-time) and offline rendering. Offline methods

provide more plausible results, but the computations take

longer time. In this case, a video is created from the ren-

dered frames. The biggest disadvantage is that the user

loses the interaction with the simulation system.

4.1 Point Sprites

Rendering particles with the point sprites method is an

easy, simple and fast solution comparing to the other ren-

dering methods, like the marching cubes or raycasting

method. The implementation is done in the GPU’s frag-

ment shader. Each particle is rendered as a square shaped

formation. The size of this square is dependent on the dis-

tance between the particle and the camera. In the frag-

ment shader, the pixels outside the computed radius are
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discarded. Pixels that are not discarded are shaded to cre-

ate the fake 3D ball effect, see Fig. 12.

4.2 Marching Cubes

Marching cubes is a method for extraction of isosurfaces in

volumetric data. The method is based on the triangulation

of the isosurface. The volume is sampled by a marching

cube, which is traversing the volume. At each position the

corners of the cube are tested, whether they are above or

below the isosurface. By the configuration of the corners,

triagles are generated to cover the surface.

This method highly depends on the resolution of the

sampling grid, see Fig. 6. To eliminate the sharp edges,

tessellation can be used. The algorithm is easily paralelliz-

able; this means that, to speed up the rendering of the iso-

surface the GPU is used. The disadvantage of this method

is the need of the additional normal interpolation for better

shaded results.

5 Implementation

The aim of this work was to experiment with the meth-

ods described in the previous chapter and implement them

running in realtime on the GPU. Next, the implementation

details of simulation and rendering are described.

5.1 Uniform Grid

The uniform grid is used to track and search for the ad-

jacent particles in the grid cells while evaluating the field

quantities with the smoothing kernels. The implementa-

tion of this structure is inspired by the work of Green [17].

The space is divided into uniformly sized cells. A particle

is assigned to a cell by its position. The minimal possible

size of a cell can not be smaller than the size of the parti-

cles. A particle can potentially overlap several grid cells,

which means that when procesing the quantities, the parti-

cles in the neighbouring cells must also be examined. The

Figure 7: Particle mapping in uniform grid from [17].

assigned cell of a particle is known by its actual position,

so the neighbour cells can be found, too. Each cell has its

unique hash code and each particle has its unique index.

Two arrays are needed: the first one contains indices of

the particles and the second one contains the hash codes

of the containing cells of the particles. In the next step,

the two arrays are sorted using the array which contains

the hash codes, as the key for sorting. This process is il-

lustrated by figure 8. As seen in the figure, the cell with

the hash code 1 contains two particles with indices 1 and

3. Finally an iteration is needed over the hash array to find

the start and end positions of the cells and store them in an

extra array.

Figure 8: Sorting of particle indexes and hash codes.

5.2 Simulation

The simulation part has three main steps. The first step is

density and pressure evaluation. This step is sped up by

the precalculad parts of the smoothing kernels. Each ker-

nel has a constant part without the variable vector r. The

size of the vector represents the distance between the two

examined particles. The precalculated values are stored in

the constant memory of the GPU. This solution results in

an extremly fast access to the values and saves computa-

tional time.

In the second step, the internal forces are evaluated, like

the pressure force and the viscosity force. The details of

the computations are described in the previous sections.

The last step is the integration of the velocity and further

position update. At each integration step, the new veloc-

ities are computed. The velocity depends on the internal

(presurre, viscosity) and external forces (computed from

the particle–boundary interactions). The new position is

computed from the previous position and the actual veloc-

ity. To intergrate the velocity, the Leapfrog intergration [2]

is used. The name of this integrator is a result of the above

formulation of it; the velocities ”leap over” the positions.

The Leapfrog integration is a simple method to numeri-

cally integrate the differential equations. This method is a

fairly good compromise between the naive Euler method

and more advanced methods that require more than a sin-

gle evaluation for each force. The default scheme can also

be formulated in a form where all quantities are defined at

discrete times only:

xi+1 = xi + vidt+
ai

2
dt (18)
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Figure 6: This figure shows the dependence of the maching cubes method on the resolution of the sampling grid from [14].

The higher grid resolution allows courser or finer approximation of the isosurface.

Figure 9: The leapfrog integrator.

vi+1 = vi +
ai +ai+1

2
dt. (19)

5.3 Rendering

As we mentioned in section 4, two rendering methods

were used in this work. A simpler of them is the point

sprites method. This solution is computed in the GPU’s

fragment shader.

The second is the marching cubes method [14]. Com-

paring to the point sprites method, it can not be rendered

direcly using the particle positions. The marching cubes

method is based on the triangulation of the fluid surface.

The efficient implementation of the algorithm is done by

the lookup tables. Edges and corners of the cube are num-

bered. An 8-bit vector is used to store the configuration

of the cube. Each corner has a unique number which is

used as an index into the bit vector. If the corner is below

the iso–value, than the nth bit (where n is the unique num-

ber of the corner) is set to 0, or to 1 when it is above the

iso–value.

The lookup tables are in size of 256, because of the pos-

sible configurations (28). Three types of lookup tables are

used. The first contains 12-bit vectors. These vectors are

similar to the configuration vector of the cube, but this

vector stores the intersected edges for the specified con-

figuration. The next table contains the number of required

triangles for the configurations. The third and last table

contains the unique numbers of intersected edges for the

required triagles.

The first step is to evaluate the occupied voxels and

compute the number of the required triangles for each

voxel. The following step is to count the number of the

required triangles to cover the whole surface. It follows

the allocation of the vertex buffer for the vertices of the

triagles. In the final step the normals are interpolated. It is

very important for the additional tessellation. The tessel-

lation is used to get smoother surface. The details could

be also improved by using a higher resolution grid.

6 Results

By using the GPU, the SPH method, and the marching

cubes method, the goal of this work was achieved. The

SPH method is running in real-time with 60000 particles

when no rendering method is used. When using lower grid

resolutions, there is a performace drop compared to higher

resolutions, see tables 1, 2, 3, and 4. This effect is caused

by the high density of particles in the cells. Per cell com-

putations take longer time, because of the higher particle

count. The test results of the implemented simulation and

the rendering methods are summarized in tables 1, 2, 3,

and 4.

Figure 10: Fluid rendered with the marching cubes

method.

When using the marching cubes and/or the tessellation

there is a performace drop at higher grid resolutions, see

the test results.
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Figure 11: The fluid motion is simulated by 15,000 fluid particles with marching cubes rendering.

Number of particles: 15000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 6 5 4

MC 2 5 12

NI 8 11 15

Sum 16 21 31

Table 1: The benchmark shows the results measured in

milliseconds at different grid resolutions. SIM is the simu-

lation,MC is the Marching cubes rendering, and NI stands

for the normal interpolation. In each table, the upper row

contains the number of particles used in the benchmark.

Number of particles: 30000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 19 13 9

MC 2 5 12

NI 9 12 18

Sum 30 30 39

Table 2: Benchmark results for 30,000 particles.

The algorithms are implemented in the C++ program-

ming language. The sourcecodes for the GPU were imple-

mented for the CUDA runtime API 4.0. The API allows

high abstraction level and provides fine support for pro-

gramming the GPU. The final program was tested on the

NVidia GeForce 540M graphics card, with 96 cores.

7 Conclusions and Future Work

The SPH method is a very realistic and fast appoximation

of the real world fluids, but it has some limitations. One of

these limitations is the need of large number of particles

for the simulation to get realistic results.

Many experiments were made in this work to speed

Number of particles: 45000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 31 22 18

MC 3 5 13

NI 9 12 20

Sum 43 39 51

Table 3: Benchmark results for 45,000 particles.

Number of particles: 60000

Grid res. 30x30x30 50x50x50 80x80x80

SIM 45 32 24

MC 3 5 13

NI 10 13 30

Sum 58 60 67

Table 4: Benchmark results for 60,000 particles.

up the SPH and its rendering methods. The uniform

grid helps the access to adjacent particles. This structure

speeds up the simulation, but it needs additional computa-

tions, which can be better optimized, like the radix sorting

of its arrays.

In the future more experiments can be done to speed up

the searching and sorting the particles. The additional sur-

face tension computation can improve the surface details

of the fluid and make it more realistic. Other experiments

can be done to improve the existing algorithms of ren-

dering, e.g. extract a better approximation of the surface

with marching cubes or implement the raycasting method,

which provides much more plausible results.
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Abstract

Ambient Occlusion is a method of creating shades on the
scene, due to occlusion. It is a good looking approxima-
tion of the light radiation, however it is very expensive
method. It needs a large number of samples to get fair ef-
fects. In this article we propose a speed increase of the
AO rendering, by using the eye tracker. Human cannot see
high frequency details in parafoveal, and we can render
this area with less accuracy. We decrease the number of
AO samples with distance from the observer gaze point.
The absence of AO shading in parafoveal is being rarely
noticed and reducing the samples gives us considerable
rendering speed boost.

Keywords: Ambient Occlusion, Eye tracking, Modern
computer graphics

1 Introduction

Ambient Occlusion (AO) is a shading algorithm, which
adds a reality to the rendered scene. It approximate how
the given point is occluded by other objects (surfaces).
However, it is fair complex and still it is hard to achieve a
real time AO performance on the nowadays GPUs. In this
work we provide a solution that speeds-up the AO render-
ing without significant decrease of the quality of the final
image.

We present a concept of rendering ambient occlusion
self-shadows affected by the information about the hu-
mans’ viewing direction and its limited region of interest
(ROI). Therefore, if we knew the point on which observer
has focus, we could render this point surroundings with
maximum precision and further regions with minor qual-
ity. We use the gaze-dependent Contrast Sensitivity Func-
tion to alter the influence of the AO factor and to model
decrease of rendering quality.

During experimental evaluation we evaluate whether the
humans are capable of seeing the difference of the render-
ing quality outside the ROI.

To achieve the interactive rendering, we base our AO

∗sebastian.janus@o2.pl
†rmantiuk@wi.zut.edu.pl

implementation on nVidia OptiX1 library, which operates
on CUDA2 for the supreme speed of the complicated cal-
culations. It computes ambient occlusion factors with dif-
ferential accuracy, depending on the location of human
gaze point captured by the eye tracker.

In Section 2 we describe the Ambient Occlusion algo-
rithm and discuss why the full Ambient Occlusion method
has been chosen instead of cheaper approximated meth-
ods. Then in Section 3 we present our concept of the gaze-
dependent ambient occlusion rendering. In Section 4 we
describe the implementation. The results are discussed in
Section 5, followed by conclusions and future work in Sec-
tion 6.

2 Background

Ambient occlusion is a shading model which is used to
increase scene realism in rendering systems based on the
local illumination models. It requires much less computa-
tion in comparison to the full global illumination solutions,
however it still needs demanding resources to achieve high
quality renderings.

2.1 Ambient Occlusion

In Phong reflection model, diffuse and specular reflections
are varying due to observer and lights position, but ambi-
ent reflections are constant. Having these assumptions we
miss the self shadows of the rendered objects - which is
a big lack of reality. Adding Ambient Occlusion [2] al-
gorithm for computing the ambient reflections factor cre-
ates very convincing soft shadows, which combined with
indirect lighting gives realistic results. The model does
not look flat - what often is happening with indirect light-
ing and multiple light sources. The result looks similar to
Global Illumination and it is possible to say that it simu-
lates it. Good point is, it is of course less complex than full
global illumination [1].

This method is an integration of visibility, computed
from each pixel on the rendering screen. This integration
is solved by Monte Carlo method, where we achieve the

1See: http://www.nvidia.com/object/optix.html
2See: http://www.nvidia.com/object/cuda home new.html
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result by casting very large number of samples - counted
in hundreds. Sample rays are traced from every point into
random directions on the hemisphere:

ka =
1
π

∫

Ω

Vp(~ω)(N ·~ω)dω, (1)

where ka denotes the occlusion factor. V stands for the
binary visibility function from the certain point p, which
returns positive values when ray does not intersect any ge-
ometry until reaching some given distance (for the purpose
of ray tracing in closed scenes), and a negative value when
traced ray hits any object. p and its normal vector N define
the surrounding hemisphere Ω [5].

The ka factor is used in the Phong’s reflection equation:

Ip = kaia+ ∑
m ∈ lights

(kd(L̂m · N̂)im,d +ks(R̂m ·V̂ )α im,s), (2)

where id and is are defined as the intensities of the current
light source, ia is a constant value or a sum of ambient
light of all light sources, kd is a diffuse reflection constant
(lambertian reflectance, depending on the angle between
the direction L̂m toward current light source and the surface
normal vector N̂), and ks is a specular reflection constant
with R̂m being a light perfectly reflected ray.

The calculation of the ambient occlusion factor is de-
picted by the Algorithm 1.

Algorithm 1 Ambient occlusion algorithm
for i := 1→ screenWidth do

i← i+1
for j := 1→ screenHeight do

j← j+1
{Calculate ambient occlusion for every pixel}
occlusion:=0;
for k := 1→ aoRaysNumber do

k← k+1
{Cast rays in a random directions from the fol-
lowing pixel};
occlusion+= castAoRay(randomDirection)
{ castAoRay returns 1 if it hits something}

end for
occlusion = occlusion/aoRaysNumber
{ Calculate the ambient occlusion factor. }

end for
end for

2.2 ScreenSpace Ambient Occlusion

The idea of the Screen-Space Ambient Occlusion (SSAO)
was proposed by Crytek game studio in their Crysis game
as the fast alternative of the standard ambient occlusion
technique [4]. SSAO works in real time, although renders
effects of lower quality. The idea lies on using Z-buffer
data to compute visibility function for every pixel. It takes
a pixel surrounding points and analysis their Z value [4].

However, this method has some important disadvan-
tages, starting with self-occlusions. SSAO samples are
taken from the inside of a sphere around each pixel -
in non-occluded surfaces almost 50% comparisons return
’occluded’ result. This causes haloing around the objects
- where the self-occlusion effect disappears. These halos
are visible around the boxes in Figure 1. There are various
improvements to the original SSAO algorithms trying to
fix that haloing, but they are not universal - they simply do
not work for all cases.

Figure 1: Inaccuracy of the SSAO algorithm may cause
black and white halos on the screen [6].

This method is not precise because of the small samples
number and the idea of the algorithm - it produces some
noise [9]. Moreover, the only objects taken into the consid-
eration are the visible ones. Everything outside the frus-
tum is not interfering with rendered scene. Performance is
also depending on the scene - closer objects will require
larger radius of sampling.

All these cons made us to the decision for favouring the
standard ambient occlusion technique. The main problem
is that it requires a lot of computations - for every pixel
one should trace hundreds of rays to make satisfactory re-
sults. For example for 1680x1050 image resolution and
500 AO factor test rays, the AO algorithm requires tracing
of 882 million rays to render one frame. For the full HD
(1920x1080) and increased quality to 1000 rays, the sum
rises to 2,037 millions what makes the AO not possible
to render in real time based on the contemporary graphics
systems.

3 Gaze-dependent rendering of Am-
bient Occlusion

Gaze-dependent ambient occlusion is a solution of provid-
ing a full detailed ambient occlusion effect in a certain re-
gion of interest. The further from the gaze point, the less
detailed ambient factor is rendered, saving the computing
time and leaving observer with a feeling that the scene is
fully detailed.
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3.1 Rendering system

The main goal of this work is to track observers gaze, and
to use information about the gaze direction to render para-
foveal parts of the screen with less quality. The outline of
the gaze-dependent ambient occlusion system is presented
in Figure 2.

Figure 2: Gaze-dependent ambient occlusion rendering
system.

The input data is a 3D scene defined by *.obj file. We
have also an observer, whose eyes are tracked. From the
eye tracker library we receive the actual gaze points, which
are used to calculate the ROI shape and position. Then we
have the main lighting renderer, calculating final colour
from the Phong lighting equation, and AO renderer, calcu-
lating the ambient factor with use of the gaze-dependent
ambient occlusion algorithm. Finally, we blend these two
ambient factors depending on the distance from the centre
of the ROI and we display it.

3.2 Region of interest sampling

Changing the rendering scene by modifying the ambient
occlusion factor is rather subtle and it is treated as high
frequency information. Therefore, we can use a gaze de-
pendent Contrast Sensitivity Function (CSF) for a function
describing how the human eye treats contrast changes in a
given distance from a gaze point [15].

We will use drop-off of visual sensitivity across the vi-
sual field, for modelling the AO accuracy. We decrease
ambient occlusion for the constant ambient factor in light-
ing equation while we increase the distance from the ROI

Figure 3: Gaze-dependent ambient occlusion without
blending (visible noise).

centre. In the meantime, we decrease the number of the
AO sampling rays. We do not need high accuracy, when
the impact of this factor is getting more and more incon-
siderable [3].

In addition, with CSF we avoid visible noise (see Fig-
ure 3), which is adverse for the observer. It is noticeable
even in the parafoveal vision and it generates temporal
aliasing. The noise is produced by the ambient occlusion
when we use small samples number. In our work, that
noisy result is hidden by blending with the normal light-
ing equation ambient factor.

The precision downfall is given by the contrast sensitiv-
ity function:

Ct(E, f ) =Ct(0, f )∗ exp(k f E), (3)

where Ct denotes contrast sensitivity for spatial fre-
quency f at an eccentricity E, k determines how fast sen-
sitivity drops off with eccentricity (the k value is ranged
from 0.030 to 0.057). Based on the above equation, the
cut-off spatial frequency fc can be modelled as:

fc = min(max display cpd,43.1∗E2/(E2 +E)), (4)

with E2 = 3.118, which is retinal eccentricity at which
the spatial frequency cut-off drops to half its foveal max-
imum (from 43.1 cpd to 21.55 cpd, see details in [16]).
In this equation we flatten the contrast sensitivity with
min(max display cpd, ...) operator to take into considera-
tion the limited resolution of our display (see Section 5.1).
That flattening is represented on the Figure 4 as a magenta
line.

The plot of the contrast sensitivity function is presented
on the Figure 4. As we can see, it is quickly decreasing
and then staying around some low level. On the Figure 5
we can see a region of interest mask preview. The lighter
areas mean that AO is computed with maximum precision,
the darker areas mean lower precision. Blending factors
of AO ambient and ambient from Phong lighting equation
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have the same distribution - the lighter areas means higher
weight of the AO ambient factor.
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Figure 4: Gaze-dependent Contrast Sensitivity Function.
The magenta line denotes threshold frequency of the dis-
play used in the experiments.

Figure 5: ROI based on Contrast Sensitivity Function pre-
view.

3.3 Eye tracker fixations

Eye trackers capture two types of eye movement called
saccades and smooth pursuit. A smooth pursuit is active
when eyes track moving target and are capable of match-
ing its velocity. A saccade represents a rapid eye move-
ment used to reposition the fovea to a new location, which
lasts from 10 ms to 100 ms [12]. The main goal of the gaze
tracking is to capture a single location an observer intents
to look at. This process is known as a visual fixation. A
point of fixation can be estimated as a location where sac-
cades remain stable in space and time [13]. We approxi-
mate this mechanism by averaging a number of raw gaze
points. There are many fixation algorithms which are try-
ing to provide a gaze point from these samples, however
they are complicated and none of them had worked bet-
ter for our solution, where we expect a stable results, than
simple average of points [14].

Additional stabilisation of the gaze position is achieved
by rendering delay. There are about 5-10 frames per sec-
ond rendered, and we take gaze points array once before
rendering new frame. It means that we are averaging gaze
samples from about 100-200 ms period, which effects with
a lot of samples and in the outcome the mean value is not
affected by few different samples. In that case it is a fair
advantage.

Human field of view for one eye is about 130◦ in hor-
izontal plane and about 120◦ in vertical plane. What is
more, the second eye is extending the horizontal plane
to about 200◦. The binocular field of view then is about
60◦ [10]. Assuming that, for human angle of view the ra-
tio between horizontal and vertical planes is like 1.538 : 1.
That is why our region of interest shape would not be
a simple circle, but a widened ellipse (to take advantage
from the differing field sizes). This would not work if we
will look with single eye, but for binocular gaze it will
work perfect.

4 Implementation

In this section we provide a description of our implemen-
tation of the gaze-dependent AO system, proceeded by a
short introduction to the OptiX library. Our application is
based on the AO sample from the OptiX SDK package.
We extended this sample to the gaze-dependent technique
supported by the eye tracker library.

4.1 OptiX

Our software is implemented using OptiX engine [11].
It is developed by nVidia and it is described as pro-
grammable ray tracing framework, which can be used to
rapidly build ray tracing applications. Computing speed
of application based on that engine gives fast results across
nVidia GPUs with conventional C or C++ programming.

OptiX is helpful in detecting collisions, calculating
sound volume, radiation research, and other rendering pur-
poses. Developers can write their own single ray pro-
grams. These programs are divided into few categories:
closest hit, any hit, intersection, selection, ray generation,
miss and exception programs. Using an ensemble of these
programs gives us a rendering algorithm. Shading lan-
guage is based on C/C++ for CUDA, with all its features
like pointers, templates, and overloading. One is encour-
aged to use object model as well.

4.2 Ambient occlusion based on OptiX

Ambient occlusion based on OptiX is divided into a host
program (written in C++), and a few GPU shaders pro-
grams:

• Ray generation program - responsible for proper gen-
eration of the rays from the viewer towards the scene.
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Whenever the camera has moved, different rays are
generated.

• Closest hit program - responsible for calculating
lighting radiance. This is main shader used for trac-
ing rays from the viewer - it looks for intersections
with scene objects, and if it finds any it starts comput-
ing the colour basing on the Phong lighting equation
and our gaze-dependent AO.

• Any hit program - responsible for calculating any hit
occlusion. It is used for tracing rays from the inter-
section points (pointed by the rays which are calcu-
lating radiance). We can call them secondary rays,
which are cast in a big number to obtain the ratio for
hit/miss rays - it gives us the ambient occlusion fac-
tor.

• Miss program - responsible for determining the back-
ground colour - it is used when our primary rays do
not hit anything.

• Exception program - responsible for exceptions -
used in case we get incorrect value of lighting.

Apart from the host program which is responsible for all
the input/output, communication with user and setting (or
changing) the parameters of the GPU programs, the main
code is in the closest hit program. There we are calculating
the number of the ambient occlusion rays to be cast, there
we cast these rays, and there we finally calculate the colour
of each pixel.

As it was said before our application is based on a am-
bient occlusion sample. The main differences instead of
main host program (another scene, controls and so on) are
in the closest hit shader. We had to provide ROI compu-
tation based on contrast sensitivity function, which gives
us varying ambient occlusion rays number. Because of
that information which pixel are we computing at the mo-
ment was significant. Then we had to implement blending
the AO ambient factor and Phong lighting equation ambi-
ent factor, and there comes gaze-dependent ambient occlu-
sion.

4.3 EyeTracker library

We use the ETlib library for the purpose of tracking ob-
servers’ gaze direction. This software is responsible for
managing communication between the eye tracker soft-
ware (which runs on another computer) and our applica-
tion. The eye tracking session starts with the calibration -
observer looks at on given point on the screen. The process
is finished after registration of 5 points. Precise calibration
is extremely important because it affects further accuracy
of captured data [7, 8].

Using ETlib we can receive last gaze point (which is not
stable - unfortunately, human eye is moving many times in
a very short period) or a set of gaze points since the last
request. We use the second approach, and with an array

of points we make an average point - then we proceed this
point as a variable which will be used then by the GPU
programs.

5 Experimental evaluation

Our objective is to present, that we can minimise the am-
bient occlusion sampling in parafoveal. What is more it
gives us a performance boost. We present a images for
different ROI position, and analyse rendering times.

5.1 Stimuli and hardware setup

The scene presents the fixed Stanford Dragon Model3, en-
closed in the 5 walls box. The scene consist of 50,008 ver-
tices and 100,005 faces, and gives us good performance
test object. We render this scene with full frame ambient
occlusion to obtain an ideal image, or we render it with use
of ROI (controlled by eye tracker) using gaze-dependent
AO.

In our experiment, we used the SMI RED250 eye
tracker, which gives us refresh rate 250 Hz and accuracy
0.5◦. The computer is equipped with 2.8 GHz Intel i7 930
CPU with 8 GB of RAM, Windows 7 64bit OS, and a
GPU nVidia GeForce 480 GTI 512MB - one of the fastest
nVidia graphic cards. The hardware setup is presented in
Figure 6.

Figure 6: Apparatus used during evaluation and experi-
ments. The RED250 eye tracker is located under the dis-
play screen.

The lab display is 22 inch Dell, with the 1680x1050 res-
olution (60 Hz). It is measuring 47.5 cm wide and 30 cm
high, what gives 43◦ horizontal, and 28◦ vertical. With
the screen resolution 1680x1050 that gives 40 pixels for
one degree, which is about 20 cpd. That is our maximum,

3http://www.mrbluesummers.com/3572/downloads/stanford-dragon-
model
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which is marked as max display cpd in Equation 4 and as
a magenta line in Figure 4.

Eye tracker is connected to the remote computer. We
launch it using remote desktop, and the ETlib (See subsec-
tion 4.3) gives as the array of gaze points since last call.

5.2 Results

Quality of rendering

An example rendering with the full frame ambient occlu-
sion is presented in the Figure 7. We consider the full
frame rendering with 400 AO rays per pixel as image in
all quality comparisons.

Figure 7: Ideal, reference image with full frame ambient
occlusion

In Figure 8 one can see images rendered with gaze-
dependent ambient occlusion for various locations of the
ROI. Please, notice that shading caused by the AO factor
is stronger in the centre of the ROI and weakens with the
distance.

On the upper image in Figure 8 there is visible AO effect
in the upper corner of the box, and there is no shadow
below the dragon model. On the image where the position
of the ROI is on the dragon these shadow is visible very
well, and there are little shadow on the wall behind the
dragon. There are no shadows on the higher corners at all.

During the pilot study with the eye tracker, we assessed
the quality of the AO shadows as a very good in compari-
son to the reference image. The contrast sensitivity func-
tion was doing well, and smaller shades in a greater dis-
tance from a centre of ROI were rarely noticeable.

Rendering time

To compare timings for the full frame AO and the gaze-
dependent AO we measure the speed of rendering for three
different camera settings (called as Camera 1, 2, and 3, see
Figure 9).

We achieved 1.26 fps, 0.96 fps, and 0.62 fps for Cam-
era 1, 2, and 3 respectively for the resolution of 840x525

Figure 8: Image rendered with gaze-dependent ambient
occlusion. The red X points the centre of the ROI.

pixels and 400 AO rays (the resolution was reduced for
performance reasons).

The same images was rendered using eye tracker and
the gaze-dependent AO rendering technique. The ren-
dering speed depends on location of the ROI. There are
more computations (e.g. intersection tests) in regions of
the scene with more triangles so AO rendering time in-
creases. However, the overall rendering time using the
gaze-dependent technique is shorter in comparison with
the full screen AO, even by 276% in the best case (see
Table 1).

Generally, the results show significant performance in-
crease in a regions of a small triangles number (box walls
all around the screen). Worse outcome is when we take
the hardest to compute environment - middle of the screen
(the biggest samples number) and the dragon object (high
level of the triangles - ray tracer has harder work). How-
ever, even in that worse case, we get a noticeable rendering
speed-up.

5.3 Discussion

Using gaze-dependent ambient occlusion can increase ren-
dering speed without a noticeable quality loss. Better GPU
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Figure 9: Locations of the ROIs depicted as the red letters.

would be useful, both for rendering smooth ambient occlu-
sion and for performing study concerning rating a visibil-
ity of AO in the parafoveal area. The faster reaction time
would also improve the gaze-dependent approach in con-
text of fast eyes movement.

For the time of writing this article, we did not use the
newest graphic card (nVidia GeForce GTX 580), which
has about 20% faster memory bandwidth, texel rate and
pixel rate. Probably, using two GPUs connected with
SLI4, would give us better times. With such hardware im-
provements, we would be closer to the smooth real time
rendering and the results would be even better.

4SLI stands for Scalable Link Interface, which is the name of technol-
ogy allowing to link two or more GPUs to perform parallel processing of
a computer graphic for single output.

Table 1: Rendering speeds for gaze-dependent AO. Speed-
up is ((FPS − OriginalFPS)/OriginalFPS) ∗ 100%,
where OriginalFPS means the rendering speed of full
frame rendering.

Camera Gaze-point Rendering speed Speed-up

Setting 1

A 4.10 fps 201%
B 4.21 fps 210%
C 4.06 fps 199%
D 1.68 fps 24%
E 2.11 fps 55%

Setting 2

F 2.36 fps 146%
G 2.65 fps 176%
H 2.19 fps 128%
I 1.30 fps 35%
J 1.40 fps 46%

Setting 3

K 1.82 fps 194%
L 2.33 fps 276%
M 2.24 fps 261%
N 1.00 fps 61%
O 1.17 fps 89%

6 Conclusions and future work

Summarising, we are capable of having significant render-
ing speed increase with the Ambient Occlusion shading.
Furthermore, the result of rendering worse shaded image
in the parafoveal is being skipped by the human eye.

The impression of the gaze-dependent image is received
as a bit worse, but mainly because of not perfect eye track-
ing. Sometimes, the ROI is quickly moving which could
be uncomfortable for the viewer, especially when suddenly
the gaze point escapes from the real gaze point for one an-
imation frame. However, there is a need to perform a ex-
periments on a frequent group of people to know in which
way should we improve our approach. Anyhow, with im-
provement of the fixation algorithm we could achieve bet-
ter results. Also, with the improvement of the hardware
we will have smoother animations.

References

[1] P. Berto. Occlusion tutorial. 2007.

[2] M. Bunnell. GPU Gems 2, Chapter 14, Dynamic
Ambient Occlusion and Indirect Lighting. Addison
Wesley, 2005.

[3] J. Yang E. Peli and R. B. Goldstein. Image invariance
with changes in size: the role of peripheral contrast
thesholds. JOSA A, Vol.8, Issue 11.

[4] M. Mittring14 Crytek GmbH. Finding next gen
cryengine 2. 2007.

[5] S. Hill. Hardware accelerating art production. 2004.

[6] M. Lagergren. Ssao. 2009.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
173



[7] R. Mantiuk, M. Kowalik, A. Nowosielski, and
B. Bazyluk. Do-it-yourself eye tracker: Low-cost
pupil-based eye tracker for computer graphics appli-
cations. Lecture Notes in Computer Science (Proc.
of MMM 2012), 7131:115–125, 2012.

[8] R. Mantiuk, A. Tomaszewska, and B. Bazyluk.
Gaze-dependent depth-of-field effect rendering in
virtual environments. Lecture Notes in Computer
Science (Proc. of SGDA 2011), 6944:1–12, 2011.

[9] J. M. Mendez. A simple and practical approach to
ssao. 2010.

[10] M. H. Nizankowska. Podstawy okulistyki. VOL-
UMED, 1992.

[11] S. Parker. Interactive ray tracing with the nvidia optix
engine, 2009.

[12] D. A. Robinson. The mechanics of human saccadic
eye movement. Journal of Physiology, 174:245–264,
1964.

[13] D. D. Salvucci and J. H. Goldberg. Identifying fix-
ations and saccades in eye-tracking protocols. In
Proceedings of the 2000 symposium on Eye tracking
research & applications (ETRA), pages 71–78, New
York, 2000.

[14] Frederick Shic, Brian Scassellati, and Katarzyna
Chawarska. The incomplete fixation measure. In
Proceedings of the 2008 symposium on Eye track-
ing research &#38; applications, ETRA ’08, pages
111–114, New York, NY, USA, 2008. ACM.

[15] P. Wenderoth. The contrast sensitivity function.

[16] Qi X. Makous W. Yang, J. Zero frequency masking
and a model of contrast sensitivity. Vision Research.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
174



Visualization





Partial Volume Effect Correction on the GPU

Zsolt Márta∗

Supervised by: Dr. László Szirmay-Kalos†
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Abstract

This paper proposes a Partial Volume Effect correction al-
gorithm for PET/CTs, which improves the PET (Positron
Emission Tomography) data based on the registered and
segmented CT (X-ray Computed Tomography) volume.
The algorithm is based on mathematical morphology oper-
ations and identifies those regions where both the PET and
the CT data have boundaries. The correction is restricted
to these regions thus we can avoid the migration of arti-
facts and boundaries present in the CT but irrelevant for
the positron density. Thus, the algorithm also maintains
activity correctness. The proposed method is implemented
in a massively parallel framework.

Keywords: Partial Volume Effect, GPU, Image Process-
ing, PET

1 Introduction

Positron Emission Tomography allows functional analy-
sis of physiological processes. However, its poor spatial
resolution limits accurate quantitative measurements par-
ticularly in small structures partially occupying the point-
spread function (PSF) of the scanner [7]. The effect
caused by this poor spatial resolution is commonly known
as the Partial Volume Effect (PVE).

This paper presents an approach for PVE correction us-
ing registered and segmented CT images. Utilizing the
high resolution anatomical CT image, our method en-
hances region borders in PET images based on the as-
sumption that region boundaries present in both images
are co-located.

2 Background

PVE actually refers to two phenomena that affect image
intensities, the blurring effect and sampling error of the fi-
nite discrete grid. The sampling error is due to the finite
voxel size, so multiple tissue types are included in most
voxels. The blurring effect and the poor resolution of PET

∗mzsolt90@gmail.com
†szirmay@iit.bme.hu

imaging comes from detector design and physical proper-
ties of the methodology used. Physical reasons of image
blurring include time and space offset of annihilation and
decay origin (called positron range), acollinearity of the
two generated photons, photon scattering (both in tissues
and detector crystals), finite size of crystal detectors, and
the deficiencies of the detector electronics [5]. Mathemat-
ically, the PET image is the result of a low-pass filter, the
PSF of the scanner, with some reconstruction noise added.

PVE severely affects tissue boundaries as blurring re-
duces high-frequency details. This results in the under-
estimation of uptake values in regions of interest (ROI-
s). More specifically, regions with higher activity are dis-
torted in a way that their total activity is spread across a
large area. Due to reasons earlier described, PVE does
not change the total activity in regions, only spreads them,
possibly leading to lower maximum values in smaller ar-
eas. This spreading results in a spillover effect, i.e. sur-
rounding tissues with lower activity seem to have gained
uptake. The smaller the region is, the dimmer it looks re-
sulting in erroneous qualitative assessment especially with
small lesions [9].

2.1 Partial Volume Effect correction

Due to its high medical relevance, significant efforts have
been made to correct PVE, although there is no generally
accepted method to date. Partial volume correction (PVC)
methods were first examined for brain scans, due to the
numerous small structures it contains. Many algorithms
deal with the problem on regional level, resulting in re-
gional uptake values instead of corrected images. In ad-
dition, often a priori information is required, for example,
the PSF for deconvolution methods, or the assumption that
the original activity is constant in specific regions. The
PSF, however, is usually not available and may depend on
the measured object as well, which restricts the availability
of this approach.

Another family of algorithms deals with the problem on
pixel/voxel level. These produce PVE corrected images
enabling visual evaluation. Particularly popular pixel level
methods are based on image fusion techniques, which ex-
ploit simultaneous and automatically registered PET and
CT acquisition and fuse functional and anatomical infor-
mation. The main assumption is that tissue boundaries
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appearing in both images enables correction relying on
anatomical data. This assumption seems realistic as differ-
ent tissue types have different density (thus different inten-
sity in CT scan), and also the radiotracer density depends
on the tissue type. Therefore on the boundaries of different
tissues, it is assumed that both CT and PET values change
and thus CT and PET boundaries are co-located.

In 2006, Boussion et al. [1] published a novel multires-
olution approach based on wavelet transform and image
fusion. Their method extracts the high-resolution compo-
nents from the anatomical image, and incorporates in the
low-resolution PET image using a simple intensity scal-
ing transform between CT and PET wavelet coefficients
[8, 2]. In their paper, Boussin et al. used a simple pixel-by-
pixel division to find the appropriate global scaling factor.
This produces uneven edges due to PET fluctuations, and
introduces CT noise in addition to PET noise. Moreover,
in homogeneous anatomical areas where high frequency
components are near zero it results in extreme corrected
values.

Global scaling ignores local image features and when
CT and PET activities are less correlated, it causes visual
artifacts and quantitative errors at boundaries. Since the
correction is a function of global PET features and local
CT features only, it inherently cannot adapt to local dis-
similarities between PET and CT intensity. A specific is-
sue is when the functional image already contains high-
frequency information and additional values are added
leading to hyperintensive edges in corrected images as
shown in Figure 1. Furthermore, extreme values affect
the whole image as global scale calculations involve them
as well. On the other side, low-intensity features become
less significant as they weigh little in averages. Moreover,
it may happen that CT and PET intensities are negatively
correlated in some part of the image, thus the method am-
plifies PVE instead of correcting it.

Another possible approach may involve using local
scales. For each point the scaling between wavelet co-
efficients is determined by a function of nearby wavelet
values. In this case, the window size greatly affects the
results: using a too small window results in too little infor-
mation to define scaling and thus leads to a visually and
quantitatively incorrect image due to PET fluctuations and
extremes. Therefore the correction becomes unstable. On
the other hand, using larger window blurs local image fea-
tures. This window size parameter greatly depends on the
actual images, or even different regions require different
window widths. Consequently no optimal window width
is guaranteed and choosing one must be done manually,
rendering this method less effective.

The main problem of image-fusion based PVE correc-
tion algorithms is the assumption that original PET and
CT features are highly correlated. This, however, is un-
realistic in whole-body scans [9] for technological differ-
ences, as PET image is essentially a functional informa-
tion while CT is structural. PET intensities depend on ra-
diotracer amount in specific regions, depending on blood

a b

c d

Figure 1: (a) Original PET image (b) Corrected PET im-
age using global scaling and homogeneous CT image (c)
Line profile of original PET image (d) Line profile of cor-
rected PET image. Hyperintense edges are present due to
uncorrelated images, and neglected local features.

density, metabolism, etc. CT, however, reveals anatomi-
cal structures, depending on tissue density. Thus, instead
of the correlation of boundaries, a more relaxed connec-
tion seems feasible that boundaries being present in both
modalities are co-located.

3 Proposed Method

Our goal was to produce a corrected image to enable vi-
sual evaluation, which is required in most clinical appli-
cations. One purpose of PVC is to enhance region bound-
aries, hence the resulting image should contain steep edges
with increased intensity gradient between regions. Fur-
thermore, a fully 3D algorithm was required as PVE is
essentially a 3D effect. Since PET allows quantitative ex-
amination of certain physiological functions, corrected im-
ages are expected to correctly represent regional uptakes.
More specifically, output images should contain regions
with total intensities equivalent to original ones. This in-
cludes the avoidance of hyperintensive corrected edges
earlier seen in Figure 1. Finally, a moderate computational
complexity is required to speed up medical evaluation, and
the PVC should not take longer than the PET reconstruc-
tion. With massively parallel reconstructions available,
this time limit around a few minutes for a common 1283

voxel array.
This paper proposes an algorithm to correct the blur-

ring effect meeting the requirements presented above. The
inputs of our PVC algorithm are the PET data and the reg-
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Figure 2: Overview of the proposed PVC algorithm

istered, segmented CT volume. Since CT technology have
larger spatial resolution and moderate noise compared to
emission tomography, segmentation can be applied to de-
termine CT regions. We applied a custom Kernelized
Fuzzy C-Means [11] to the input CT images. Using the re-
gion information, the structure of anatomical parts can be
taken into consideration. Numerous image segmentation
algorithms exist [4, 3, 11] for noisy grayscale images in-
cluding those for medical applications. In most cases, CT
images have larger spatial resolution, thus the PET image
is first scaled to the size of the CT image using a simple
trilinear interpolation.

The main steps of our proposed algorithm are as fol-
lows. To only alter the image where it is necessary, we
create an edge map marking edges present in CT, and —
using the PET image as well — a boundary map to indi-
cate voxels to be corrected. For the correction we also
create a distance map with values marking voxels’ dis-
tance to the nearest CT segment boundary. Furthermore,
a gradient-like map is created for distinguishing boundary
voxels with lower or higher intensity compared to nearby
regions. Using the gradient-like image we classify voxels
in source or spillover regions, i.e. regions with intensity
loss or gain.

In the correction step we reallocate intensities with the
help of the auxiliary maps created earlier. This is done
by extending a 1D concept in 3D. Finally, the CT image
is altered based on values calculated during reallocation
to compensate offset between PET and CT images. The
overview of our PVC algorithm is shown in Figure 2. The
steps are discussed in the following subsections.

3.1 Boundary map generation

To fulfil the requirement of only changing the image where
necessary, a 3D binary boundary map is created, which
indicates where the PET volume is worth being corrected.
The algorithm starts with an initial binary image marking
CT edges. This is saved as an edge map. This boundary
map is then filtered by using a standard box-filter and a

threshold based on global average PET intensity, leaving
voxels where the mean surrounding PET gradient intensity
is large enough. This way the image is altered only where
PET signal is changing, i.e. where the boundaries are also
present in PET image.

The filtered boundary map is then extended by a mor-
phological dilation [6] operator. The dilation is required to
assure symmetry and constant width at region boundaries.
Using directly a box-filter with thresholding, asymmetries
may occur depending on PET intensity changes and ker-
nel size. More specifically, the created boundary map may
have different widths in segments, possibly leading to er-
roneous correction. This extended binary map is used as
a boundary map later; during the correction only marked
voxels are affected.

3.2 Distance map generation

Considering the fact that PVE occurs at the edge of ROI-
s, the basic principle behind the algorithm is that intensity
resembles the original most in the inner part of each re-
gion. The general assumption is that CT and PET regions
are co-located, thus the PET image can be corrected using
CT region structure information. With the help of a CT
distance map, PET activities can be labeled based on their
proximity to region boundaries.

The algorithm repeats the following procedure for ev-
ery CT region. The regional distance map is computed by
iteratively applying a morphological erosion [6] operator.
By using an increasing width kernel, the region shrinks in
each iteration while preserving the shape. The distance
map is completed by assigning to each voxel the last it-
eration number in which the voxel still belonged to the
actual (shrunk) region. This method is illustrated in Fig-
ure 3. Clearly, the iteration number determines how far
the voxel lies from the nearest region boundary. This way
finding the inner parts of each segment is simple, voxels
with the highest label number are the innermost ones. It is
only necessary to iterate until the region is empty, or — for
practical reasons as PVE has limited range — until an iter-
ation limit has been reached. Merging these maps results
in the final distance map.

3.3 PET Correction

In the distance map, the larger the value of a voxel in the
distance map, the farther it is from the boundary, thus the
less affected by PVE. One simple approach would be then,
to set every boundary voxel to the innermost average PET
intensity. This method sets boundary voxels to the inner
region intensity, regardless of original PET activity, lead-
ing to incorrect values.

Recall that a basic property of PVE is that higher activ-
ity regions cause spillovers to neighboring lower activity
regions. In order to maintain average intensity, the algo-
rithm must not change the total intensity, only reallocation
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Figure 3: Illustration of the distance mapping. Left: Seg-
mented CT image, a circle in a square. Right: Resulting
distance map with three iterations. Darker colors mean
higher labels – thus higher distance to boundary (dashed
red).

should occur. The total PET activity in the boundary re-
gion is distributed over a larger volume, reaching neigh-
boring CT segments. The basic idea is then that to regain
the original activity, these spillovers must be removed and
their additional (residual) intensity must be added to their
corresponding origin. To do so, spillover regions must be
distinguished first.

3.3.1 Identifying Spillover Regions

One step in the ‘à trous’ [10] wavelet algorithm gives the
high-frequency components of the CT image. Due to the
method itself, the result is negative at areas with lower ac-
tivity than its surroundings, exactly where spillover effect
occurs. Consequently, classifying based on the sign of CT
high frequency components perfectly identifies spillover
areas. The concept is depicted in Figure 4. Applying the
above method to the segmented CT image (containing seg-
ment labels) non-zero values are ensured as segment labels
are discrete integers, and the boundary map was created in
a way that it corresponds to the low-pass filter of the al-
gorithm, ensuring that positions marked by the boundary
map have positive absolute value in this gradient-like map.
Note that segment labels must be in order according to av-
erage PET intensity for this method to work, but that can
be easily achieved during the segmentation process or by
a simple initial reordering.

3.3.2 Reallocation

Having identified spillover areas, the next step is to real-
locate intensities. In 1D it is a fairly simple task. At each
boundary area, spillover residue values must be added to
the other – source – side. Since spillover values are deter-
mined by the whole boundary region, aggregation must in-
clude every value between the two innermost-flagged po-
sition. The sum of residues and the sum of values in the
higher-intensity part gives the sum of original PET activity
in the source (higher-intensity) region. Residue values are

Figure 4: Illustration of the step in à trous creating the
gradient-like map. At a CT segment boundary the filtered
(dashed line) signal is subtracted from the original. The
result is positive where the intensity was higher (blue), and
negative where the intensity was lower (red). The former
is considered as the source region, while the latter is the
spillover region.

calculated by subtracting the innermost value from values
of the spillover region. Dividing the sum by the number
of positions in the source area results in the corrected —
original — activity. This is the corrected value of each po-
sition in the source boundary area. On the other side, every
boundary position in spillover regions gets the value of the
innermost one. This way the residual spillover values are
reallocated to their source, and both segment is corrected
to their original intensity. This reallocation is depicted in
Figure 5.

Observe that distance map assignments are symmetrical
to the innermost position. When neighboring positions are
grouped by their distance labels it may occur that values
from both side in the source region are summed, hence
distorting the result, especially when the region acts as
source (has higher intensity) at the current edge, but gains
spillover values at the other side (having lower intensity).
This is the case in Figure 5. For this reason an increasing
size window is used. The iteration stops when the inner-
most label does not change within this square window. It
means then that the labels are not increasing, the other side
of the segment is in the window.

In higher dimensions (2D and with the same concept in
3D), it is hard to find corresponding spillover areas and
sources, due to the interference of neighboring source pix-
els (voxels). So instead an approximation is used. For
every pixel, only the neighboring average original activ-
ity is calculated. The idea is that in a square (cube) area
(volume) the sum of spillover residue values is the same as
the source pixels’ corresponding (missing) spillover value
sum. Source pixels on the edge of this window cause
spillover on pixels outside, though this effect can be ne-
glected for the following reasons.

Assume now that the current pixel to be corrected lies
on a long straight axial boundary line (plane), where the
two segments are homogeneous, and let the neighboring
area be symmetrical to the pixel and the boundary line.
This is illustrated in Figure 6. Here every source pixel can
be paired with a spillover pixel according to the window’s
symmetry on the boundary line. The number of spillover
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Figure 5: Illustration of the 1D correction algorithm in a general case (left). Positions are labeled by distance map
assignments (numbers at the bottom), the innermost is marked by green. The correction transfers spillover residue values
(red striped area) to the source. CT segment boundaries are displayed as double lines, and the current boundary is red.
Gained values in the result (right) are colored purple.

Figure 6: Illustration of how pairing may be done on a
symmetrical axial configuration (the window is green).
Sources are blue, and spillover pixels are red. The pair
has darker color.

pixels related to the source pixel of the pair (meaning the
pixels affected by spillover) is the same as vice-versa; the
amount of additional intensity of the spillover pixel can
be paired with the loss of intensity related to the source
pixel of the chosen pair. If the window is not too large,
the assumption is not far from reality, and the summing
method is correct. Of course the aggregation window must
contain the innermost values just as in the 1D case, and
interference with the other side of the segment must be
avoided.

Another non-trivial task is to calculate the residual
spillover value for each pixel. It is much simpler if instead
of summing, we use the mean intensity for each distance
label. This way the problem is reduced to the 1D case.
The correctness can be seen with the assumption that PET
activity does not change abruptly within CT segments, so
that pixels in the window can be replaced with the mean
of their distance label. In addition, this method resolves
the problem with non-axial configuration, where different

amount of source and spillover pixels may be found. With
the averaging, the number of pixels each side are elimi-
nated, and this way they are not affecting the result.

For the same reasons as before, it’s hard to determine
which pixels should be set to the calculated mean activ-
ity. In 1D it was trivial that every position in the source
area is set to the calculated intensity, as no interference
could occur. In this case, however, values are calculated
for a square window around a point on the boundary line
(surface in 3D). One could think that applying the same
method for inner pixels works the same way, but the po-
sition of the window is fixed by the boundary line as val-
ues between the two innermost regions are essential for
the algorithm. This essentially disallows using the same
method. Therefore the idea is that the above method is
used only for pixels on the very edge of CT segments, and
the values of inner pixels are an interpolation of edge val-
ues. Interpolation is done by a distance weighted average,
avoiding interference between spillover and source areas
by counting them separately. This way, spillover origins
are determined evenly without loss of correctness as PET
activity is assumed to change non-abruptly in regions.

3.4 Multiple Boundaries

So far only boundaries between two segments were dis-
cussed. Handling multiple boundaries within the aggre-
gation window requires some alteration of the algorithm.
First of all, multiple spillover areas are affected by one
source, possibly in several segments. In order to correct
the source value, aggregation should involve all of these
spillover areas. Another difference is that the same seg-
ment may have both spillover and source areas, depend-
ing on its relative intensity to surrounding other segments.
Therefore grouping by distance labels must be done sepa-
rately for spillover and source pixels not to interfere with
each other. To ensure that no unrelated boundary inter-
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feres with calculations, the iterative window size method
must be stopped when the innermost label does not change
for segments involved, determining innermost labels sepa-
rately. Different window sizes for segments does not pose
a problem, since the correction is reduced to the 1D case
because of the label-based grouping.

In this multiple boundary case, multiple sources jointly
determine spillover values nearby. This means that the sur-
rounding residual values must be distributed in accordance
with their sources’ contribution. More specifically, as the
amount of intensity transferred from one higher-intensity
to a lower-intensity segment depends on the intensity dif-
ference, the total residual value must be split among con-
tributing sources with their average intensity taken into ac-
count.

3.5 Fitting CT to PET

As pointed out in [9] the anatomical region may exceed the
relevant functional one, as for example tumours may only
be metabolically active in a smaller region. This causes
underestimation in the PVE correction as more CT posi-
tions (in the reduced 1D case) are assumed for the uptake,
resulting in a larger denominator explained in 3.3.2.

For this reason, if the process results in a much smaller
corrected value than the innermost average, the number
of CT positions should be corrected accordingly. More
specifically (in the 3D case), CT voxels around the cor-
rected egdes should be reassigned to surrounding CT val-
ues (segments) if necessary. Hence the algorithm creates a
CT correction map, assigning to each corrected edge voxel
the amount of nearby CT voxels (of the same segment as
the corrected edge) to be reassigned. Also, the corrected
PET values are calculated with the corrected number of
CT positions (voxels in 3D).

As a post-processing after the PVE correction, the al-
gorithm reassigns CT voxels – and hence corrected PET
values – based on the map created during the correction
process. Each voxel on the edges mark the number of
CT voxels to be changed nearby. This means that vox-
els within that radius should be changed to the nearest CT
segment, different than the current one. Since the num-
ber of CT voxels to be corrected may vary even in small
regions, the reassignment of each CT voxel depends on
nearby CT correction map values. The altered PET value
is an average of the surrounding corrected voxels which is
in accordance with the earlier assumptions that PET activ-
ity does not change abruptly.

This method can be further extended to compensate
even too large corrected values. If the CT and PET im-
ages are misaligned, corrected intensities may exceed the
innermost values. In small regions this is plausible since
they are more affected by PVE, although in larger areas
this may indicate an erroneous correction. Therefore the
above method is altered that the CT correction map may
have negative values, meaning that the current CT segment
should be extended there. The corrected PET values are

calculated with the appropriate number of CT positions so
that the output resembles the innermost values the most.
During the CT correction, negative values affect the reas-
signment decision by reducing the probability of the al-
teration of voxels in the same segment, and causing other
segments to grow less likely.

4 Results

The presented system has been tested on a system with 4
GB RAM and a nVidia GTX 480. The algorithm is inher-
ently parallelisable and is implemented as a sequence of
custom filters. To assess the quality of the output we used
measurements of a Derenzo phantom and a real mouse.

Figure 9 depicts the Derenzo result. Boundary enhance-
ments are clearly visible, especially at the edge of small
tubes. Spillover effects are greatly eliminated except the
inner parts of the tube groups, where the innermost aver-
age intensity is dominated by spillover values. Some CT
segmentation artifacts appear, but these can be reduced
with more sophisticated segmentation methods. Results
are obtained with a 14 voxel width boundary parameter
setting. Increasing the parameter did not cause any further
improvement, smaller settings resulted in less sharp edges
at the mentioned group centers. As seen in Figure 7, the
algorithm results in steep corrected edges without signif-
icant overcorrection, in accordance with average original
PET activity.

Figure 10 depicts the mouse result. Artifacts appear in
soft tissues as CT segments do not cover these slight PET
activities. This can be eliminated with proper segmenta-
tion. At the spinal area, spillover values are eliminated
and reallocated to the source (the spine), and the result
is a sharp image. However, near the neck and the head,
false voxel classifications are present due to nearby seg-
ment boundaries. Since classification is done solely by
CT gradients, these edges cause voxels to be classified
as source, and due to significant spillover values present
nearby, the algorithm amplifies their original value. In-
creasing the boundary width parameter did not solve this
as edges are closer than the parameter already.

Execution time is proportional to the number of vox-
els on edges (and thus the image size, obviously) and the
correction width. This is why the computation time for
the mouse took longer than expected (based on the im-
age dimensions). The algorithm produces an output image
with steep edges and no significant overcorrection while
it preserves local features as opposed to methods earlier
mentioned 2.1. Furthermore it requires no a priori infor-
mation on the scanner, nor the tissue being examined. It
does not assume any correlation between PET and CT val-
ues, only co-located edges are required. A disadvantage of
the method is that it may introduce segmentation artifacts.
Also, a desirable correction width should be chosen based
on the extent of PVE. Classification based on CT gradi-
ents may result in erroneous correction as voxels may be
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misclassified due to their proximity to an unrelated, lower-
intensity CT edge. This could be compensated with a clas-
sification taking PET activity into account.
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Figure 7: Line profile of the Derenzo phantom.

5 Conclusion

This paper proposed a Partial Volume Effect correction al-
gorithm for PET/CT using segmented CT images. We fil-
ter out irrelevant CT features by applying the correction
to regions with present radioactivity, and only boundaries
are affected. Based on the assumption that PET activity
does not change abruptly, and that inner tissue areas rep-
resent correct activity, we reallocate PET intensities to re-
store the original distribution. This is done by extending
a 1D method to 3D while original average activity is pre-
served. The algorithm runs without user interaction and is
implemented in a massively parallel framework, harness-
ing the computational benefits of the GPU.
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CT: 333×333×281 Segmented CT PET: 173×173×146 Corrected PET

Figure 9: Slices of the Derenzo measurement and steps of correction. Execution time is around 3 minutes. Boundary
width is 14 voxels.

CT: 435×422×1056 Segmented CT PET: 136×132×330 Corrected PET

Figure 10: Blended slices from the mouse measurement and the steps of correction. Execution time is around 40 minutes.
Boundary width is 19 voxels.
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Abstract

This paper presents an image processing method for iden-
tifying separate layers in seismic 3D reflection volumes.
This is done by applying techniques from flow visualiza-
tion and using GPU acceleration. Sound waves are used
for exploring the earth beneath the surface. The result-
ing seismic data gives us a representation of sedimentary
rocks. Analysing sedimentary rocks and their layering can
reveal major historical events, such as earth crust move-
ment, climate change or evolutionary change. Sedimen-
tary rocks are also important as a source of natural re-
sources like coal, fossil fuels, drinking water and ores. The
first step in analysing seismic reflection data is to find the
borders between sedimentary units that originated at dif-
ferent times. This paper presents a technique for detecting
separating borders in 3D seismic data. Layers belonging to
different units can not always be detected on a local scale.
Our presented technique avoids the shortcoming of exist-
ing methods working on a local scale by addressing the
data globally. We utilize methods from the fields of flow
visualization and image processing. We describe a bor-
der detection algorithm, as well as a general programming
pipeline for preprocessing the data on the graphics card.
Our GPU processing supports fast filtering of the data and
a real-time update of the viewed volume slice when pa-
rameters are adjusted.

Keywords: Seismic Data, Structure Extraction, GPU-
accelerated Image Processing

1 Introduction

Stratigraphy is the study of rock layers deposited in the
earth. A stratum (plural: strata) can be defined as a homo-
geneous bed of sedimentary rock. Stratigraphy has been a
geological discipline ever since the 17th century, and was
pioneered by the Danish geologist Nicholas Steno (1638-
1686). He reasoned that rock strata were formed when
particles in a fluid, such as water, fell to the bottom [10].
The particles would settle evenly in horizontal layers on a
lake or ocean floor. Through all of Earth’s history, layers

∗kari.ringdal@student.uib.no
†danielpatel.no@gmail.com

of sedimentary rock have been formed as wind, water or
ice has deposited organic and mineral matter into a body of
water. The matter has sunk to the bottom and consolidated
into rock by pressure and heat. A break in the continuous
deposit results in an unconformity, in other words, the sur-
face where successive layers of sediments from different
times meet. An unconformity represents a gap in the ge-

Figure 1: Stratified sediments. The sedimentary facies are
separated by unconformities.

ological record. It usually occurs as a response to change
in the water or sea level. Lower water levels expose strata
to erosion, and a rise in the water level may cause new
horizontal layers of deposition to resurge on top of the
older truncated layers. The geologists analyse the pattern
around an unconformity to decode the missing time it rep-
resents. Above and below an unconformity there are two

Figure 2: Strata relates to an unconformity in different
ways. The top three images show patterns that occur be-
low an unconformity, and the bottom three images show
patterns that occur above an unconformity.

types of terminating patterns and one non-terminating pat-
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tern. Truncation and toplap terminates at the unconformity
above. Truncation is mainly a result of erosion and toplap
is a result of non-deposition. Strata above an unconformity
may terminate in the pattern of onlap or downlap. On-
lap happens when the horizontal strata terminates against
a base with greater inclination, and downlap is seen where
younger non-horizontal layers terminates against the un-
conformity below. Concordance can occur both above and
below an unconformity and is where the strata layers are
parallel to the unconformity. An illustration of these con-
cepts can be seen in Figure 2.

An unconformity can be traced into its correlative con-
formity. In contrast to an unconformity, there is no evi-
dence of erosion or non-deposition along the conformity.

Figure 3: Sediments of
different facies can be
indistinguishable in lo-
cal areas such as inside
the circle.

A seismic sequence - also
called a sedimentary unit or
facies, is delimited by uncon-
formities and their correlative
conformities. The fact that
sediments belonging to dif-
ferent seismic sequences can
be indistinguishable in greater
parts of the picture, as illus-
trated in Figure 3, calls for
global analysing tools.

For more information on
unconformities, sedimentary
sequences and other strati-
graphic concepts, the reader is

referred to Nichols book on sedimentology and stratigra-
phy [13] and Catuneaus book on sequence stratigraphy [4].

Many techniques to highlight interesting attributes in
seismic data have been developed [6]. Taner [17] gives a
useful definition of seismic attributes: “Seismic Attributes
are all the information obtained from seismic data, either
by direct measurement or by logical or experience based
reasoning”. Dip and azimuth are attributes that describe
the dominating orientation of the strata locally. Dip gives
the vertical angle and azimuth the lateral angle.

In our work, we consider the dip/azimuth vectors to con-
stitute a flow field representation of the data set where the
flow “moves” along the sediment layers. We seed parti-
cles from neighbouring points in this flow, and consider
the distances between the end points of the generated tra-
jectories. A great distance gives a high probability that the
seed point is a surface point. Mapped surface points are
then linked to constitute unconformity surfaces. Figure 4
gives an overview of our processing pipeline.

2 Related Work

Interpreting seismic data is a time consuming task, and
extensive work has been done to automate this. This sec-
tion will focus on previous approaches on finding uncon-
formities, and also look into methods within the fields of
image processing and flow visualization that relates to the

new technique presented in this paper. Orientation field
extraction from image processing relates to vector field ex-
traction of seismic data. Image processing also deals with
edge linking methods, which relates to the segmentation
process of our method. The field of flow visualization use
methods relevant to the mapping of surface probability.

2.1 Seismic methods

One method for detecting sequence boundaries, or uncon-
formities, is the method of Randen at al. [15]. This method
calculates the volumetric estimates of dip and azimuth by
applying a multi-dimensional derivative of a Gaussian fil-
ter followed by directional smoothing. Starting at a sample
in the extracted orientation field, a curve is generated in the
direction of the local angle (see Figure 5).

Figure 5: a) Seismic cross section. b) Flow lines and ter-
minations (marked with X) extracted from the cross sec-
tion. c) Mapping of stratigraphic surface probability from
the cross section.

The curves form flow lines along the orientation field.
Intersection points of flow lines are detected (marked
with X). These points are likely to be on an unconfor-
mity. Brown and Clapp attempted a different approach
that locally compares the data to a template that represents
a neighbourhood around an unconformity [2]. Another
method to find lateral discontinuities (e.g. lateral uncon-
formities and faults) in seismic data is that of Bahorich and
Farmer called the coherence cube [1]. Coherency coeffi-
cients are calculated from a 3D reflection volume and dis-
played as a new volume. Coherence is a measure of the lat-
eral change of the seismic waveform along structural dip.
Since the coherence cube first appeared in 1995 it has been
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Figure 4: Processing pipeline. A flow field with vectors parallel to the sediment layers is extracted from the data. Strati-
graphic surface probability is mapped by the use of a seeding algorithm and user defined parameters. Edge linking can be
a way of completing a segmentation.

improved several times. Chopra gives an overview of the
development of this method [5]. Unconformities are often
seen as discontinuities in the data, but not always. It can
happen that there are no obvious signs of erosion and the
layers on either side of an unconformity are parallel. This
type of unconformity, sometimes called paraconformity or
conformity, would not be detected by the coherence cube
or any of the above methods.

A recent paper by Hoek et al. [18] describes a new
method for finding unconformities. Gaussian derivative
filters are used to estimate the dip/azimuth field. The ori-
entation field is then analysed by utilizing a method from
the field of image processing. The structure tensor field is
calculated and regularized, and the principal eigenvector
of the structure tensor is extracted. From this, the dip field
is studied to see whether the vectors diverge, converge or
are parallel. Hoek et al. recognize the problem that pre-
vious methods address seismic data on a local scale, and
they attempt to find a more global approach with their un-
conformity attribute. However, their method measures the
conformability of the dip field in a neighbourhood of a pre-
defined size and is therefore still a local method that does
not capture events taking place outside its neighbourhood.

Hoek et al.’s unconformity detection method, as well
as the method presented in this paper, depends on the re-
flector dip and azimuth of the seismic data. Much work
has been done to extract these attributes accurately. Com-
plex trace analysis, discrete vector dip scan, and gradient
structure tensor are commonly used for the task. Marfurt
presents a refined method for estimating reflector dip and
azimuth in 3D seismic data and gives a good overview of
the work previously done in this area [12].

2.2 Image processing methods

In image processing, a repetitive pattern is referred to as a
texture, and a linear pattern as an oriented texture. Numer-
ous algorithms are used for enhancing or segmenting tex-
tured images - many inspired by human visual perception
models. When it comes to processing images digitally for
tasks such as edge detection or pattern recognition, there

is no algorithm generic enough to be a good choice at all
times. It is in other words necessary to choose the right
algorithm for the right data and desired achievement.

A finger print, wood grain or a seismic image are ex-
amples of oriented textures. These textures have a domi-
nant orientation in every location of the image. They are
anisotropic, and each point in the image has a degree of
anisotropy that relates to the rate of change in the neigh-
bourhood. This is often represented as the magnitude of
the orientation vectors. Extraction of the orientation field
of a texture has been well researched in the field of im-
age processing. Extraction algorithms are often based on
the gradient from a Gaussian filter [16, 9]. In addition to
automatic pattern recognition and some edge detection al-
gorithms, directional smoothing of an image exploits the
orientation field. Like in seismic data evaluation, it is es-
sential that the extracted orientation field represents the in-
trinsic properties of the image.

Non photo-realistic rendering (NPR) concerns with
simplifying visual cues of an image to communicate cer-
tain aspects more effectively. Kang et al. [8] suggests a
new NPR method for 2D images that uses a flow-based fil-
tering framework. An anisotropic kernel that describes the
flow of salient image features is employed. They presents
two topics that are interesting to our technique, namely
the extraction of a vector field from an image, and cre-
ating lines from isolated points. They use a bilateral fil-
ter (an edge-preserving smoothing filter) for the construc-
tion of what they call an edge tangent field (ETF). This is
a vector field perpendicular to the image gradients. The
gradient map is obtained by a Sobel operator. The vector
adapted bilateral filter takes care to preserve salient edge
directions, and to preserve sharp corners in the input im-
age. The filter may be iteratively applied to smooth the
ETF without changing the gradient magnitude. Kang et al.
present this vector field extraction method as a base for ex-
tracting image features. A different vector field extraction
method is proposed by Ma and Manjunath [11]. They find
edge flow vectors by identifying and integrating the direc-
tion of change in color, texture and phase discontinuity at
each image location. The vector points in the direction of
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the closest boundary pixel.
Edge linking is another area from image processing that

is relevant to our method. An image of unconformity lines
may contain gaps, and with an ultimate goal of segmen-
tation, proper linking of edges is necessary. Fundamen-
tal approaches to edge linking concern both local process-
ing where knowledge about edge points in a local region
is required, and regional processing where points on the
boundary of a region must be known [7]. There are also
global processing methods, like the Hough transform. For
Kang et al.’s flow-based image abstraction method [8],
part of the goal is to end up with an image-guided 2D
line drawing. Here the lines are generated by steering a
DoG (difference of Gaussian) edge detection filter along
the ETF flow and accumulate the information. This way,
the quality of lines is enhanced. (see Figure 6).

Figure 6: Edge linking. a) Input image. b) Filtered by
DoG filter. c) Filtered by Kang et al.’s flow-based DoG
filter.

2.3 Flow field topology and extraction meth-
ods

Flow visualization is a sub-field of data visualization that
develops methods to make flow patterns in fluids visible.
Flow features and techniques for topology extraction of
steady vector field data will be the focus of this section. A
feature is a structure or an object of interest. Shock waves,
vortices, boundary layers, recirculation zones, and attach-
ment and separation lines are examples of flow features.

Relating flow to seismic data, features that are most
likely to occur in a vector field extracted from seismic data
are separation and attachment lines, this because of the
onlap, toplap and downlap terminations. Separation and
attraction lines are lines on the boundary of a body of a
flow where the flow abruptly moves away from or returns
to the surface of the flow body. A state of the art report
by Post et al. [14] deals with different methods for sep-
aration and attachment line extraction. Methods for both
open and closed separation are discussed. One approach
mentioned is particle seeding and computation of integral
curves. A particle is released into the flow field and its
path is found by integrating the vector field (that repre-
sents the flow field) along a curve. If we look at the vector
field extracted from seismic data as a flow field, we have a
steady flow. The fact that it is not time-dependent means
that the pathline of a seeded particle is everywhere tangent
to the vectors of the flow. According to the aim of this pa-

per, feature extraction and its instrumental algorithms are
of greater interest than the actual visualization of the data.
We will not use pathlines for visualization purposes, but as
a tool in addressing the seismic data on a global scale.

3 Implementation Details

Our method for separating the sedimentary units in 3D
seismic data follows the processing pipeline shown in Fig-
ure 4. The processing steps are separated into three cate-
gories:

• Vector field extraction from the seismic data

• Mapping of stratigraphic surface probability

• Segmentation process

This section will take a closer look at each of the steps, but
focus on the second step of the pipeline - the mapping of
stratigraphic surface probability using concepts from flow.
In this step lies the novelty of our method.

3.1 Preprocessing - vector field extraction
on the GPU

As described in the Related work section, there already ex-
ists efficient methods for estimating the reflector dip and
azimuth of seismic data. The extraction of this vector field
is an important step of the pipeline, because a regular vec-
tor field, that represents the data accurately, is crucial to
our technique. The idea is to apply our unconformity ex-
traction algorithm on a dip/azimuth vector field found by
already established methods. For testing the algorithm we
have created 2D and 3D synthetic data sets and imple-
mented image processing methods for extracting the vec-
tor field. The 3D data sets were created either by stacking
an image to form a volume or by procedurally creating a
volume of vectors pointing in different directions on either
side of a delimiting surface. Only the last mentioned type
of test set has a variation in z-direction. The test sets have
been useful for testing our algorithm and for getting a feel
of the vector field extraction calculations which were done
in parallel on a graphics card. The implemented program-
ming pipeline is transferable to real seismic data volumes.

The highly parallel structure of modern GPUs is ideal
for efficiently processing large blocks of data provided the
calculations could be done in parallel. GPUs support pro-
grammable shaders that manipulate geometric vertices and
fragments and output a color for every pixel on the screen.
Instead of output to the screen, the RGBA-vectors can be
written to 2D or 3D textures. A texture is in this sense a
block of memory located on the GPU where every point of
the texture is a four dimensional vector. GPU-accelerated
methods are rapidly expanding within the oil and gas in-
dustry, and have dramatically increased the computing per-
formance on seismic data.
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For our implementation, we have used the OpenGL
API and the OpenGL shading language GLSL within the
framework of Volumeshop [3]. The programmed pipeline
does GPU filtering of 3D data iteratively with a real-time
update of the viewed 2D slice when adding, removing or
adjusting any of the filters. This allows a fine-tuning of
parameters before the entire data volume is processed.

The volume is loaded on the GPU in a 3D texture. GPU-
memory is reserved for two more textures of equal size as
the volume, and the original texture is copied to one of
them. The two textures are used alternately for reading
and writing in a ping-pong fashion while the desired num-
ber of filters is applied. The different filters are written as
shaders in a plugin. Any number of this plugin is added
to the Volumeshop interface. They all operate on the GPU
by having one plugin for every filter applied to the volume.
The user chooses a filter from a pull down menu, and the

Figure 7: The data is loaded onto the GPU memory in a
3D texture. Data is alternately read and written between
two more textures in a ping-pong fashion while filters are
applied iteratively. The data is filtered in parallel on the
GPU, and a flow field representing the data is extracted.
Output from a filter is rendered to the ping or pong tex-
tures. Any output slice can also be rendered to the display.

filter parameters can be adjusted by sliders. It is also pos-
sible to choose how many slices of the volume are filtered
at each step. This way 3D filtering can be done on a sub-
set of the volume to quickly assess the result. Adjustments
of a filter leads to reprocessing of the data from the orig-
inal volume through all the added filters. Therefore, the
original volume is kept as a separate texture on the GPU
and not overwritten as the ping-pong textures. Figure 7

illustrates the implementation. All calculations are saved
with floating point precision in the RGBA-vectors of the
3D textures. Results can be visualised directly by render-
ing the RGBA-vectors to the screen, i.e. a flow field is seen
as colors that varies according to the dip/azimuth vectors.
This gives a good indication of the effect of each applied
filter. A flow field represented as colors can be seen in
Colour plate Figure 12 b).

3.2 Mapping of stratigraphic surface proba-
bility

Our unconformity detection algorithm is implemented as
a shader, and calculations are done in parallel on the GPU.
The technique uses particle seeding, as is common in the
field of flow visualization, but the paths of the particles are
not visualized. We use particle seeding from four neigh-
bouring points to check whether they belong to the same
sedimentary unit or not. The algorithm is as follows: For
every point on a volume slice, four seed points are cho-
sen. The seed points have coordinates (x,y,z), (x+d,y,z),
(x,y + d,z) and (x,y,z + d). d is set so all four points
are within a local neighbourhood. The seeding is calcu-
lated by sampling the flow from the 3D texture using the
Runge Kutta 4th order (RK4) method. All four paths are
followed until a user- defined number of steps are taken, or
the path reaches coordinates outside of the volume-texture.
The distances between the four end points are calculated.

Figure 8: Illustration of
the border detection al-
gorithm. The dots rep-
resents three seeds that
move along paths in a
flow field. If the dis-
tance between the path-
ends exceeds a threshold,
a probable surface point is
marked.

If a distance greater than
a user-defined threshold
is detected, the original
seed point with coordi-
nates (x,y,z) is marked as
a probable point on an un-
conformity. Figure 8 is
an illustration of the al-
gorithm in 2D. It is ex-
pected that a great distance
indicate that the particles
have moved along differ-
ently shaped paths. Be-
cause of the parallel nature
of the seismic data, two
close paths will end up in
the same neighbourhood if
their seed points are within
the same sedimentary unit.
We use four seed points to
detect borders of any an-
gle. The advantage of this method is that paths of many
steps address the data globally and unconformities can
be mapped even with parallel horizons on both sides. A
premise is that the particles move into a non-parallel area
along their paths.

Since the algorithm is implemented as a shader, it is ex-
ecuted in parallel for every pixel of the rendered region.
The rectangular viewing region is set to correspond to the
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width and height of the volume, and this region is ren-
dered to the screen or directly to the ping-pong textures.
The user can adjust the number of path steps and the dis-
tance threshold used by the algorithm. The effect of ad-
justing these parameters is seen in real-time on one slice
of the volume. When the desired parameter values are set,
the rest of the volume is processed, slice-by-slice, with the
same settings. This way, the seeding algorithm is executed
for every vertex in the volume.

When the flow field is sampled from the 3D texture dur-
ing the path calculations, OpenGL takes care of any neces-
sary interpolation. The textures are set up for trilinear in-
terpolation, and the paths are found by the RK4 integration
method. If the step size of this method is set to h, the error
per step is on the order of h5, while the total accumulated
error has order h4. Because of the error accumulation, a
small step size is desirable. The step size together with the
number of steps affect whether the implemented technique
is run locally or globally. Since the RK4 calculations are
a bottleneck in our technique, the balancing between the
accuracy of the method and the performance speed lies in
the choice of these parameters. We are using a step size of
0.5. The number of steps is chosen in the user interface.

Ideally, the mapped points constitute unconformity lines
without gaps when the seeding is done for every point on
a slice, and unconformity surfaces without gaps when the
seeding is done on the entire volume. However, this is
rare, when dealing with real seismic data, and some frag-
mentation and false positives may occur. We have taken
some measures to reduce misclassification. For more ro-
bustness of the algorithm we perform the seeding in both
directions of the flow. We also scale the endpoint distances
by the number of path steps to makes sure that a path of
few steps will be as sensitive to the given threshold as a
path of many steps. To avoid false positives, compared
particle paths are discarded if their paths have a great vari-
ation in the executed number of steps.

3.3 The segmentation process

The ultimate goal is a fully automated segmentation of
seismic data into sedimentary units. However, when run-
ning the algorithm on noisy data, some fragmentation of
the detected borders may occur. In that case, edge linking
is required. This step is not implemented at the current
stage, as it is not the main focus of this work. See the
end of Section 2.2 for possible methods to achieve edge
linking.

4 Results / Application

To test the idea behind the presented technique, 2D and
3D test sets were generated. The first 2D test set of size
256× 256 is a vector field that simulates the flow field of
two sedimentary units with parallel layers in greater parts
of the picture. As expected, the unconformity surface was

Figure 9: 2D test set of size 256× 256 representing the
vector field from two sedimentary units. a) The border de-
tection algorithm is run locally - each particle is followed
for 20 steps, and only a part of the border is detected. b)
The algorithm is run globally - each particle is followed
for 200 steps, and the border is detected throughout the
data set.

only found in the area without parallel layers when the al-
gorithm was run locally (see Figure 9a). Each particle path
had 20 steps with a step size of 1 which means that every
particle travelled within a local neighbourhood. Figure 9b
shows the result of increasing the number of steps to 200.
Now the unconformity was mapped all the way, also in the
area of parallel layers.

The second test set is a 3D vector field of size 256×
256×256. It also simulates two sedimentary units. Figure
10 a) shows the flow field on a slice of the volume. The
two units have vectors with different z-components and
the data set varies in depth. The seeding algorithm was
run on this flow field with 100 path steps and a step size of
0.5, and the unconformity surface was found. Figure 10b
shows the detected surface displayed in VoulmeShop. On
this simple test set, the algorithm has generated a complete
surface, and edge linking is not required.

For test set number 3 we used an image of a seismic
data slice from Randen et al.‘s article [15], and stacked
copies of this image to create a 3D volume. The result-
ing volume is of size 256×256×256. This data set does
not vary in depth as a seismic volume, but it gives us a
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Figure 10: Test set 2 is a 3D vector field. a) A slice of the
volume with lines following the flow field. b) A volumet-
ric representation of the surface extracted by the border
detection algorithm.

way to test our vector field extraction filters and 3D fil-
tering in real-time. Four filters were applied to the test
set. Gradients were calculated by central difference and
rotated 90 degrees clockwise around the z-axis. Flow vec-
tors with a negative x-component were turned 180 degrees.
Then a Gaussian blur filter was used before a median filter
smoothed the flow field even more. At last we applied the
filter that contains the border detection algorithm. The re-
sult is seen in Figure 11, and shows that some borders are
detected also in places where the layers appear parallel.

The last test set is again generated from stacking copies
of an image. We used an image that represents a seismic
image picturing many sedimentary units (Colour plate Fig-
ure 12a). The data set is of size 512×512×64. First the
flow vectors were found by central difference as with test
set number 3. Then the flow field was smoothed by Kang

et al.‘s bilateral smoothing filter [8] reviewed in Section
2.2. Also, a 3× 3 mean filter was used for more smooth-
ing. All vectors were normalized. Colour plate Figure 12b
is a rendering of the RGBA-vectors constituting the flow
field. Colour plate Figure 12c and d shows the output of
the border detection algorithm with two different thresh-
old settings. The step size is 0.5 and the number of steps
is 1000 in both cases. A path may evolve for less than
1000 steps if the path reaches the edge of the volume. The
distance threshold in Colour plate Figure 12c is set so that
the algorithm maps any seeding point where the seeded
particles diverged for more than 16 units at the path ends.
In Colour plate Figure 12d the threshold is set to 4 units.
Clearly, a smaller threshold maps more points as a border
point. The effect of changing the threshold value can be
seen in real-time when the algorithm is run on one slice
of the volume due to our GPU implementation. Therefore,
the user can find a satisfactory threshold value before the
entire volume is processed.

Testing was done on a machine with an NV IDIA
GeForce GXT 295 graphics card with a global memory of
896 MB and an IntelR CoreT M 2 Duo processor with 2GB
ram. Running times for the last and biggest test set of size
512×512×64 was as follows: It took 2.4 seconds to filter
the whole set by the three flow field extraction filters and
running the seeding algorithm with 1000 path steps on one
slice. When the seeding algorithm was run on all 64 slices,
the same process took 44.5 seconds. The implementation
was written in C++ and OpenGL within the framework of
Volumeshop. All calculations are done on the GPU.

5 Conclusions and future work

The paper has demonstrated an automated method for
highlighting unconformities in seismic data. An imple-
mentation of the technique, according to given implemen-
tation details, has shown a promising outcome in four dif-
ferent tests. Although the test sets were quite small, man-
ually generated and more regularized than most seismic
data sets, the presented implementation shows a possi-
ble way of detecting seismic unconformities on a global
scale. We have also presented a programming pipeline for
processing seismic data with all calculations done on the
GPU. Two OpenGL 3D textures are used in a ping-pong
fashion for reading and writing while filtering the data vol-
ume. The volume is updated in real-time when applying
or adapting any filters.

For testing with actual seismic data sets, a few improve-
ments to the program are needed. Seismic data sets are
often very large in size, and it would not be possible to
load such volumes in entirety onto the GPU. A method
for processing large data sets in sequence, such as stream-
processing, is necessary. We would also like to refine the
detection algorithm itself to better handle the possible fea-
tures of a flow extracted from seismic data.
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Figure 11: a) A seismic cross section. This image is copied and stacked to constitute a 3D test set. b) One slice of the
output volume after our border detection algorithm is employed. The detected border is displayed as a white line. c) The
detected border is seen as a surface when displayed in VolumeShop. A slice of the volume is added for reference.
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Abstract

In this paper we propose a particle-based volume render-
ing approach for unstructured three-dimensional tetrahe-
dral polygon meshes. We stochastically generate millions
of particles per second that are projected on the screen in
real-time. In contrast to previous rendering techniques of
tetrahedral volume meshes, our method does not need a
prior depth sorting of geometry. Instead, the rendered im-
age is generated by choosing particles closest to the cam-
era. Furthermore, we use spatial superimposing. Each
pixel is constructed from multiple subpixels. This ap-
proach not only increases projection accuracy, but allows
also a combination of subpixels into one superpixel that
creates the well-known translucency effect of volume ren-
dering. We show that our method is fast enough for the
visualization of unstructured three-dimensional grids with
hard real-time constraints and that it scales well for a high
number of particles.

Keywords: volume rendering, GPGPU, particle-based,
object space

1 Introduction

Volume rendering is used in many disciplines. Visual-
ization of medical data or simulated data arising from fi-
nite element methods are just a few examples. The data
to be rendered can be represented as regular or irregu-
lar structure. Regularly structured data originates mostly
from medical imaging devices (MRI, CT, etc.). Direct vi-
sualization of these volumetric datasets is well researched
and various methods exist. A good overview over standard
methods is given by Hadwiger et al. [8].

Irregular datasets – or unstructured grids –, are mainly
used for simulations, for example for finite element anal-
ysis [3], which normally uses an input of irregular shape
and which requires connectivity information of the grid’s
nodes. Rendering such grids is an ongoing field of re-
search. Early approaches use standard geometric algo-
rithms such as plane sweep techniques. Other algorithms
directly exploit the grid structure. Using tetrahedral grids

∗philip.voglreiter@student.tugraz.at
†kainz@icg.tugraz.at

is the most prominent method. The grids can either be pro-
jected directly, or they can be rendered in a preprocessed
state to speed up the rendering process [14].

Basically, all methods for volume rendering can be di-
vided into two main areas. They either are image-based
or object-based. Image-based methods, like ray casting,
generally scale with image resolution. Their performance
highly depends on the amount of pixels to be displayed.
In contrast, object-based approaches like point splatting
are less dependent on image resolution. The complex-
ity of rendering is strongly tied to volume complexity.
Particle-based volume rendering (PBVR) belongs to the
object space approaches. In contrast to many other meth-
ods in this category, PBVR does not require depth sorting
of any kind. Instead, we treat projected particles in a way
that is similar to z-buffering.

Modern applications demand fast visualization tech-
niques. Real-time generation of images with an acceptable
frame rate is essential for visualization techniques such
as Augmented Reality [5] or other applications with hard
real-time contstraints. Often, several tasks need to be per-
formed in parallel. Especially medical applications need
to provide a wide field of techniques concurrently to the
visualization of data. Recorded images often need to be
segmented. Also, simulations need to be performed si-
multaneously to visualization.

Modern GPUs give an option for fast visualization
methods and allow solving a vast amount of parallel prob-
lems in real-time. In this paper, we introduce a novel
way of stochastic PBVR on modern GPUs. In contrast
to the highly sophisticated particle generation methods
(Metropolis [12]) used by former approaches, we intro-
duce a method of particle generation with little computa-
tional effort. Our proposed method also allows online con-
trol of the number of generated particles. This is crucial
for applications with hard real-time constraints and allows
to alter visual effects such as density during runtime. Be-
cause the number of particles also influences the computa-
tional effort and memory consumption, our proposed on-
line control can also be used to steer the use of resources.
This is necessary for applications that require an execution
of different critical GPU accelerated tasks concurrently.

Furthermore, most PBVR methods for unstructured
grids do not take final opacity values of rendered volumet-
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ric cells into account. On the one hand, many approaches
do not allow this because of inherent problems of the par-
ticle generation method. On the other hand, most methods
consider particles as completely opaque primitives. Thus,
the opacity of a particle is neglected.

Contribution We provide a fast, on the fly method for
parallel, real-time particle generation in tetrahedral grids
and simultaneous rendering. The proposed method pre-
vents visual patterns such as streaks or clusters in the final
images. We also introduce an improved method for parti-
cle superimposing. Thereby, we address perceptive issues
occurring at different depth levels of the rendered volumes.

2 Previous work

In [2], Avila et al. propose an approach of direct vol-
ume rendering and define a rendering pipeline for irregular
datasets. They refer to the plane-sweep technique, which
is widely used to solve geometrical problems. Shirley et
al. [17] first describe a method of projecting tetrahedrons
onto the image plane. The tetrahedrons need to be sorted
before projection. Sorting is known to be O(n log n) for
most sorting algorithms, and thus a larger grid size means
more computational effort.

Approaches like projected tetras have already been im-
plemented on the GPU [11]. The authors exploit the ca-
pabilities of shaders and CUDA to perform depth sorting
of the tetrahedrons. Sorting large numbers of tetrahedrons
is a time-consuming task and can be inefficient. As alter-
native approach, Challinger [6] describes a method for ray
casting of unstructured grids. Ray casting generates im-
ages of a higher quality but shows an O(n3) complexity in
the worst case. However, ray casting offers ways to ben-
efit from modern GPU capabilities as was shown in [21].
Still, the rendering itself requires a high computational ef-
fort and is usually too slow for real-time applications.

Point splatting [20] is a method very similar to particle-
based approaches. The authors show an efficient way
to generate oval splats with low memory cost, but point
splatting inherently produces artifacts in the rendering
process.

In [16], Sakamoto et al. describe a general approach
of PBVR. They base their particle generation algorithm
on the Metropolis Method [12]. The Metropolis method
is a well-known, efficent Monte-Carlo algorithm [13] for
random number generation. Generally, the Metropo-
lis method is rather inefficient concerning computational
speed. In [15], the authors go deeper into detail of their
particle generation method. Also, they consider rendering
tetrahedral grids by voxelizing them. Voxelizing a tetrahe-
dral grid can be rather time-consuming, depending on the
vertex distribution. Vertices, which are not located exactly
at corner points of the rectilinear grid, which characterizes
a voxelized volume, need to be interpolated. But the voxel

values need to be interpolated again for actual rendering.
Interpolation inherently produces erroneous results. Inter-
polating interpolated values increases the amount of error
even further. Pelt et al. [19] use a particle-based method
to perform illustrative volume rendering. They describe
hatching and stippling techniques using particles and also
visualize contours of datasets with their method.

3 Particle-based volume rendering

The main idea of PBVR is to construct a dense field
of light-emitting, opague particles inside a volumetric
dataset. These particles are used to perform object-based
rendering by simulating the light emission of particles.
Mutual occlusion induced by completely opague particles
plays a major role during rendering. Sakamoto et. al. [16]
describe the basic model in more detail. Generally, PBVR
involves two major steps. First, a proper particle distribu-
tion inside the volume needs to be generated, which is de-
scribed in Section 3.1. Second, in Section 3.2 we outline
how the particles are projected onto the image plane. In
these two sections, we give a detailed description of those
two steps as well as some detail on methods to increase the
visual performance of the algorithm.

3.1 Particle Generation

In this paper we use a stochastic process to generate the
field of particles. It is desirable to generate particles uni-
formly distributed over the whole volume. This results in
images without visual artifacts, namely streaks, holes, or
clusters. We split the volume into tetrahedral cells and per-
form particle generation per cell. This divide and conquer
approach has several effects. On the one hand, particle
generation is parallelizable. On the other hand, the gener-
ated particles do not necessarily resemble a uniform ran-
dom distribution over the whole volume anymore. Thus,
we will show how to treat this situation effectively in the
following paragraphs.

Particle Distribution over Cells We consider a maxi-
mum number of particles pmax for the whole model. This
number comprises the maximum amount of particles to be
rendered throughout the whole volume. Note that the max-
imum amount of particles is rarely fully exploited. To ac-
complish a visually acceptable distribution of particles, we
need to determine the amount of particles pcell that each
cell may project. We calculate this number by using the
proportion of cell volume Vcell to the total volume of the
grid Vgrid . This ratio directly describes how many particles
of the total quantity we may use for a given cell. There-
fore, the number of particles per cell is

pcell =Vcell/Vgrid ∗ pmax. (1)
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This can be proven easily for one dimension. General-
ization to the third dimension thereafter is trivial, but un-
fortunately both exceed the length of this paper.

Using this method, we generate one single dense distri-
bution for each cell. What we actually want to achieve is a
uniform distribution over the whole volume. Our method
of splitting the whole volume into separate sub-volumes
shows a statistical benefit. In short, we can distribute the
particles over the cells in a way that resembles the distri-
bution of the mean values of the generated particles for
different spatial regions. The mean value of the gener-
ated particles in a cell – considering a distribution over
the whole volume rather than over single cells – is exactly
the proportion of the cell volume Vcell to the total volume
Vgrid . Thus, we may generate the particles per cell and still
statistically achieve a uniform distribution over the whole
data space.

Particle Position For the positions of the particles,
we use barycentric coordinates on the tetrahedral cells.
Barycentric coordinates describe a point that is guaranteed
to be within the borders of a given polygon. In case of
tetrahedrons, the barycentric notation of a point inside it is

P = α ∗V 1+β ∗V 2+ γ ∗V 3+δ ∗V 4 (2)

where V1,V2,V3 and V4 denote the corner points of
the tetrahedron and α through δ resemble the barycentric
parameters. However, some constraints apply to these pa-
rameters. First, each parameter must be greater than zero.
Second, all four parameters must sum up to one. Thus, we
can rewrite the parameter δ to

δ = 1− (α +β + γ) (3)

and after replacing δ in Equation 2, the barycentric de-
scription of a point results in

P=α ∗V 1+β ∗V 2+γ ∗V 3+(1−(α+β +γ))∗V 4 (4)

This means that we only need to randomly generate pa-
rameters α , β and γ for each particle. By using Equa-
tion 3, we can calculate δ directly.

Figure 1: Generated particles clustered near the edges of a tetra-
hedron on the left and near the center on the right. This effect is
created due to using an incorrect distribution

There are several ways to generate barycentric coordi-
nates randomly. Many of those approaches possess sta-
tistically correct mean values but still introduce disturbing
visual patterns. The most straight-forward way is random
generation of all four parameters and dividing them by
their sum. This leads to a statistically recorded mean value
of 0.25 for each parameter. But the parameters are not sta-
tistically independent if generated this way. The following
Definition shows the computation of the parameters:

Definition 3.1 Barycentric parameters generated as ran-
dom numbers over the interval (0,1) and their expected
values after applying the barycentric summation con-
straint are given as

E(x) =
0.5

E(α)+E(β )+E(γ)+E(δ )
(5)

x ∈ { α,β ,γ,δ} (6)

However, the particles tend to concentrate in the cell
centers, which leads to disturbing visual effects. The bor-
der regions of the cell remain very sparse. Another method
involves parameter generation within the mentioned con-
straints. After each parameter is generated, the remaining
maximum is updated and used for the generation of the
next parameter. This leads to the mean values

E(α) = 0.5,E(β ) = 0.25,E(γ) = 0.125,E(δ ) = 0.125
(7)

To equalize the distribution, parameters can be shuffled
randomly. This circumvents the situation of the first
parameter averagely using half of the parameter range
and leads to statistically recorded mean values of 0.25 for
each parameter. But this method suffers a problem similar
to the one of the straight-forward method. The generated
stochastic variables are not independent. This approach
produces the opposite of the simplistic generation. Cell
centers are sparsely covered with particles and cell borders
show a strong visual pattern. Both problematic methods
of particle generation are illustrated in Figure 1

A method to generate particles with a statistically cor-
rect, patternless distribution was introduced by Glass-
ner [7]. The method bases on folding geometry. The
barycentric parameters are randomly generated in a paral-
lelepiped, which comprises of the desired tetrahedron and
its mirrored counterparts. After generation, the parame-
ters are fitted to the desired tetrahedron. In detail, we first
randomly generate the parameters α , β and γ within the
range (0,1). In the next step we calculate sum=α+β +γ .
If that sum is greater than one, we need to manipulate the
generated parameters as we violate the barycentric con-
straint of parameter summation equaling one. Therefore,
we compute p = 1− p for each parameter. In the final step
we calculate δ = 1−(α +β +γ). Figure 2 shows a proper
particle distribution achieved by the described method.

Summarizing, the particles are generated uniformly dis-
tributed in a parallelepiped. Points which are outside the
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Figure 2: Uniform random distribution of particles over a tetra-
hedral cell showing no visual patterns

tetrahedron are transformed inside. This method generates
a patternless uniform random distribution of coordinates
within the constraints of barycentric parameters.

Particle Scalar Value So far we are able to generate
a cloud of uniformly random distributed particles. The
scalar value corresponding to each particle is easy to cal-
culate. We already know the geometric influence of each
corner point to a given particle, namely the barycentric co-
ordinates. We can reuse those parameters to calculate the
scalar value of a particle as

s = α ∗ s1+β ∗ s2+ γ ∗ s3+(1− (α +β + γ))∗ s4, (8)

where s1 through s4 denote the scalar values of the
corner points.

Particle Emission Probability In section 3.1 we de-
scribe a uniform particle distribution over the whole grid.
Simply projecting all generated particles would lead to a
high density of particles hitting the screen regardless of
cell opacity. So we need to thin out the particle field. As
we still want to avoid patterns within the rendered images,
we do this stochastically.

Using the scalar value and a transfer function, we first
determine the opacity that a particle would anticipate.
Based on this calculated opacity, we use the rejection
method [13] to decide whether a particle is emitted or not.
Generally speaking, the determined opacity of a particle
op, which is in the interval (0,1) describes the emission
probability. Corresponding to each particle we next gen-
erate a stochastic variable x within the interval (0,1) on
the real line. Now we perform an emission check, i.e. if
x is smaller than op, the particle is accepted and emitted.
Otherwise, the particle is discarded. When applying this
method, cells with a mean opacity close to 1 emit almost
all of their generated particles, while cells with a low opac-
ity end up with sparse particle coverage.

3.2 Particle projection and Image Genera-
tion

Particle projection involves two steps. First, the screen
space location of the particle needs to be determined. We
need the virtual camera parameters and volume transform
to achieve this. Second, a color value needs to be assigned
to each particle.

Projection from Object Space to Image Space By us-
ing the modelview-projection matrix of the viewing cam-
era, we determine the image-space position of each emit-
ted particle. Further, we calculate its distance to the cam-
era. This involves a simple matrix - vector multiplication.
Should two particles hit the same fragment on the image
plane, the one closer to the camera is chosen to be dis-
played. The particle with a bigger distance is discarded.
This way, no depth sorting of any kind is necessary before
or during rendering. We only need to compare the depth
values of subpixels. This approach is comparable to z-
buffering. Therefore, it is necessary to create two buffers,
one for color, and one for depth.

Transfer function Looking up the corresponding color
of a given scalar value in a transfer function is possible
at three different stages of our approach. The first pos-
sible lookup can happen before projection. This means
assigning the corresponding color to the corner points of
the cells. To calculate the color of a particle, one needs to
interpolate the colors of the corner points. This method
is called pre-classification. The next possible lookup
may happen during projection of a particle. In post-
classification, as opposed to pre-classification, the scalar
values of the corner points are interpolated. Assigning a
color value to a particle is done by applying the transfer
function to the interpolated scalar value. Both pre- and
post-classification have the same memory footprint, due
to the fact that the RGBA value of a pixel uses the same
amount of memory as a floating point scalar value. Also,
the computational effort for both methods is roughly the
same. Our approach offers one more possibility. One
can store the scalar value until subpixel aggregation and
perform the lookup for the final interpolated scalar of a
pixel.

We use post classification per default because of the ad-
vantage in interpolation accuracy. Figure 3 illustrates the
difference between pre- and post-classification.

3.3 Spatial superimposing

To achieve a higher degree of projection accuracy as well
as a translucent appearance of the grid we use spatial su-
perimposing. This means that each pixel is subdivided
into several subpixels. The subpixel level l describes the
amount of subpixels per pixel, where the number of actual
subpixels equals l ∗ l. The particles are thereby projected
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(a) pre-classification

(b) post-classification

Figure 3: The difference in interpolation between different clas-
sification strategies. Figure (a) shows pre-classification where
final opacity and color values are interpolated. In (b) scalar val-
ues are interpolated using post-classification and the application
of the transfer function is performed using the interpolated scalar.

(a) l=3 (b) l=6

Figure 4: Stanford Dragon rendered with 60 million particles per
frame, subpixel level 3 (a) and subpixel level 6 (b) on a resolution
of 1200x800 pixels

onto a subpixel instead of a whole pixel. This increases
the amount of particles actually reaching the image plane.
Finally, the resulting pixel is calculated by averaging the
values of the subpixels.

Translucency Translucency is controlled by two pa-
rameters. Firstly, the amount of generated particles
influence how opaque the volume seems to be. The
more particles are generated, the more subpixels are hit.
Secondly, the subpixel level increases or decreases the
level of transparency. When there are more subpixels in
total, there are also more subpixels, which are not hit
by particles. Hence, in the aggregation process we find
more empty subpixels, decreasing the mean opacity of a
superpixel and making the color appear to be brighter.

Unfortunately, increasing the subpixel level also
increases the amount of used memory on the GPU
drastically. Therefore, a proper subpixel level considering
the tradeoff between accuracy and feasibility needs to be
found for each GPU model. Also, the number of particles
and the subpixel level need to be balanced for reaching
the desired level of transparency and computational per-
formance. This balance needs to be adjusted individually
for each graphics card and desired volume translucency.

Particle Depth Enhancement Simple averaging of sub-
pixels results in an unwanted visual effect. The original
particle position and thereby the distance to the camera
is not taken into account. Thus, averaging treats each sub-
pixel as the same, resulting in an equal visualization of par-
ticles disregarding their distance to the camera. The effect
is best compared to front face culling in mesh rendering.
It might lead to a wrong depth perception while viewing
rendered volumes. While it is hardly perceivable on static
images, the viewer might become aware of it when rotat-
ing or panning the volume. Perceivably, the rendered vol-
ume does not respond to transformation as expected. To
circumvent this effect, we use the already present depth
information of displayed particles.

In detail, we analyze the current depth of each subpixel
zcurr and record minimum zmin and maximum depth zmax
for a pixel. We then calculate the depth range. Next, we
calculate a depth ratio ζ , considering the gap to the maxi-
mum value.

ζ = (zmax− zcurr)/(zmax− zmin) (9)

Using ζ as factor for the RGBA values of subpixels, we
achieve a linear differentiation of particles respective to
their depth values. Particles with a higher distance to the
viewer have a smaller impact on final pixels than particles
close to the camera.
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4 Implementation

We implemented our method using CUDA 3.2 [1], C++
and OpenGL using a NVidia GForce GTX 470 graphics
card. We use GLUT to create an OpenGL viewer and to
provide necessary camera controls.

4.1 Preprocessing of Datasets

We preprocess the datasets using the Visualization Toolkit
[10]. We iterate over all cells and determine their type. If
we encounter a non-tetrahedral cell we tetrahedralize the
cell if possible. In the next step we convert the VTK Un-
structured Grid to a VBO containing a simple data struc-
ture. Each tetrahedron consists of four vertices plus their
corresponding scalar value. We then map this VBO to the
GPU for final processing.

4.2 GPU Preparation

We need to store the transfer function for the scalar value
lookup and we also need to transfer the current model-
view-projection matrix to the device. Cuda random num-
ber generation needs an array of states, which we allocate
and setup on the GPU once. Furthermore, we allocate
different buffers in the GPU’s memory. We create two
buffers for storing the projected particles in subpixels, one
for color and one for depth. Finally, we use a pixelbuffer
for the final image, which we can map to a texture on the
screen.

4.3 Cuda Kernels

Projection Kernel The computing grid of this kernel is
linear. We use a blocksize of 256×1×1 and calculate the
grid size to be #tetras/256× 1× 1. Each thread handles
one tetrahedron. First we calculate the number of parti-
cles to be generated by the current thread. For each parti-
cle, we perform the following steps. First, we generate the
barycentric parameters according to Section 3.1. Next we
calculate the particle’s scalar as described in Section 3.1
and perform an opacity-only lookup for this scalar. We test
this scalar against a random number, which we generate to
determine whether it is projected or not. This process is
depicted in the flow chart of Figure 5. If this test succeeds,
we calculate the position of the particle and finally project
it via multiplication with the model-view-projection ma-
trix. This generates screenspace coordinates, which we
look up in our buffer. If the corresponding subpixel is al-
ready covered by a particle, we perform a depth check to
determine whether we need to overwrite the current sub-
pixel and the depth value accordingly. A visualized flow
of this process can be seen in Figure 6.

Superimposing Kernel We define a block size of
16 × 16 × 1 and a grid size of windowwidth/16 ×
windowheight/16× 1. Each thread handles one block of

Figure 5: Flow chart depicting particle generation

Figure 6: Flow chart depicting particle projection

subpixels corresponding to the number of subpixels per
pixel. In a preliminary step we determine the minimum
and maximum depth value in the current subpixel block
as well as the distance between those extremes. We con-
secutively look up each subpixel, multiply it by the value
described in Section 3.3, and add them up. Finally we di-
vide the summation by the total amount of subpixels per
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pixel and store the calculated value in our pixelbuffer.

Gaussian Smoothing As an optional step for improving
visual results of our renderer, we post process the images
we generate. Using the same computation grid as above,
we apply a 3×3 gaussian blur to the pixelbuffer and store
the result in the final pixelbuffer, which is displayed. Fig-
ure 7 shows a comparison of two images, one of which
was smoothed, and the other was not.

Figure 7: Stanford Dragon with 60 million particles, subpixel
level 3. The figure on the left shows the unsmoothed version.
The figure on the right contains the same area of the volume, but
with a 3x3 gaussian kernel applied to it.

4.4 Displaying Rendered Images

To finally display the rendered image, we use a screen-
sized texture quad and map the filled final pixelbuffer to it.
As all our data structures are already OpenGL-conform,
there is no further processing neccessary.

5 Results

For testing we use several volumetric datasets. One of our
main test volumes is the Stanford Dragon volume [18].
We have tetrahedralized a voxel volume to obtain a regular
tetrahedron grid. This grid consists of 588245 tetrahedral
cells. Another test volume is a completely unstructured
grid obtained from a simulated radio frequency ablation
in liver tissue as described in [4] and [9]. This test volume
consists of 55527 cells.

Figure 4 shows two images of the Stanford Dragon ren-
dered with a maximum amount of 60 million particles on
subpixel level 3 and 6. A comparison of those images ex-
poses the importance of balancing the amount of particles
with the subpixel level to obtain the desired transparency
of the volume.

In Figure 8 we show the decrease in performance with
increasing number of particles and increasing subpixel lev-
els tested with the Stanford Dragon volume. From a cer-
tain point, neither increasing the subpixel level nor in-
creasing the particles by one step drastically decreases the
frame rate. Taking the high amount of cells of this dataset
into account, the recorded data show that our approach
scales well with a high amount of particles and a high sub-
pixel level.

Figure 8: Frames per second for different amounts of particles
and subpixel levels while rendering the Stanford Dragon volume.
Lines depict the flow of performance for fixed subpixel levels.

Figure 9: Radio frequency ablation simulation, subpixel level 3
and 6 million particles per frame at 55 fps

Figure 9 shows the radio frequency ablation simulation
dataset. The dataset was constructed from a finite element
simulation, using an unstructured grid. We have prepro-
cessed this grid to split up non-tetrahedral cells. The vol-
ume itself shows probability of cell death during a radio
frequency ablation. The saturated, red areas in the cen-
ter have a high probability of cell death while the blueish
border regions are more likely to survive the treatment.
Hinted on the left and obvious in the center, the viewer
can see veins penetrating the area, working as a heat sink
and thereby increasing probability of cell survival. This
is depicted in the hazy border regions as those areas have
lower opacity, and thereby a lower amount of particles to
be emitted.

6 Conclusion

We have shown that our method is able to render millions
of particles per second in real-time. This is mainly possi-
ble achieved by our particle generation process. We gener-
ate the particles per-frame and in real-time, and take care
of proper distribution over the volume. Further, our ap-
proach offers capabilities to render arbitrary volumetric
data structures as most data sets can easily be converted
to a tetrahedral structure. The opposite, correct voxeliza-
tion of unstructured data, is a lot harder to achieve.
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In the future, this approach might be expanded to enable
rendering multiple volumes. Also, the approach could be
modified to distributedly render very high resolution im-
ages for large displays. A detailed benchmark test and
comparison against other volume rendering approaches is
also part of future work.
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Abstract

In this paper we introduce a dataflow visual programming
language (DFVPL) and a visual editor for the rapid devel-
opment of visualizations. It enables users with only lit-
tle programming experience to develop custom visualiza-
tions. With this programming language, called OpenIn-
sightExplorer, users can develop visualizations by con-
necting graphical representations of modules rather than
writing source code. Each module represents a part of a
processing step in the visualization pipeline. Modules are
designed to function as an independent black box and they
start to operate as soon as data is sent to them. This black
box design and execution model allows to reuse modules
more frequently and simplifies their development.

The usability of the programming language was eval-
uated by implementing two example visualizations with
it. Each example originates from different areas of visual-
ization (scientific and information visualization), therefore
demanding different data types, data transformation tasks
and rendering.

Keywords: visual programming, rapid prototyping,
dataflow programming

1 Introduction

Visualization is a scientific research field which deals
with developing computer aided techniques for visually
representing large quantities of data. These techniques
transform data into meaningful visual images, that should
allow people to gain insight and help to interpret the
data. Some of these techniques are interactive and allow
to analyze the data sets in an interactive manner. Every
visualization follows the concept of the visualization
pipeline (see Figure 1) [3, 4, 10]. To develop a custom
visualization a user needs to implement the stages of the
visualization pipeline. The visualization pipeline consists
of the following successive processing steps:

∗benedikt.stehno@gmail.com

Data acquisition: In the first step the user defines the
data source from which the data should be loaded. The
data may get read out of special formatted files, databases
or various other sources like simulations or real time mea-
surements. Additionally this step often contains a data
analysis process. The dataset is prepared for visualization
in this step, e.g. by interpolating missing values, applying
a smoothing filter or correcting erroneous measurements.

Filtering: Filtering is a user centered step. The user
selects the portions of data he/she wants to be visualized.
For example, a user selects data out of a certain time
range, which should be visualized.

Mapping: The focused data gets mapped to geometric
primitives (e.g. points and sprites) and their attributes
(e.g. color, position). The focused data gets transformed
to geometric data in this process stage.

Rendering: The final step of the pipeline transforms
the geometric data into the resulting image, providing the
visualization output.

Users who want to rapidly develop a visualization for
certain data can use visualizations packages. Most of them
are specialized to a certain field of visualization making
it rather complicated to extend them with custom needed
functionality. Such extensions can actually only be devel-
oped by users with significant programming knowledge.
Moreover developers need to be familiar with the pro-
gramming language the visualization application is written
in.

In contrast OpenInsightExplorer supports visual pro-
gramming which even non programmers can learn in a
short timespan. The framework contains modules which
can be combined in a graphical editor to a custom visu-
alization pipeline. Only missing functionality needs to be
implemented by developing new modules and adding them
to the framework. Since modules in OpenInsightExplorer
are designed to work as independent black boxes this can
be easily achieved.

The next section deals with the state-of-the-art of
dataflow visual programming languages and provides an
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Figure 1: Visualization pipeline: It describes all possible processing steps from the data acquisition to the final visual-
ization output. Since interaction plays a crucial role in visualization a user may interact with all processing steps of the
pipeline in order to generate the desired visualization output.

introduction to their underlaying paradigms, visual pro-
gramming and dataflow programming. In Section 3 an
overview of the OpenInsightExplorer framework is given
and its features are described in detail. The implementa-
tion of the framework is discussed in Section 4. The results
that could be achieved by implementing two example vi-
sualizations with the framework are described in Section
5, followed by a conclusion including a discussion about
future work in Section 6.

2 State of the Art

OpenInsightExplorer is based on two paradigms, the vi-
sual programming paradigm and the dataflow program-
ming paradigm. These two paradigms were merged to-
gether, resulting in the family of dataflow visual program-
ming languages (DFVPL), to which OpenInsightExplorer
belongs to.

Visual programming languages (VPL) allow users to
program by manipulating or arranging graphical elements
rather than writing textual source code. Users arrange or
combine graphical symbols, following the specific syntax
rules of a language.

Visual programming languages can be designed to work
on a higher abstraction level than their textual counter-
parts using graphical metaphors [8]. This gives users the
ability to work with them in a more intuitive way. Of-
ten they reach such an abstraction level that no prior pro-
gramming experience or knowledge is required to express
or design programs. Hence they often are used for End
User Development, where users can create, modify or ex-
tend parts of a software without any significant knowledge
about programming.

All of the programming languages presented in this sec-
tion follow the concept of boxes and arrows [1, 5, 6].
Boxes represent independent modules which are con-
nected by arrows in a graphical editor. The modules ex-
change data over these connections. They perform calcu-
lations or tasks as soon as they have received all necessary
data for the execution. This principle is called the dataflow
execution model [7, 13, 15]. In this model modules can be
executed in parallel when they have received all necessary
data for an execution.

Programming becomes in dataflow visual programming
languages the task of connecting modules to a graph or
network. This concept was implemented for example
by the following state-of-the-art dataflow visual program-
ming languages:

One of the first commercial DFVPLs was LabVIEW
[9, 12]. LabVIEW is still in development and several ver-
sions of the platform have been released. With this soft-
ware users can build virtual instruments by connecting dif-
ferent function nodes within a block diagram by drawing
wires. It has been shown that large projects can be devel-
oped faster with a visual programming language in com-
parison to traditional text based programming languages
[2]. LabVIEW became an industrial success and its bene-
fits made it popular among researchers.

The DFVPL concept was also adopted for visualization
purposes. OpenDX (Open Data Explorer) [16] is a cross-
platform scientific data visualization software. It can deal
with different kinds of data such as scalar, vector or tensor
fields. A noteworthy feature of OpenDX is that it supplies
GUI modules for interaction. With them the user is able to
manipulate various aspects of the visualization with graph-
ical user elements. Some of these, so called interactors,
were developed to be smart and data driven. For exam-
ple, sliders can automatically determine the minimum and
maximum value(s) of the dataset, setting its boundaries ap-
propriately.

Another example of a DFVPL for visualization pur-
poses is MeVisLab [14, 19]. It is a very specialized vi-
sualization package for medical imaging and processing.
It integrates VTK (Visualization Toolkit) [22, 20] modules
in addition to its own ones to provide a wide range of spe-
cialized visualization modules.

But DFVPLs can also be found in the field of rendering
and graphics processing. Quartz Composer [18] developed
by Apple allows users to develop graphical rendering ap-
plications, e.g. for music visualization or as system screen
saver. This framework can only handle built-in data types.

The presented state-of-the-art DFVPLs are highly opti-
mized for their specific purposes. None of them was de-
signed to serve as a language for scientific and informa-
tion visualizations programming. E.g. Quartz Composer
does not allow users to introduce custom data types, which
proved to be a key feature for information visualization
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Figure 2: A screenshot of the visual editor of OpenInsightExplorer. The editor’s main window is depicted in the center
and on the right side the patch repository (Patch Bag) is shown.

(see Section 5.2). Also OpenDX, which is a scientific visu-
alization language, is incapable of supporting information
visualization features. Additionally extending OpenDX
with new functionality seems to be a more complex task in
comparison to OpenInsightExplorer, which was specially
designed for rapid prototyping and to be easy extendable
with new modules (see Section 4).

The following section provides an introduction to
OpenInsightExplorer and describes the features it provides
to fit the needs as a general purpose visualization DFVPL.

3 OpenInsightExplorer

OpenInsightExplorer allows users to program their custom
visualizations visually. Users simply connect graphical
representations of modules in a visual editor rather than
writing source code. Each module represents a part of a
certain stage of the visualization pipeline (Figure 1). Fig-
ure 2 depicts a screenshot of the visual editor of OpenIn-
sightExplorer.

There are modules that cover the step of data acqui-
sition, for example a module that loads data from a file.
Other modules may transform this data to geometric prim-
itives. This occurs in the mapping stage of the pipeline.
Connecting multiple individual modules with certain func-
tionality together results in building a custom visualization
pipeline. The user-defined connections express paths on
which the data flows from one module to the next.

Figure 3: A screenshot of a patch with an input port and
an output port.

The modules are called patches in the OpenInsightEx-
plorer framework. Figure 3 depicts a screenshot of a sim-
ple patch. They operate as independent black boxes. That
means that the user does not need to know precisely how
they work. It is only necessary to know what they do.
Since every stage of the visualization pipeline exchanges
data with its preceding and/or succeeding stage, patches
need to exchange data with each other as well. They
have so called input ports and output ports (see Figure 3).
Through the input ports a patch receives data. It processes
the data and passes its results to another patch through its
output ports.

To create visualizations with OpenInsightExplorer,
users only need to find patches with the desired function-
ality and connect them in the visual editor of the frame-
work (as depicted in Figure 2). Patches can be found in
the patch repository window entitled Patch Bag. They are
sorted in a tree structure by their functionality. When a
user selects a patch in the repository, information about
the patch is displayed in the right section of the Patch Bag
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window. Selected patches can be dragged in the main edi-
tor’s window where they can be connected. Visualizations
developed with the OpenInsightExplorer are called com-
positions. Using this simple visual programming concept
allows users with little programming experience to pro-
gram custom visualizations [9].

Like all other DFVPLs OpenInsightExplorer supports
automatic parallelization of the execution of its modules.
Patches can be executed in parallel as soon as they have
received all necessary data for an execution, since it uses
the same dataflow execution model principle on which
every DFVPL relies on. Important and partially unique
features of OpenInsightExplorer in comparison to the
state-of-the-art languages presented in this paper are listed
below:

Platform Independence: The framework is written
in Java, which is a platform independent programming
language. Many platforms and architectures support
runtime environments for Java (JRE) and can run software
written in Java.

Growing Ports: The growing ports mechanism of
OpenInsightExplorer is a unique feature which the
presented state-of-the-art programming languages do
not provide. It allows to add and remove ports dynam-
ically to a patch while editing a visualization. Figure
4 shows a simple example of the mechanism. E.g. a
patch that determines the maximum of a set of num-
bers should be flexible with respect to the number of
operands of the function - hence the number of input ports.

Figure 4: Illustrating the growing ports mechanism. Ports
can have add and/or remove icons which will trigger the
mechanism.

Streams: Instead of sending only individual data tokens
between patches, OpenInsightExplorer implements the
concept of token streams [15]. Patches can have special
stream ports which enable them group data together to
a stream. A stream consists of a start token, an ordered
sequence of data and a token which will signal the end
of a stream. Streams can also be embedded into another
stream, which is a big improvement over flat arrays. These
streams within streams are called sub streams.

Port Trees: Ports can be organized in trees. Also labels
can be added to port trees (Figure 5). This allows to struc-
ture the input and output ports of a patch, and to add and
remove ports dynamically.

Figure 5: Ports are organized in a tree structure.

Generic Ports: To make patches more flexible,
OpenInsightExplorer features generic port types. Patches
can have ports, which are not assigned to a certain data
type. As soon as they are connected, they can adapt their
data type to the type of the connection partner. They can
change their data type dynamically. This feature allows to
implement patches, which can operate on any desired data
type and can be used more frequently.

Patch GUI: Developers can place GUI elements of
a patch in three different locations. Patches can have
a running GUI which is a window that will be visible
during the runtime of a visualization. For example the
Renderer patch providing an OpenGL render surface uses
the running GUI window for output purposes. The second
possibility to add a GUI is the configuration GUI. This
window will only be visible during editing a visualization.
It is useful to display GUI elements that configure the
behaviour of a patch. The third location is the bound GUI.
It is directly visible between the input and output ports of
a patch (Figure 6).

Figure 6: A patch with a bound GUI.

Custom Data Types: Unlike some state-of-the-art
DFVPLs OpenInsightExplorer allows users to introduce
new data types. Ports can be constructed with any arbi-
trary data type developers of a patch may desire. This is
in our opinion a very important feature because visualiza-
tions can be build upon very different data types (e.g. vol-
umetric data, data structures that represent graphs).

These classes can contain methods and functions in
addition to the data. For example, a class that represents
a graph can have a method which returns the names of
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(a) Volume renderer composition.

(b) OpenStreetMap visualization composition.

Figure 7: Two example visualization compositions. They are split into following successive stages of the visualization
pipeline: data acquisition, filtering, mapping and rendering

the nodes of the graph sorted. Furthermore such a class
could implement many different interfaces and therefore
represents multiple data types at once. For example,
a graph class can implement two interfaces at once:
one represents an undirected graph and the other one a
directed graph.

Delegating Patches: The exchange of classes contain-
ing functions enables the development of patches that
follow the delegation pattern. A patch can call a function
of a previously received helper object and therefore
delegates certain needed functionality to it. This can
greatly enhance the usability of patches.

Type-safety: Ports in the framework support a type-
safety mechanism. Every port of a patch is constructed
for a certain data type (with the exception of generic
ports which were discussed before). It can only send or
receive a certain data type it was assigned to. Whenever
a user tries to connect two patches in the visual editor
OpenInsightExplorer verifies if the data types of the input
port and output port are compatible. The color of the name
of a indicates hints the data type the port was constructed
for.

The next section deals about general architecture of the
framework and how some of the previous mentioned fea-
tures are implemented.

4 Implementation

The framework and the visual editor is written in the plat-
form independent programming language Java. OpenIn-
sightExplorer loads platform dependent native libraries

at runtime, which makes it possible to port the frame-
work to different operating systems and hardware archi-
tectures. However the current version only supports the
operating system Windows, since needed native libraries
for OpenGL rendering (Jogl [11]) are distributed only for
that operating system with the framework. But porting to
other platforms / operating systems should be a feasible
task.

OpenInsightExplorer can be extended with new features
by developing new patches and adding them to the frame-
work. This process was designed to be easy to accomplish,
since patches are designed to operate as independent black
boxes. To create a new patch, users only need to imple-
ment a certain Patch interface (see Listing 1). Its design is
inspired by the Java’s Applet interface. It contains meth-
ods to initialize init() and reset() a patch and the methods
start() and stop() for its execution. In addition it declares
methods that return references to the GUI elements of a
patch and its input and output port trees. A new patch only
gets compiled once and its binary class file copied into
the patch entitled sub-folder of the framework. At every
startup of OpenInsightExplorer the framework scans this
folder and displays all found patches in the patch reposi-
tory.

To send and receive data, patches can instance input
or output port objects and add them to their appropriate
port tree. Port objects can only be assigned to a certain
data type, since it is a class with a generic type parame-
ter. Many different callback functions can be registered
to ports. These functions enable the implementation of
the growing port mechanism and generic ports. They are
called depending on different events. E.g. a generic port
calls a specific callback function as soon as the user tries
to connect this generic port to another port in the visual
editor. Developers can implement code into this callback
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(a) On the left is the transfer function editor depicted and in front a file open
dialogue. The right window is the rendering output window, displaying the
volume visualization.

(b) All ways are rendered in gray and buildings in red.

Figure 8: Screenshots of the example visualizations: the volume renderer (a) and the OpenStreetMap visualization (b).

function that will adapt the patch so it can handle the data
type of the connection partner or refuse the connection at-
tempt. The same principle is applied to the growing port
mechanism (see Figure 4). The add and remove icons trig-
ger different callback function in which a developer can
implement code that will add or remove one or more ports
to/from the port trees.

p u b l i c i n t e r f a c e P a t c h {

p u b l i c vo id i n i t ( ) ;
p u b l i c vo id r e s e t ( ) ;
p u b l i c vo id s t a r t ( ) ;
p u b l i c vo id s t o p ( ) ;

p u b l i c S t r i n g g e t I n f o ( ) ;
p u b l i c S t r i n g getName ( ) ;

p u b l i c vo id l o a d ( S e r i a l i z a b l e o ) ;
p u b l i c S e r i a l i z a b l e save ( ) ;

p u b l i c P o r t g e t I n p u t P o r t s ( ) ;
p u b l i c P o r t g e t O u t p u t P o r t s ( ) ;

p u b l i c J P a n e l getBoundGUI ( ) ;
p u b l i c JFrame g e t C o n f i g u r a t i o n G U I ( ) ;
p u b l i c JFrame getRunningGUI ( ) ;

}

Listing 1: The Patch interface.

The implementation of the framework is hidden from
patch developers by applying the cheshire cat program-
ming pattern [21]. They are only confronted with func-
tions or methods which are truly necessary for developing
patches and cannot (accidentally) access the framework in-
ternals. Applying this pattern to the framework ensures
that patches can work only as absolute independent black
boxes and enforces the interchangeability of patches.

5 Results

To evaluate the usability of the OpenInsightExplorer
framework two example visualizations were implemented
with it. The first example is a volume renderer, which
comes from the field of scientific visualization. To test
the frameworks information visualization capabilities, the
second example is a collection of different visualizations
of the OpenStreetMap project. The example visualizations
demand different data types, data transformations and ren-
dering techniques.

5.1 Volume Rendering

The first example visualization which was implemented to
evaluate the framework is a simple volume renderer based
on raycasting. Figure 8(a) depicts a screenshot of the run-
ning visualization. The goal was to use only general pur-
pose patches of the framework whenever possible for the
volume visualization. Only two custom patches, the Vol-
ume File Loader and the Transfer Function Editor, had to
be implemented in addition. The first one loads the volume
data from a file and converts it to a 3D texture. The sup-
port for other volume file formats can be easily achieved
by developing other patches for those formats. Figure 7(a)
illustrates the composition of the volume renderer. The
example uses GPU hardware acceleration for image gen-
eration. This is achieved by using GLSL fragment shader
programs, which implement the ray sampling and compo-
sition functions. This example composition contains only
21 patches in total.
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5.2 OpenStreetMap Visualization

The second example visualizes data from the Open-
StreetMap (OSM) [17] project. OpenStreetMap is a col-
laborative project to create a free editable map of the
world. Maps from OpenStreetMap contain information
about highways, buildings, public transport and much
more. For this example visualization a map of the city
of Vienna was used. It was extracted from the Open-
StreetMap database.

OpenStreetMap maps can be exported to XML-files.
These files are built on only three simple elements: node,
way and relation. Each element may have an arbitrary
number of properties (tags) which are key-value pairs (e.g.
highway=primary). Since OpenInsightExplorer allows
users, as a feature, to introduce arbitrary data types, these
elements can be mapped to specially developed classes.

The visualization shows all streets and buildings of Vi-
enna. Figure 8(b) depicts a screenshot of the visualization:
street are visualized in gray and buildings in red. The cor-
responding composition contains only 10 patches in total
(see Figure 7(b)). This example demonstrates the capabil-
ities and the benefits of the usage of individually imple-
mented data structures to create patches. The big advan-
tage is that the user can achieve the desired result with very
few lines of code. The example also emphasizes the fact
that re-usability is highly given. If a patch is already im-
plemented it does not require much effort for minor modi-
fications to re-use it for another purpose.

6 Limitations and Conclusions

Like most other dataflow languages, OpenInsightExplorer
is prone to dataflow network deadlocks. It does not intro-
duce new features for deadlock prevention or recognition
to the field of dataflow language research. OpenInsight-
Explorer follows a coarse grained dataflow approach. This
means that the modules are rather complex and such dead-
locks seldom occur.

It does not support any kind of structured programming,
which nearly all current visual dataflow programming lan-
guages do. Also OpenInsightExplorer provides only a ba-
sic debugging support in comparison to other state-of-the-
art languages. Extending the framework with more so-
phisticated debugging tools and structured programming
support should be a very feasible task.

Despite the existing drawbacks of the framework,
OpenInsightExplorer contains unique features in compar-
ison to the presented state-of-the-art languages, like the
growing port mechanism and generic ports. Both mecha-
nisms enable the development of more flexible and reuse-
able modules. Developers can use and introduce arbitrary
data types to the framework. Many other existing visual
dataflow programming languages are not capable of this.

OpenInsightExplorer cannot be used as a universal tool
for non-programmers for developing arbitrary visualiza-

tions. But users with programming experience can ben-
efit from the framework. They are able to implement
all missing modules and can reuse already existing ones.
This speeds up the development process and allows to
rapidly prototype rather simple visualizations. Never-
theless OpenInsightExplorer implements features, which
could bring great benefits to other visual dataflow lan-
guages. They are worthwhile to be adopted by current
state-of-the-art languages, which may not possess them,
to improve their usability.
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Abstract

In this paper, a novel segmentation technique is introduced
that is based on an abstract distance transform. The user
can select a voxel as a seed point, from which the other
voxels can be reached along different paths. For each
voxel, we determine a path that is of minimal cost. Tak-
ing the density of the seed point as a reference, the cost
of a path is calculated as an aggregate deviation of the
densities corresponding to voxels visited along the given
path. After having the cost of the cheapest path assigned
to each voxel, a simple thresholding is used to obtain a
segmentation mask. We demonstrate that this approach is
competitive to the popular level set segmentation, but can
be implemented more efficiently on recent Graphics Pro-
cessing Units (GPU). Previously, using high-level shader
languages for direct programming of the graphics pipeline,
the implementation of different segmentation methods was
difficult. However, new languages such as OpenCL or
CUDA provide a more flexible environment for GPGPU
(General Purpose computing on the GPU) programming.
We show that, utilizing this new technology, our algorithm
can be easily realized.

Keywords: Segmentation, GPGPU programming, Vol-
ume rendering

1 Introduction

Segmentation is a fundamental task in 3D medical im-
age processing [13]. The goal is to identify different or-
gans or tissues in the data. Usually a binary classification
of the voxels is not possible, instead a probability is ob-
tained that expresses how much the given voxel belongs
to a certain organ. Furthermore, a simple thresholding
[16] of the density values generally cannot be applied for
soft tissue segmentation, since due to the noise contained
in the data it often leads to under or oversegmentation.
Therefore, many more sophisticated segmentation algo-
rithms have been proposed that utilize secondary informa-

∗cseb@iit.bme.hu

tion, such as gradient or curvature [13, 11, 7, 15], distance
or connectivity [13, 14, 11], or a priori anatomical infor-
mation [3]. Most of these methods are computationally
expensive, therefore their traditional CPU implementation
is rather inefficient.

Recently, the conventional GPUs are more and more
used as general-purpose coprocessors exploiting their par-
allel computing capacity. Originally, the GPUs were de-
signed for fast incremental image synthesis, which is the
core of many computer graphics applications. GPUs are
in fact optimized for rendering huge polygonal meshes.
The standard computer graphics pipeline includes vertex
processing, rasterization, fragment (or pixel) processing,
and compositing. The first technological milestone was
reached when the vertex and pixel processing became pro-
grammable, since it allowed the redefinition of the stan-
dard pipeline for general-purpose computation [18]. How-
ever, using direct shader programming for the implementa-
tion of complex segmentation techniques was still cumber-
some. For example, volumetric data represented by texture
maps could not be read and written at the same time, and
the number of instructions in the vertex and pixel shaders
was also limited. Therefore, several rendering passes were
required for mapping the segmentation process onto the
graphics hardware.

OpenCL and CUDA represent the second milestone in
GPGPU programming [17]. Using these languages for de-
veloping GPU applications, the programmer can abstract
from the graphics pipeline considering the GPU as a gen-
eral multi-processor architecture. In this paper, we show
that this higher flexibility can be very well exploited in
GPU-based segmentation.

In Section 2, we briefly review the previous methods
that are related to our work. In Section 3, the GPU im-
plementation of the popular Level Set (LS) method is de-
scribed. Our new segmentation technique called Abstract
Distance Transform (ADT) is introduced in Section 4. In
Section 5, ADT is compared to LS on a brain segmentation
task. Finally, in Section 6, the contribution is summarized.
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2 Related Work

Medical image segmentation has a wide literature. Al-
though there exist general segmentation techniques [13],
practical methods are often designed and optimized for
a very specific segmentation task. In this section, we
overview only those previous techniques that are the most
closely related to our method.

The simplest segmentation technique is thresholding
[16]. It requires only two parameters, a lower and a higher
threshold. If the intensity of a voxel is between these two
threshold values then it belongs to the segmentation mask.
Thresholding works fine if the given material is well de-
fined by an intensity interval like the bone in a CT scan,
for instance. Soft tissue structures, however, are much
more difficult to segment. Especially in MRI data sets,
the data values are not so coherent as in CT data because
of the higher noise-to-signal ratio and the so called global
signal fluctuation [12]. Therefore, the connectivity infor-
mation plays a crucial role in the segmentation process.
Region-growing techniques try to find voxel regions that
are connected and show a nearly homogeneous density
distribution. This is an iterative approach started from a
user-selected seed point. In each iteration step, the bound-
ary voxels of the current segmentation mask are investi-
gated and it is decided whether their neighboring voxels
should be added to the mask or not. Variants of the region-
growing method differ in the criteria that are used for this
decision [11, 14, 13]. For example, edge detection oper-
ators are usually applied to find the material boundaries
[11]. In practice, pure region-growing often leads to so
called segmentation leakage [7], where the binary mask
unexpectedly leaks through the boundaries of the organs
to be segmented. This problem can be somehow handled
by starting a region growing from anti seed points, which
fills those voxels that should not be added to the segmenta-
tion mask. However, an appropriate placement of the anti
seed points might be difficult or time-consuming for the
physician. In order to complete the segmentation without
significant user intervention, the level set method was pro-
posed [15]. This approach is also based on region growing,
but it defines additional constraints on the boundary sur-
face of the segmentation mask. Usually, the iteration steps
are performed in such a way that the total curvature of the
boundary surface is kept under a reasonable level. As we
compare our new graph-based method to the level set tech-
nique, in Section 3, we describe its GPU implementation
in detail.

There exist other graph-based segmentation techniques
that are commonly used in practice, such as intelligent
scissors [10] or the graph-cut method [2]. Both of them
consider the image as a weighted graph. With intelligent
scissors, the user can define a cut in a 2D image by giv-
ing two points and the algorithm calculates a path between
them trying to follow edges as far as possible. The weights
are calculated by edge detection methods and the path is
constructed by a shortest path method. However, intelli-

gent scissors cannot be easily extended to 3D [4]. In the
graph-cut technique, the user can define a foreground and a
background point and the algorithm calculates a border be-
tween them separating the two regions based on the max-
flow min-cut theorem. The weights can be estimated by
using region and edge properties. This approach can be
applied in 3D as well. Our method is based on aggregate
deviation calculation and uses the Bellman-Ford algorithm
to determine a shortest path between pairs of voxels.

3 GPU-Accelerated Level Set Seg-
mentation

The LS algorithm consists of an initialization and an it-
erative region growing. In the initialization step, the user
specifies a spherical level set inside the region of interest.
Based on the position and the radius a 3D signed distance
map is created. The voxels in this distance map repre-
sent the distance of the nearest surface point. The sign
indicates whether the given voxel is inside or outside the
spherical surface. During the region growing, in fact, the
distance values are modified in each iteration step, so the
zero-crossing level set surface is evolving until the desired
segmentation mask is obtained. The distance values are
modified depending on the voxel intensities and the curva-
ture of the level set surface.

The data term of the distance update equation is defined
as follows

D(p⃗) = ε −|I(p⃗)−T |, (1)

where p⃗ is the voxel position, I(p⃗) is the voxel intensity
at p⃗, and T is the target intensity. Parameter ε is set by
the user during initialization. The data term is shown in
Figure 1 as a function of the intensity.

Figure 1: The data term depending on the voxel intensity
[7].

The curvature term can be defined as

C(p⃗) = ∇ · ∇ϕ(p⃗)

|∇ϕ(p⃗)| , (2)
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where ϕ(p⃗) represents the distance to the nearest surface
point at position p⃗. Using Equations 1 and 2, the distance
update equation is constructed as

∂ϕ(p⃗)

∂ t
= |∇ϕ(p⃗)|

[
αD(p⃗)+(1−α)C(p⃗)

]
, (3)

where α is also a user defined parameter of the algorithm.
Without the curvature term, the algorithm would be a sim-
ple flooding based on intensity, but using curvature calcu-
lations helps avoiding the leakage of the segmentation in
ambiguous regions.

Since the update process locally modifies the distance
values ϕ(p⃗), it is necessary to recalculate ϕ(p⃗) from time
to time in order to consistently represent the distance to
the evolved surface. The Fast Iterative Method (FIM) [6]
is a convenient way to accomplish this, since it can be par-
allelized as well. Using FIM, the voxels are divided into
three sets: source voxels, active voxels and far-away vox-
els, and their distance values are iteratively updated un-
til they converge. Figure 2 illustrates the propagation of
the distance calculation frontwave, where the black grid
points are the source voxels with fixed distance value, the
blue grid points are the active ones being updated, and the
white points are considered as far-away voxels.

Figure 2: FIM frontwave propagation [6].

3.1 Implementation

The equations introduced previously need to be discretized
in time and space as well. The implementation of the data
term calculation is the easier. Since the user sets all pa-
rameters during initialization, we need to calculate the data
term values only once. If we store these precalculated val-
ues in an array, we can access them later during the update
steps. However, the curvature term calculation must be ap-
proximated. The applied approximation method is known
as “difference of normals” [9].

Having both terms calculated, we need to update the
distance values according to Equation 3. This needs to be
discretized in time, thus we need to perform the following
update steps:
ϕ(p⃗)(t+1) = ϕ(p⃗)(t) +∆ϕ(p⃗)(t)

= ϕ(p⃗)(t) +∆t|∇ϕ(p⃗)(t)|
[
αD(p⃗)+(1−α)C(p⃗)

]

= ϕ(p⃗)(t) +∆t|∇ϕ(p⃗)(t)|
[

αD(p⃗)+(1−α)∇ · ∇ϕ(p⃗)(t)

|∇ϕ(p⃗)(t)|

]
,

It is important to apply an appropriate “bravery” factor,
to ensure accuracy and avoid having large steps that could

ruin the segmentation. In this implementation we set ∆t =
5 and the whole ∆ϕ(p⃗)(t) can have a value of maximum
0.6.

The distances are recalculated after every third iteration
of the level-set update. A distance recalculation consists of
two parts. First, the positive distance values are set to in-
finity and classified as far-away voxels, and the ones with
negative (or zero) distance are preserved and classified as
source voxels. During the second part of the FIM, distance
values are updated in several steps. Before an update step,
we find active voxels, that is, a voxel having a source voxel
as one of its first neighbors becomes active. Then the dis-
tance of each active voxel is updated based on the other
active and source voxels in its neighborhood. A voxel be-
comes a source voxel if its distance has converged (has not
changed significantly during the last update step). There-
fore, in the next update step, we may find other active vox-
els.

3.2 Optimization

There are several ways to optimize the segmentation pro-
cess. First of all, it can be implemented on the GPU ex-
ploiting its parallel computational power in the data term
and curvature term calculations, and in the distance re-
calculation as well. Using narrow-band and sparse-field
methods, we can even limit the calculations to the voxels
that are near the surface[8].

Our implementation is based on a similar optimization.
Since the computational bottleneck of the algorithm is the
distance recalculation, the volume is divided into cubes of
size 4×4×4. Before each FIM update step, we can deter-
mine which cube contains voxels close to the surface. In
these voxels accurate distance values are required. Since
the update process of the FIM is performed multiple times,
these cubes need permanent updating to decide whether
they contain active voxels or not. This checking does not
produce any significant overhead, but the distance recalcu-
lation becomes four to five times faster without the need to
change the storage scheme.

4 Abstract Distance Transform

Our new method is designed to avoid segmentation leak-
age, but without expensive curvature calculations. The key
idea is to calculate an abstract distance of each voxel from
a user-defined seed point. Assume that a path of length N
between the seed point p⃗0 and an arbitrary voxel passes
through voxels located at p⃗i, where i ∈ {1,2, ...,N}. The
cost of the path is defined as

N

∑
i=1

|I(p⃗i)− I(p⃗i−1)|, (4)

where I(p⃗) is the intensity of the voxel at position p⃗. In
each voxel, we calculate the cost of the cheapest path from
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the seed point. These abstract distance values represent the
accumulated deviation along the path and not some kind
of approximation of the Euclidean distances as in case of
traditional distance transforms. Having the cheapest paths
determined for each voxel, a 3D Abstract Distance Map
(ADM) is obtained. In order to produce a binary segmen-
tation mask, a simple thresholding is applied on the ADM.

The calculation of the ADM is, in fact, the classical
problem of finding the shortest path in a weighted graph.
Given two nodes u and v in a graph G, the length of a di-
rected path from u to v is the sum of the weights of the
edges along the path. The shortest path from u to v is a di-
rected path which has minimal length among the possible
paths from u to v in G. Now we can consider the distance
d(u,v) between u and v. This distance is 0 if u = v, it is
∞ if there is no path from u to v in G, otherwise the dis-
tance can be measured as the length of the shortest path
from u to v. In general d(u,v) ̸= d(v,u) because the path is
directed. This distance measurement is not always mean-
ingful. Consider a situation when u and v is placed on
a directed cycle, which has negative sum of weights. In
this case we could achieve an arbitrarily small distance be-
tween the two nodes by going through the cycle multiple
times. So it is required, that the given graph G does not
contain a directed cycle with negative sum of weights.

Assume that G = (V,E) is a directed graph, c : E → R+

is a cost function with non-negative values, and s ∈ V is
the source node. Our goal is to determine the value of
d(s,v) for each v ∈ V . In our application, V is the set of
all the voxels, E is the set of edges between the adjacent
voxels, and c is the difference between the intensities of
two adjacent voxels.

The shortest path can be found using the classical
Bellman-Ford algorithm [5]. This algorithm is described
by the following pseudo code:

Step 1: initialize distances

for each node v in V

if v is seed
then v.distance := 0
else v.distance := infinity

Step 2: relax distances repeatedly

for each node v in V

for each edge uv in E

u := uv.source
v := uv.destination
if u.distance + uv.weight < v.distance
then v.distance := u.distance + uv.weight

This algorithm runs in O(|V | · |E|) time, where |V | is
the number of nodes and |E| is the number of edges. |E|
is proportional to |V | because of the geometrical structure
of the volume, so the overall computational complexity is
O(|V |2).

4.1 GPU Implementation

Because of the high amount calculations, it is worthwhile
to implement our method on the GPU. An iteration of the
distance relaxation can be calculated in a parallel way. We
store the distance of each voxel in an array, and for each
array element calculate the new distance by considering
the distances to the adjacent voxels as the difference be-
tween the intensity values. In each iteration, it is decided
whether the distance values have to be modified. If the
distance value of a voxel is already minimal, the algorithm
does not change it, but the adjacent voxels can potentially
get a new, smaller value. If the distances do not change
anymore, the iteration is terminated.

An iteration is calculated by the following code:

/∗
i n p u t : i n p u t a r r a y o f d i s t a n c e s
r e s u l t : o u t p u t a r r a y o f d i s t a n c e s
c : t e r m i n a t i o n c o n d i t i o n
dimx , dimy , dimz : d i m e n s i o n s o f t h e volume
∗ /

g l o b a l void cuda Be l lmannFord (
unsigned s h o r t ∗ i n p u t ,
unsigned s h o r t ∗ r e s u l t , unsigned s h o r t ∗ c ,
i n t dimx , i n t dimy , i n t dimz )

{
long i = umul24 ( b l o c k I d x . x , blockDim . x )

+ t h r e a d I d x . x ;
long z = i / ( dimx ∗ dimy ) ;
long y = ( i % ( dimx ∗ dimy ) ) / dimx ;
long x = ( i % ( dimx ∗ dimy ) ) % dimx ;

i f ( x < dimx − 1 &&
y < dimy − 1 &&
z < dimz − 1 &&
x > 0 && y > 0 && z > 0)

{
unsigned s h o r t u =

i n p u t [ x + y ∗ dimx + z ∗ dimx ∗ dimy ] ;
unsigned s h o r t vv =

tex3D ( volumeTexture , x , y , z ) ;

unsigned s h o r t tmp = USHRT MAX;

unsigned s h o r t v ;
unsigned s h o r t w;

i n t dd = 1 ;

f o r ( i n t dz = −dd ; dz < dd +1; dz ++)
f o r ( i n t dy = −dd ; dy < dd +1; dy ++)

f o r ( i n t dx = −dd ; dx < dd +1; dx ++)
{

i f ( ( z + dz ) >= 0 && ( z + dz ) < dimz &&
( y + dy ) >= 0 && ( y + dy ) < dimy &&
( x + dx ) >= 0 && ( x + dx ) < dimy )

{
i f ( dx != 0 | | dy != 0 | | dz != 0)
{

v = i n p u t [ ( x + dx ) + ( y + dy ) ∗
dimx + ( z + dz ) ∗ dimx ∗ dimy ] ;

w = abs ( vv − tex3D ( volumeTexture ,
x + dx , y + dy , z + dz ) ) ;

tmp = v + w < tmp ? v + w : tmp ;
}

}
}
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i f ( tmp < u ) c [ 0 ] = 1 ;

r e s u l t [ x + y ∗ dimx + z ∗ dimx ∗ dimy ] =
tmp < u ? tmp : u ;

}
}

In worst case, |V | − 1 iteration steps have to be per-
formed (the longest path in G can not be longer then
|V |−1, an iteration updates each voxel, so the aggregated
number of the started threads is O(|V |2)), but the iteration
can be terminated if the distance map does not change. The
segmentation mask is obtained by an appropriate thresh-
olding of the obtained distance map.

5 Results

We have tested our method for brain segmentation from
CT and MRI data, and compared the results to that of
the classical LS method. Figure 3 shows the obtained
segmentation masks rendered by direct volume visualiza-
tion. Note that the two algorithms provide almost the same
results. However, our method is significantly faster to
evaluate on the GPU. The running times measured on an
NVIDIA GT335M graphics card are summarized in Ta-
ble 1.

5.1 Accuracy of ADT

To evaluate the accuracy of our method, we compared
our segmentation results with fifteen manually segmented
MRI images. These segmentations were created by pro-
fessional physicians and the data were provided by the
IBSR project of the Center for Morphometric Analysis at
Massachusetts General Hospital [1]. We used the conven-
tional overlap metric for the comparisons, which is de-
fined as A/(B +C − A), where A is the number of vox-
els that are classified to belong to the segmentation mask
by both the expert and the algorithm, B is the number of
voxels assigned to the mask by the expert, while C is the
number of voxels assigned to the mask by the algorithm.
As a reference, the IBSR project provides results of other
segmentation techniques and also compares the segmenta-
tions of two different experts. The accuracy measurements
are summarized in Table 2.

6 Conclusion

In this paper, we have introduced a new and robust method
for segmenting noisy CT and MRI data. Compared to the
popular LS segmentation, our method provides similar re-
sults for a significantly lower computational cost. Using
a fast GPU implementation, the calculation of our ADM
is an order of magnitude faster that the GPU-accelerated
iterative region growing based on the LS approach.

CT Brain MRI brain
Resolution 256×256×159 256×256×60
LS 2790 sec 1265 sec
ADT 151 sec 34 sec

Table 1: Running times of the brain segmentation.

Average overlap Description
ADT 0,562 based on 15 images
Expert 0,854 based on 4 images
Other 0,544 based on 20 images

and 6 methods

Table 2: Overlap of different techniques.

So far we have tested our method only on a brain seg-
mentation task. In our future work, we would like to make
experiments on kidney and liver segmentation as well.
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Figure 3: Brain segmentation from CT and MRI data using our abstract distance transform method and the classical level
set method.
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Abstract

In this paper we present a precise contact modeling en-
vironment for skeleton based implicit objects. To render
the scene composed of these implicit objects, we have im-
plemented the state-of-the-art raycasting algorithm, called
marching points, on GPU using CUDA. Further, we intro-
duce how to interactively deform the implicit objects when
they collide. To achieve this we studied several ways to
deform the objects. We implemented two well-known ap-
proaches, where we also proposed a new method created
as combination of both approaches. Both these approaches
as well as our method are described in this paper.

The implicit objects are implemented as distance sur-
faces. The field function for these only depend on the
distance from the skeleton, and are easy to evaluate. We
have achieved support for deformations of objects based
on point and line skeletons.

Keywords: Implicit objects, Deformations, GPU,
CUDA, Raycasting

1 Introduction

The goal of this project was to implement a precise con-
tact modeling environment for skeleton based implicit ob-
jects. This work is an extention of a previous work with
convolution surfaces, where convolution of skeleton prim-
itives and an implicit kernel function was used to model
merging of implicit objects. Figure 1 shows two spheri-
cal objects, made from point-skeletons, merging together.
As shown in the figure you can see the objects stretch and
merge together when they are brought closer to eachother.

In this project we were not interested in merging of ob-
jects, but the deformation of the objects when they col-
lide. Implicit objects can be used to model organic struc-
tures and it is interesting to see how these behave when
they intersect. It is neccessary to have a fast GPU based
deformation of implicit objects if this is going to be in-
teractive. By representing the objects with skeletons we
save a lot of memory compared to using meshes. We have
implemented support for point and line skeletons for this

∗shi015@student.uib.no
†parulek@gmail.com

Figure 1: Figure shows two surfaces of point-skeletons
merging together.

project. We looked at several ways to achieve deforma-
tion. We have implemented two well-known techniques,
as well as introduced a new technique which is a combi-
nation of both techniques.

To achieve an interactive rendering we have imple-
mented a raycasting algorithm called marching points on
GPU. Calculation of deformations is very expensive and
it needs to be parallelized to be interactive. The marching
points algorithm is easily parallelized and well suited for
rendering of implicit objects.

The rest of the paper is structured as follows. In Section
2 we discuss related work. In section 3 we describe the
modelling and deformation in detail. In section 4 we de-
scribe the marching points algorithm. In section 5 we de-
scribe implementation and show results. Finally we con-
clude and talk about future work.

2 Related Work

2.1 Skeleton based implicit objects

Skeleton based implicit objects are objects defined by a
skeleton primitive, like a point or a line, and some implicit
function. The implicit function creates a object around the
skeleton. We are on the surface of the object when the field
function equals some iso-value, f (p)− iso = 0, where p is
a position in space. By evaluating the field function from
any position we can tell if the position is inside or outside
the object. There are two main approaches to construct
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an implicit surface from a skeleton, distance surfaces and
convolution surfaces. Distance surfaces use the distance
from a point to the closest point on the skeleton when cal-
culating the field function. Convolution surfaces integrate
the contribution from all points on the skeleton when eval-
uating the field function. We have used distance surfaces
for this project.

2.2 Deformation

For theoretical background for the deformations we have
looked at several papers [1, 2, 3, 4, 5] about deformable
objects. We have in particular looked at two of these
papers[4, 2] for this project, and have implemented the
techniques described in these. To our knowledge this has
not been done on GPU before, and very little work has
been done in this area the last years.

3 Deformations

Deformations should occur when two objects collide. To
achieve this a deformation term is added to the field func-
tion around the intersection. We will have a surface when

fi +de f orm( f j) = iso (1)

When looking at object i we calculate the field function
of that object and add the deformation term caused by ob-
ject j on object i. As a part of this project two different
approaches for modeling deformations were implemented.
We will describe each of these later in this section, but first
we will look at how collision detection is done, since the
same approach is used for both deformation techniques.

3.1 Collision detection

Before we can add a deformation term to the field func-
tion we need to check if the two objects actually intersect.
We have done this by checking if the closest middle point
between the two skeletons is inside both of the objects.
This is easy to do for point skeletons. For point skeletons
we just find the middle point between the two skeletons
and check if that is inside both. For line skeletons it is a
bit more difficult. The way it have implemented, we first
find the shortest line between the two line skeletons, and
then check if the middle of the line is inside both object.
In figure 2 the shortest line segment between the two line
segments AB and CD, is the line segment CE. If the ob-
jects defined by line segment AB and CD are intersecting,
the middle point of CE, point F in the figure, will be in-
side both objects. For intersection between point and line
skeletons we find the closest point on the line to the point
and check the middle point of the line going from that
point of the line to the point skeleton. This only works
when the objects have the same width. If the skeletons
have different widths we can not check the middle point,
but the same basic approach can be used. First we find

the shortest line between the skeletons and then instead of
finding the middle we find the point that corresponds to
the widths of the objects.

Figure 2: Showing closest middle point between two line
segments.

3.2 Dual layer implicit objects

3.2.1 Object representation

The first technique that was implemented uses objects with
two layers, one rigid inner layer and one deformable outer
layer. The deformable layer starts where the rigid layer
ends. This gives us two field functions for each object.
The field functions depends on the distance, r, to the clos-
est point on the skeleton. Figure 3 shows the profiles of
the field functions for the two layers. To control the form
of the objects we have three parameters. R is the scope
of influence, meaning the longest distance away from the
skeleton that should influence the object. r0 is the thick-
ness if the rigid layer, and k is the stiffness of the rigid
layer. The surface of the object will be at the edge between
the rigid and deformable layer.

f (r) =−kr+ kr0 +1, 0≤ r ≤ r0 (2)

f (r) = (r−R)2(
r(−k(r0−R)−2

(r0−R)3

+
kr0(r0−R)−R+3r0

(r0−R)3)
), r0 < r ≤ R

(3)

Both these functions evaluate to 1 when r = r0, giving a
smooth transition from the rigid to deformable layer. r is
the distance to the skeleton. This technique originally also
computed forces between the intersecting objects. Com-
putaion of forces has not been implemented, since the fo-
cus of this project was on the visual aspect of deformations
alone. This technique is described by Gascuel in [4].
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Figure 3: Profile of field function for rigid layer of the
object (a) and for the deformable layer of the object (b).

3.2.2 Deformation term

As stated earlier, when two objects intersect they will be
deformed by adding a deformation term to the field func-
tion around the intersection area. In this approach this de-
formation term is a function dependent on the distance to
the object that is causing the deformation. See figure 4.
Along with the distance it requires the maximum com-
pression caused by the intersection. In areas that are in-
side both objects we need to compress the objects so they
end up just touching and not intersecting each other. The
maximum compression is used to see how large the de-
formations should be. Little compression gives little de-
formation. Besides this the function takes two parameters
that allow you to control the deformation. Parameter w
is the maximum distance that will be used and parameter
a controls the height of the deformations along with the
maximum compression term.

Figure 4: Distance used in deformation function. Figure
by Gascuel [4].

de f orm = 4
wk−4a0

w3 r3

+4
3a0−wk

w2 r2 + kr, 0 < r ≤ w
2

de f orm =
4a0(r−w)2(4r−w)

w3 ,
w
2
< r ≤ w

(4)

a0 = a∗maximal−compression, r is the distance to the
intersecting objects surface, and k is the stiffness value as
described earlier. Figure 5 shows the profile of the defor-
mation function. a0 is maximum of the function and is
found when r equals w/2. There was a typo in the original
paper that lead to some confusion. The deformation func-
tion from w/2 to w had a plus sign where it should be a
multiplication. This lead to the two parts of the deforma-
tion function not matching at r equals w/2.

Figure 5: Profile of the deformation function. Figure by
Gascuel [4].

3.3 Single layer implicit objects

3.3.1 Object representation

The second technique that was implemented uses a more
simple way to represent the objects. It just uses one layer
which field function is only dependent on the distance to
the skeleton. The field function I have used is

f (r) =
1
r
−1, 0 < r ≤ 1 (5)

To support different widths of objects a width value k can
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be added and r in the field function be replaced with r/k.
Figure 6 shows the profile of the field function.

Figure 6: Profile of the field function used in the second
technique.

3.3.2 Deformation term

This deformation technique was described by Angelidis et
al. in [2]. This technique uses the field function of the
intersecting object to deform the object. If object i and
object j intersect, deformation of object i uses the field
function, f j , of object j. To control the deformation we
have three parameters c j, m, and h. c j is the minimum
value of f j that should be part of the deformation area. m
is the value of f j where the top of the deformation should
be. h is the maximum of the deformation function.

de f ormi( f j) = (3−2
f j− c j

m− c j
)2h, c j ≤ f j ≤ m

de f ormi( f j) = h+((1−3h)+

2h−1)
f j−m

iso−m
)(

f j−m
iso−m

)2, m < f j ≤ iso

(6)

The profile of the deformation function can be seen in fig-
ure 7. In the paper by Angelidis et al. they also experi-
mented with other deformation functions. This function is
the one I found to be the best. It provides good control of
the deformation without too many parameters. It should
be noted however that there are other deformation func-
tions that may be better depending on what is needed. For
example, Angelidis et al. provided a function for creating
ripples, in their paper[2].

3.4 Improved deformation of single layer im-
plicit objects

A problem we found with the single layer technique was
that it created too much deformation when the objects
barely intersect. There was no smooth transition from no
deformation to big deformation. The dual layer technique
used the maximum compression term to control how big

Figure 7: Profile of the deformation function used in the
single layered technique. [2]

the deformation should be. By adding this to the single
layer technique we were able to get a smoother transition.
Instead of having a fixed maximum height of the deforma-
tion function we scale it by how much the object intersect.

4 Marching Points

Rendereing of implicit objects can be done by raycasting.
Singh and Narayanan have introduced a ray casting algo-
rithm for rendering implicit surfaces on GPU[6]. For each
ray you sample the ray at a set interval looking for a root.
Another way of looking at this is to have a point march
down the ray and take samples, hence the name marching
points. To find a root you do a sign test. You compare the
current sample to the previous one and check if the sign
has changed. If the sign has changed there is a root some-
where in the interval between the previous and the current
sample. In figure 8 the sign will change from the sample at
point B to the sample at point C. This means there is a root
in the interval [B,C]. When an interval with a root is found
the exact position of the root can be found using bisection.
If a too large step size is used objects can be missed com-
pletely. If the object falls inbetween two sample points,
the algorithm has no way of discovering the object. This
makes the quality and effectiveness of the algorithm very
dependent on the step size.

The rays cast using the Marching Points algorithm are
independent of eachother. This allows us to cast multiple
rays in parallel using the GPU. Using CUDA one thread
processes one ray. For each ray the algorithm marches
forward a small step at the time until it finds the interval
where there is a root. When this interval is found, the root
is found using bisection.

5 Implementation and Results

5.1 Framework

Our framework have been implemented using Python and
CUDA. The raycasting and all evaluation of surfaces and
deformations are performed on GPU using CUDA.
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Figure 8: Illustration of Marching Points algorithm. A ray
is shot towards the surface. Sampling occurs on regular
intervals on the ray, like point A, B and C.

5.2 Dual layer implicit objects

The dual layer technique have been implemented as de-
scribed without any alterations. To define the object we
have used the parameters k = 0.5, r0 = 5, and R = 10. To
deform the object different parameters were tried but in the
end w = 10 and al pha = 0.3 were used as default values.
This technique gives very good control over the deforma-
tion and we can get deformations over a very large area if
we want to.

Figure 9: Rendering when using technique 1. Default pa-
rameters.

5.3 Single layer implicit objects

A problem with this technique was that the deformation
when two objects barely intersect was too big. To fix this
the height, parameter h, of the deformation was scaled by
the maximum compression in the same way as in the dual

layer technique. This gave a smoother transition from a
scenario where no deformation should occur to a scenario
where it should occur. This can be seen in figure 10. Fig-
ure 10 (a) does not have any scaling. This results in a too
large deformation. In the figure the objects are barely in-
tersecting and the deformation is already quite large. In
figure 10 (b) scaling is applied. We downscale the height
of the deformation when there is little intersection. This
gives a much smaller deformation which is more fitting to
how much the objects intersect.

Figure 10: Resulting deformation without scaling of pa-
rameter h (a) and with scaling of parameter h (b).

The deformation term in this technique has three param-
eters to help control the deformation. Parameter c j con-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
223



trols the width of the deformation. The lower c j the wider
the deformation becomes. Parameter m controls where the
top of the deformation should be, and parameter h con-
trols how large the deformation should be. Figure 11 at
the end of the paper, shows comparisons of deformations
with different parameters. The figures illustrate how each
of the parameters effect the deformation. As default val-
ues c j = 0.4, m = 1.3 and h = 0.5 have been used. These
values gave nice results, with not too much deformation
and both the width and center of the deformation seemed
natural. Figure 12 shows resulting rendering using this
technique.

5.4 Performance

The implementation of the improved single layered tech-
nique have been tested with a 2.80GHz Intel Core i5 CPU,
8GB Memory, and a NVIDIA GeForce GTX 570 with
1280MB memory GPU. Results from testing can be seen
in the table below. We have used frames per second(FPS)
to measure performance.

Resolution No. Points No. Lines FPS
256x256 10 0 47
256x256 5 2 23
256x256 40 0 17
256x256 50 0 16
256x256 4 3 17
512x512 10 0 24
512x512 5 2 10
512x512 40 0 7
512x512 50 0 6
512x512 4 3 7

Using this technique with only point-skeletons performs
quite well. However, adding line-skeletons slows it down
fast. In any case, the results are promising. The imple-
mentation can be optimized in several ways, for example
by adding bounding boxes to the objects and by imple-
menting adaptive step size in the raycasting algorithm.

6 Conclusions and Future Work

In concusion, we have implemented a working environ-
ment for rendering imlicit skeleton based objects and the
deformation of these when they collide. The environment
is interactive for both point and line skeletons. This is
without any bounding boxes or any other optimizations.
For future work this could be implemented to give better
performance. The ray casting algorithm can be improved
by implementing adaptive step size. Currently the algo-
rithm use the same step size all the time. The step size can
be varied by looking at the distance to the closest object. If
the step size is set to the distance to the closest object, we
avoid a lot of calculations while we are stil sure that we
don’t miss anything. In addition future work could look

Figure 12: Resulting rendering using our technique. De-
fault parameters.

at the intersection of deformations. Currently the imple-
mentation does not check for any intersection of deformed
objects, but only the original objects. This means that if
the deformed sections of two objects intersect, the imple-
mentation does nothing to deform these objects further or
alter the deformations in any way.

A natural extension of this work is to add physical
forces to the objects. The focus of this paper was only
on the visual part and adding forces was outside the scope
of this work. For this paper we have used distance func-
tions to model the objects. For future work it would be
nice to have deformations working with convolution sur-
faces as well so it could be combined with the work from
the previous project mentioned in the introduction. An-
other thing to consider is deformation from deformations.
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As of now only the original objects are taken into account
when calculating deformations.
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Figure 11: Deformations using our technique with different parameters
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Abstract

When searching the World Wide Web for information we
use search engines such as Google, Yahoo! or Bing. Full
text search works well when finding some articles or doc-
uments, but it will not directly answer the questions as
”How much something costs?” or ”Where can I go for
lunch?”. Wanted information can be available on the Web
as web pages or data (from services) but both without se-
mantics. Ontologies are proposed by W3C to enable in-
clusion of semantics in web pages. This paper presents
Knoocks visualization plug-in for Protégé-OWL editor.
The Knoocks approach combines the traditional ontology
visualization (e.g., node-link or space-filling) strategies to
enhance understandability of OWL Lite ontologies. The
re-implementation of Knoocks as a plug-in for Protégé-
OWL extends the editor with a new ontology visualization
technique and makes the Knoocks visualization publicly
available for users. The Knoocks plug-in is good at visu-
alizing of non-trivial ontologies.

1 Introduction

Automated processing of data contained in web pages is
impossible without having knowledge of its semantics. In
computer science, ontologies represent knowledge of a do-
main as a set of concepts and relationships between them.
Building an OWL (Web Ontology Language) ontology and
marking up a web page will enable web page’s content to
be understood by machines [1]. To build an OWL ontol-
ogy, Protégé-OWL editor1 (publicly available as freeware)
can be used. The editor allows people to manipulate OWL
entities such as classes, object/data properties and individ-
uals. The ontology is itself a set of axioms that define enti-
ties and relationships between them, the axioms are more
easily understood when they are visualized.

The Protégé-OWL editor has basic tree views that
show hierarchical relationships between entities. Cur-
rently available visualization plug-ins for Protégé-OWL,
e.g., OntoGraf, NavigOWL or SOVA visualize ontologies
as interlinked nodes. The node-link visualization approach
[3] draws classes and individuals as nodes, relationships

∗xjurc@fi.muni.cz
†sochor@fi.muni.cz
1http://protege.stanford.edu/overview/protege-owl.html

between entities (hierarchical or property) are drawn as
links. On the contrary, space-filling visualizations group
entities together by classes or by properties. Groups are
drawn as areas that can be included by other areas that
represent more general concepts.

Node-link visualizations are optimal in presenting parts
of ontologies in detail, while when visualizing overview
of an ontology the resulting visualization can become con-
fusing, hard to understand. Finally, it is up to the user to
lay out nodes to create understandable presentation of cho-
sen concept. Space-filling visualizations give users very
clear idea of hierarchical relationships between entities,
i.e. subclasses, or general concepts in ontologies – sub-
division of an ontology into smaller logically connected
parts. Lack of links in pure space-filling visualizations
(see CropCircles2 [11]) does not allow to express depen-
dencies (typically object property instances) across enti-
ties. Therefore, combination of both node-link and space-
filling approaches are examined to create more universal
visualizations (see Jambalaya3 [10]).

A Protégé-OWL visualization plug-in implementing
Knoocks visualization approach was developed as a part of
master’s thesis at our department. The Knoocks (stands for
Knowledge Blocks) approach was designed by Kriglstein
and Motschnig-Pitrik as a combined visualization ap-
proach [7]. This paper will present only key concepts of
suggested visualization approach. The plug-in was im-
plemented in Java as an OSGi (Open Services Gateway
initiative) bundle for Protégé framework4 and uses OWL
API and Protégé-OWL API to introspect the visualized on-
tology. Architecture of the plug-in and some chosen im-
plementation details are presented by this paper. Also an
example of usage is included which demonstrates how to
benefit from Knoocks when getting familiar with an un-
known ontology.

2 Related work

In 2008 Kriglstein showed advantages of representing uni-
versity curricula as ontologies. The curricula that were
rolled out at University of Vienna in 2006 were organized
into modules forming a clear structure. The structure of

2http://www.mindswap.org/2005/cropcircles/
3http://www.thechiselgroup.org/jambalaya
4http://protege.stanford.edu/
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a curriculum can be represented by hierarchy of classes
and contained courses are in ontologies included as indi-
viduals [4]. When representing curricula as ontology it is
easy to express (using object properties) arbitrary relation-
ships between courses, modules and other objects. Visu-
alization of curriculum’s ontology helps teachers and stu-
dents to understand it, e.g., it is easier to see dependencies
among courses. Ontologies also enable to share or analyze
the knowledge contained in a curriculum. In her paper,
Kriglstein compared several ontology visualization tech-
niques in the context of curricula visualization and con-
cluded that most requirements were met by Jambalaya.

However, Kriglstein and Motschnig-Pitrik identified
disadvantages in existing ontology visualizations and pro-
posed Knoocks as a new visualization approach [7].
Newly proposed approach targeted on three main points.

• Visualization of ontology overview – an overview
[9] of structure should help user to understand and
navigate large ontologies that contain multiple sub-
hierarchies of classes.

• Visualization of classes – every class should be eas-
ily seen and also names of classes should be visible
to distinguish among them.

• Visualization of individuals – individuals represent
concrete objects and therefore it is important to show
them. Also names and classification of individuals
should be visualized to make understanding of on-
tologies easier.

Knoocks uses space-filling visualization to show hierarchy
of classes as a block. Each class is represented as a rect-
angle contained in the block. Furthermore, classes contain
individuals to emphasize their classification. First version
of Knoocks was implemented in Java and was able to visu-
alize only one class hierarchy. Therefore the requirement
of ontology’s overview visualization was not met.

Further development of Knoocks was based on user re-
quirement analysis that was conducted by University of
Vienna and focused on ontology experts and semi-experts
[5]. Interviews and online survey were organized to gather
users’ requirements on ontology visualizations. The anal-
ysis showed that users do not clearly prefer one visualiza-
tion tool over another. On the other hand, users’ expecta-
tions about general ontology visualization were similar in
few points. Users stated that a good visualization should
have both overview and detail views, browsing and updat-
ing should be possible and relationships between entities
(subclass or object properties) should be visible.

Ontology overview and data/object properties visualiza-
tion was provided by a new prototype of Knoocks [8].
The prototype was written using C# and OpenGL as a
standalone application. This version of Knoocks added
switching between overview, which shows an ontology as
a set of blocks, and detail view, which shows more details
about a block. In overview, object properties between in-
dividuals are visualized as edges (node-link approach is

used) between their classes. Details about object proper-
ties, e.g., which individual is related to which, are avail-
able in detail view of a block [6]. Also data properties
of an individual can be made visible in detail view. Lay-
out of visualized individual details was chosen after eval-
uation of its usability by users. Knoocks prototype was
further extended to include searching and filtering of en-
tities, and also navigation among detail views based on
class/individual selection was added. The Knoocks pro-
totype was taken as a specification for Knoocks plug-
in implementation for Protégé-OWL editor. Therefore,
Knoocks visualization concepts that were implemented by
the plug-in will be described in more details in the next
section.

3 Features of Knoocks plug-in

Knoocks plug-in is available in Protégé-OWL as a tab
plug-in. Tab plug-ins can be included or excluded from ed-
itor’s view – configuration is done my using Window/Tabs
menu. Newly installed tab plug-in is hidden by default.

The Knoocks tab is vertically split into two panels (see
Figure 1), where left panel contains user controls for on-
tology searching and filtering, and right panel contains in-
teractive visualization of an active ontology – the editor
allows to manage more ontologies at a time.

The Knoocks prototype provides also a preview view
that is in our plug-in missing yet.

Figure 1: Knoocks tab plug-in in Protégé-OWL. The plug-
in’s view contains the control panel (A) and the visualiza-
tion slot (B).

3.1 Knowledge block

Arrangement of class hierarchies into blocks is a key con-
cept of Knoocks approach. Each class that is a direct
subclass of the OWL:Thing class becomes a root of a
block. The block is named after its root class. A block
is laid out (see Figure 2) in a way such that subclasses are
placed on the right side of their parents. Classes are drawn
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as rectangles with captions that show class names (visi-
ble only in detail view). Individuals are displayed within
their classes. Therefore, the amount of space occupied by
a block depends on width of its hierarchy branching and
also on count of individuals contained in classes. Classes
in a block can be folded to occupy less space in the visu-
alization.

(a) Overview (b) Detail view

Figure 2: Example of a block.

3.2 Overview

Laying out all blocks from an ontology gives users a good
view on its structure. In overview, blocks are drawn with
less detail, e.g., class names are provided rather as tooltips
and individual names are not drawn in class rectangles. At
first, blocks are automatically arranged into circular shape
(see Figure 3), but they can be moved, so that users can
control the visualization themselves. Blocks can be rear-
ranged to circular layout when needed. Bodies of classes
are drawn with different shades to visualize cardinality of
classes. The darker the class is the more individuals it
contains. Navigation to detail view of a block is done by
double-clicking it.

Figure 3: Example of overview of an ontology, blocks
were laid out automatically.

Colored connections are drawn to visualize relation-
ships between blocks/classes. Different colors are cho-

sen to distinguish among object properties. Edges are
not drawn directly between individuals (where instances
of object properties are defined), they are grouped to con-
nections by their class paths (domain and range) instead.
Thickness of a connection depends on count of object
property instances that were grouped, so that users can
quickly infer how much are the two classes interconnected.
Visualization of object properties is interactive, a connec-
tion can be clicked to display a table which lists concrete
relations that were grouped. Classes and individuals in the
connection table are also clickable and allow navigating to
them, i.e., they are shown in detail view when clicked.

When a block is selected by clicking on it, connections
that are not related to selected block are faded out, so that
block’s connections are emphasized.

Overview provides also useful statistics about ontology
visualization. The statistics are located at the bottom panel
in the view and shows maximum connection and class car-
dinalities among the ontology.

3.3 Detail view

Detail view allows users to focus on a block that is of their
interest. Class names are visible in class captions and list-
ings of individuals are shown for non-empty classes. A
class can contain many individuals, and therefore paging
of listing is used – the listing could become very long and
would require classes to be too high. A bar button with ar-
row is added between each parent class and its children to
control folding of classes. Class captions and individuals
are clickable to allow users to get details about them.

Figure 4: Details of BedandBreakfast class.

Class details include statistics about its individuals, data
types of related data properties and domains or ranges of
related object properties. All three types of information
are shown in separate pop-up tables (see Figure 4) that can
be moved (independently or together). When an individ-
ual is clicked, values of its data properties and its relations
to other individuals are visualized. Values of data prop-
erties are shown in a pop-up table – in the same way as
data types of a class. Relations to other individuals are
grouped by their class paths and shown as listings – one
for each different class path (see Figure 5). The table and
the listings can be moved (same as class details), closing
of shown details is done by closing data property values ta-
ble. In addition, classes and individuals that are displayed
in a relation listing are clickable, so that they allow navi-
gation in the visualization.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)
229



Figure 5: Details of Stars Chilly-Mazarin individ-
ual.

3.4 Filtering and Search

Knoocks visualization usability is improved by filtering
of ontology entities. In overview, visibility of blocks and
connections can be controlled. A block can be hidden by
selecting a row with its name in Hide Blocks list. Visi-
bility of connections depends on visibility of object prop-
erties and is set in Properties list. Blocks and classes
can be highlighted to emphasize them in the visualiza-
tion. The highlight is visible in both overview and detail
view. For users’ convenience, visibility of object proper-
ties and block/class highlights can be controlled from con-
text menus too.

The plug-in allows for basic search in the visualized on-
tology. Search panel is used to retrieve matching classes
and individuals. Classes are typeset bold in the results list.
Clicking on a class or an individual that were matched nav-
igates in the ontology to it and shows it in detail view.
Almost every navigation (by clicking) to a class or an in-
dividual is recorded and shown in History panel. The His-
tory panel allows users to go back where they came from,
this is often useful when inspecting relationships in an on-
tology. Jumps into history are not recorded again. Further-
more, to make navigation in big ontologies easier, individ-
uals can be bookmarked. Bookmarked individuals can be
found in Bookmarks panel. When a bookmark is clicked,
the view is navigated to particular individual.

Highlights of blocks and classes are visible in all lists
that show their names.

4 Implementation

Protégé is modular Java framework for knowledge-base
management. The framework is based on OSGi service
platform specification5. Protégé-OWL editor for OWL
ontologies is implemented as a module (bundle in OSGi)
which uses and extends functionality of core Protégé. Two
versions of Protégé are maintained, because they provide
different features. Protégé 4 supports OWL 2.06, there-
fore it was chosen as a target for Knoocks plug-in. The
plug-in’s compatibility was tested against Protégé 4.1.

5http://www.osgi.org/Specifications/HomePage
6http://www.w3.org/TR/owl2-overview/

4.1 Architecture

Knoocks visualization plug-in is implemented in Java 6
SE using mainly Swing and Java 2D. The plug-in is
distributed as an OSGi bundle and depends on Protégé,
Protégé-OWL7 and OWL API8 bundles. Protégé-OWL
classes are more convenient to use for ontology inspec-
tion than using OWL API directly. Furthermore, the plug-
in utilizes Commons-Collections with Generics9 library
which is a Java 1.5 port of popular Commons Collections
project. Architecture of the plug-in is shown in Figure 6
using UML (Unified Modeling Language).

Figure 6: Architecture of Knoocks plug-in (Component
Diagram, UML).

4.2 Design

Knoocks ontology visualization is interactive and driven
by user events. Therefore, the plug-in’s code was de-
signed using the MVC (Model-View-Controller) pattern10.
The UI (User Interface) part of plug-in’s code is tightly
coupled with Swing which implements its own modified
MVC. In the process of development, the IoC (Inversion
of Control) principle11 was identified to be beneficial to
use. It was decided that the plug-in is too small to utilize
an IoC framework, so that a simple mechanism of handling
dependcies was designed and implemented.

4.2.1 Model

The OWL API already models entities of an OWL ontol-
ogy, but there were reasons to design an overlaying model.
The Knoocks approach contains blocks and connections
that are not included in the OWL API. Blocks are hier-
archies of classes that have to be inspected and remem-
bered, because users are allowed to fold/unfold classes
which requires a knowledge of class’ hierarchy. Connec-
tions group relations among instances by their class path.
It is beneficial to extend the new model with these special-
ized entities. All other entities from OWL API, namely
class, individual, data property and object property, have

7http://protege.stanford.edu/plugins/owl/api/
8http://owlapi.sourceforge.net/
9https://github.com/megamattron/collections-generic

10http://ootips.org/mvc-pattern.html
11http://www.oodesign.com/dependency-inversion-principle.html
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their counterparts in plug-in’s model. Entities from OWL
API model do not allow to get their names directly (us-
ing entity’s method), OWL entity rendering must be used
instead. Knoocks uses same name rendering throughout
the visualization, therefore it was easy to include meth-
ods that provide entity names in our model. In addition, a
few properties regarding visualization were added to some
entities, e.g., the new class entitiy has a property named
highlighted which tells the view whether user wants that
class to be rendered as highlighted or not.

4.2.2 Controller

Controllers are classes where logic is contained in MVC
applications. In Knoocks plug-in, controllers take care
of switching view between overview and detail view, pro-
vide searching and navigation and modify the model that
is used by views. Every action that is initiated by a user
through the view part of Knoocks plug-in is executed by
some controller. Controllers are cooperating together to
improve reuse of the code and distribution of logic among
appropriate classes. Each block in the plug-in has its
own controller object which is instanced from appropriate
class.

4.2.3 View

Knoocks’ views are implemented using Swing and Java
2D for custom drawing. Each plug-in’s view is a Swing
component. The top level view contains control view as a
subview and defines a slot that allows switching between
overview and detail view (see Figure 1). The definition
of subviews is supported by Swing’s laying out of child
components. Four new UI components were developed
for visualization of blocks. Two components represent
whole blocks (in detail view and in overview) while an-
other two components take care of class rendering in ap-
propriate views. Custom layout manager (feature of Swing
UI framework) was developed for supporting of automatic
layout of classes in a block. The layout manager takes into
account folded or unfolded state of clasess in a block.

5 Usage example

Google and Yahoo SearchMonkey support crawling of e-
commerce data enriched with concepts from GoodRela-
tions vocabulary [2]. The GoodRelations semantic vocab-
ulary (in OWL 2.0) allows to add business information
into web pages. Semantics is marked up using RDFa (Re-
source Description Framework in attributes) or Microfor-
mat specifications. Semantically enriched data is machine
understandable, therefore it is not necessary to implement
specialized e-commerce APIs (such as Google’s Content
API) to make offered products reachable by search en-
gines. Although the GoodRelations ontology has quite
shallow hieararchy it is an example of OWL ontology that
is widely used.

Protégé with Knoocks plug-in can be used to quickly
become familiar with the ontology. The overview (shown
in Figure 7) gives view on general structure of a part of the
ontology. Chosen part visualizes all classes that are avail-
able for product description. Block arrangement of class
hierarchies points out existence of subclasses – special-
izations of basic concepts. Classes painted with different
shades make distribution of ontology’s individuals visible
at first glance. Definitions of object properties are ren-
dered instead of connections when the view is set to draw
arrows between domains and ranges. Rendering of prop-
erties is controlled by a button at Knoocks’ toolbar (see
Figure 8).

Figure 7: Object properties related to
Business entity class.

Figure 8:
Toolbar.

Detail view can be used to inspect a block. Figure 9
shows detail view visualization of Payment method
class from the GoodRelations ontology. Names of indi-
viduals are drawn in class bodies regarding their classifica-
tion. Information about data and object properties related
to a class will be shown when clicking its header. Further-
more, object property assertions between individuals from
Day of week class are not visualized in overview (as
connections) because the domain and the range of both
has previous and has next properties are same.
All assertions related to an individual are shown when the
individual is clicked.

Figure 9: Visualization of Payment method block.
The block is shown in detail view.
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6 Distribution

Plug-ins for Protégé are distributed as OSGi bundles, i.e.,
JAR archives that provide OSGi metadata. A plug-in is
installed by copying it into plugins directory that is located
at root of Protégé’s distribution. Plug-ins are automatically
loaded when Protégé-OWL is started.

ProtegeInstallDir
plugins

cz.muni.fi.knoocks.jar

At the time of writing, Knoocks plug-in is in process of
publishing at Protégé’s Plugin Library12. The library is
considered as a standard distribution platform for Protégé
plug-ins. Our plug-in will be labeled with Visualiza-
tion category and annotated with compatibility and depen-
dency information. Each plug-in has its wiki page that can
be used by authors to provide additional information such
as basic User’s Guide or link to repository with source
code.

7 Conclusion

In this paper, we described Knoocks visualization plug-
in for Protégé-OWL editor. We commented briefly on
Knoocks visualization approach which combines both
node-link and space-filling approaches to visualize gen-
eral structure of an ontology and also its details, i.e., indi-
viduals with linked values and object property assertions.
By included example, we showed that our plug-in is really
helpful in visualizing new ontologies that a user wants to
become familiar with.
Main part of the plug-in was implemented in my master’s
thesis. Currently, the resulting plug-in is being made pub-
licly available at Protégé’s plug-in library, so that wide
community of Protégé-OWL users will get a new visu-
alization tool. It is expected that the use of the plug-in
will lead to new requirements on Knoocks visualization
approach.
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Krist́ına Lidayová
Semantic Categorization and Retrieval of Natural Scene Images

pp. 57–64

Local semantic concept classification. (a) Original image. (b) Ground truth. (c+d) Result of initial method and
equality map. (e+f) Result of our proposed method and equality map.

Karolina Lubiszewska
Workflow for real-time simulation of deformable objects

pp. 83–90

Frames depicting throwing balls at a soft body rigged with a rigid skeleton. The shape is retained much more firmly
and the character does not expose unnatural behaviour.



Bernhard Kerbl
Priority-Based Task Management in a GPGPU Megakernel

pp. 99–106

Left: Task management achieves early prioritization of primarily red areas. Middle: Intermediate stage for rendering
using intensity as priority. Right: Difference of color values is used to render areas with low convergence preferably.

Zsolt Márta
Partial Volume Effect Correction on the GPU

pp. 177–184

Left: Initial PET measurement of a mouse (136×132×330). Right: Output of our algorithm (435×422×1056).



Kari Ringdal
Flow-based Segmentation of Seismic Data

pp. 185–192

Test set 4. a) A synthetic seismic slice containing many sedimentary units. The image was copied and stacked to
create a volume. b) A rendering of the RGBA-vectors that constitute the extracted flow field. c) Output of the
border detection algorithm with the distance threshold set to 16 units. d) The distance threshold is set to 4 units.

Philip Voglreiter
Stochastic Particle-Based Volume Rendering

pp. 193–200

Figures show different volumes rendered with the Particle Based method. Left figure shows a simulated dataset
with 6 million subpixels. The figure in the middle and the right show the stanford dragon volume, rendered with
60 million particles and subpixel level 6 and 3 respectively.





Sponsors of CESCG 2012





 
 

 
 
 
 
 
 
 
 
 
 
The VRVis Research Center 
The VRVis Research Center is a joint venture in research 
and development for virtual reality and visualization.  VRVis 
was founded in 2000 as part of the Austrian Kplus pro-
gram to bridge the gap between academic research and 
commercial development as well as to supply the necessary 
transfer of knowledge between the academic community 
and industry. VRVis is now a COMET K1 center.  
This mission is mirrored in a variety of academic and indus-
trial partners.  The research center is currently conducted 
by five academic institutes and numerous industrial part-
ners.  Leading-edge innovations and down-to-earth busi-
ness style characterizes VRVis as a valued partner for 
high-level research. 
The company's headquarter is located in Vienna, Austria.  
Today, around 50 researchers together with about 20 stu-
dents do high-level applied and basic research in five differ-
ent areas.   
 

The Team of VRVis 
VRVis consists of internationally experienced researchers in 
the areas of visualization, rendering and visual analysis.  
Their outstanding experience and knowledge in these topics 
qualify them for the innovative research they are performing.  
The research areas are headed by key researchers who 
manage these areas, define goals and projects for this area, 
and conduct the defined research together with their staff.  
All members of the research team are young researchers, 
whose creativity and ingenuity is the key to the success.  
VRVis is always looking for young, talented, and motivated 
researches in the fields of research to extend its research 
work or to support partner companies. 
 

Research Program of the VRVis 
The scientific research program consists of three research 
areas in which thematically matching research projects are 
conducted.  Each research area realizes application projects 
on the one hand and basic research for these application 
projects on the other hand.  

• Research Area Visualization 
• Research Area Rendering 
• Research Area Visual Analysis 

Working at VRVis 
VRVis is always looking for students, junior and 
senior researchers who want to join the VRVis 
team. VRVis is offering internships, diploma the-
ses, PhD theses and regular positions. For more 
information please refer to the additional informa-
tion listed below.  
 
Some Partners of VRVis 

Scientific Partners of VRVis:  
• Institute of Computer Graphics and Algo-

rithms, Vienna University of Technology 
• Institute of Computer Graphics and  

Vision, Graz University of Technology 
 

Industrial Partners of VRVis: 
• AVL List GmbH, Graz 
• Agfa Healthcare, Wien 
• Eybl Development GmbH, Krems 
• Geodata Ziviltechniker GmbH, Leoben 
• Imagination Computer Services, Wien 
• ÖBB Infrastruktur Bau AG, Wien      
 

Currently, VRVis is again extending its industrial 
base with new partners from several new fields. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Additional Information and Contact 
For detailed information about the research program, 
current projects and job opportunities please visit our 
web pages at http://www.VRVis.at/. 
If you need additional information or search for 
job opportunities in VR or visualization, please 
feel free to contact Prof. Werner Purgathofer 
(VRVis Scientific Director) at  
Purgathofer@VRVis.at or +43(1)20501/30155; 
Donau-City-Straße 1, A-1220 Wien. 

  





Open PhD Position in Visual Analytics at VRVis, Vienna, Austria 

The Visual Analysis group at VRVis Research Center (www.vrvis.at) Vienna, Austria has an open full-
time PhD research position in scope of the research project VISAR – Visual Analytics and Rendering. 

The overall goal of VISAR is to achieve an 
unprecedented level of integration between 
realistic real-time rendering of 3D geometry and 
techniques from the field of information 
visualization and visual analytics. Potential 
application areas include the construction and 
inspection of large infrastructure, traffic 
visualization, and archaeology. The main focus 
of this PhD position will be to enrich a 
multivariate analysis of many 3D objects (e.g., 
cars, traffic signs, or archeological artifacts) by 
appearance- and visibility-related information, 
and to dynamically update visualization- and 
interaction-components at changes of either the 
scene or the viewpoint of the camera. The realization will be based on extending and integrating 
powerful software frameworks of VRVis. 

We are looking for a highly motivated young scientist who intends to do a PhD in scope of this 
project. The starting date for the position is end of summer 2012 and the duration is 36 months. The 
scientific supervision will be by Harald Piringer, VRVis, in collaboration with Prof. Eduard Gröller, 
Institute of Computer Graphics and Algorithms (ICGA), Vienna University of Technology 
(www.cg.tuwien.ac.at). The minimum gross salary is 2.300€ per month (14 times per year). 

To apply for the position, you should fulfill the following requirements: 

• Master in computer science (or similar) 

• You intend to do PhD research and intend to publish high-impact scientific papers 

• Good programming skills (ideally: C++) and knowledge in software engineering 

• Basic knowledge in the fields of information visualization and real-time rendering 

• Very good English in speaking and writing; German is appreciated, but not required 

• Creativity, common sense, and social integration 

If you are interested in the position, please apply via email until 31st of May 2012 to Harald Piringer 
(hp@vrvis.at). After this date, further applications will be considered until the position is filled. 
Women are especially encouraged to apply. Your application should include: 

• Curriculum vitae 

• Publication list, including talks, master thesis, projects that are online available, etc. 

• A short personal statement, why you in fact apply for this position 

• Names of references 

  
 

Conceptual image illustrating navigation in 3D 
space by selection in a scatter plot. 








	Invited Talks
	Having Fun With Tables: Research into novel interfaces – two dimensions and above
	Perceiving Realism in Virtual Worlds

	Computational Geometry
	Progressive Hulls: Application on Biomedical Data
	Ray-casting point-in-polyhedron test
	Discovering molecules: Pass planning through a gap
	Finding Cavities in a Molecule

	Applications & Image Recognition
	Audio Guided Virtual Museums
	Simulation of Electronic Flight Instrument System of Boeing 787 aircraft
	Semantic Categorization and Retrieval of Natural Scene Images
	Image features in music style recognition

	3D Data Processing
	Non-Linear Dimensionality Reduction With Isomaps
	Workflow for real-time simulation of deformable objects
	Multiview Normal Field Integration using Graph-Cuts
	Priority-Based Task Management in a GPGPU Megakernel

	Cameras & Materials
	On Rendering with Complex Camera Models
	Simulation of Camera Features
	HDR SMISS - Fast High Dynamic Range 3D Scanner
	Material Recognition: Bayesian Inference or SVMs?

	Natural Phenomena & Perception
	Real-time Lighting Effects using Deferred Shading
	Fast Random Sampling of Triangular Meshes for Hair Modeling
	Real-time particle simulation of fluids
	Gaze-dependent Ambient Occlusion

	Visualization
	Partial Volume Effect Correction on the GPU
	Flow-based Segmentation of Seismic Data
	Stochastic Particle-Based Volume Rendering
	Rapid Visualization Development based on Visual Programming Developing a Visualization Prototyping Language

	Poster Session
	Robust Volume Segmentation using an Abstract Distance Transform
	Deformation of skeleton based implicit objects
	Knoocks - Ontology Visualization Plug-in for Protege

	Color Plates
	Sponsors of CESCG 2012

