
Impact of Modern OpenGL on FPS

Jan Čejka∗

Supervised by: Jiří Sochor†

Faculty of Informatics
Masaryk University

Brno/ Czech Republic

Abstract

In our work we choose several old and modern features of
OpenGL that applications use to render scenes and com-
pare their impact on the rendering speed. We aim our com-
parison not solely on these features, but also on the type of
hardware used for the measurements. We run our tests on
a professional graphics card QUADRO 6000 and on a con-
sumer graphics card GeForce GTX 580, and evaluate how
actual hardware influences the results.

Keywords: OpenGL, Core profile, QUADRO, GeForce

1 Introduction

Graphics hardware is in constant evolution. New mod-
els come with new methods to solve the same problems
in a more effective way. Developers now stand before a
dilemma of whether to use an old method that had more
time to be optimized in drivers, or a new method that bet-
ter uses new technology but is not well established and
may actually slow down the application when used inap-
propriately.

When analysing a well known graphics library Open-
GL, we found that in its more than twenty years of evolu-
tion it really accumulated multiple solutions for the same
problems. Considering for example rendering commands,
we may use a pair of glBegin and glEnd commands and de-
fine geometry vertex by vertex, use glDrawElements and
draw multiple primitives in a few commands, use func-
tions such as glMultiDrawElements to reduce the number
of rendering commands even further, or use indirect draw
commands to manage rendering entirely from the GPU it-
self. Moreover, in case of static geometries, we still have
an option to pack these commands into display lists and
again reduce the number of commands that need to be pro-
cessed.

To design fast applications, developers must decide
which of these methods to implement. Their decision is
based not only on the type of application, but also on the
properties and the architecture of the hardware they use,
and of course, their own experience.

∗xcejka2@fi.muni.cz
†sochor@fi.muni.cz

We also had to make this decision in our application
VRUT. This application is developed in a cooperation be-
tween a number of universities in the Czech Republic and
the automobile company ŠKODA Auto a.s. The name
stands for Virtual Reality Universal Toolkit and its purpose
is to visualize detailed geometry in real-time. As such, it is
highly demanding on efficiency of rendering. It is used by
students as well as professionals, and therefore, it runs on
various kinds of hardware, which also influences the speed
of rendering.

We extended VRUT with a new rendering module and
implemented several techniques that solve fundamental
problems in rendering. In this paper, we describe them and
compare their impact on the resulting frame rate. As this
frame rate is affected by hardware, we present results of
testing on two different NVIDIA graphics cards, GeForce
GTX 580 and QUADRO 6000.

This paper is structured as follows. The next section
presents several works that analyse modern OpenGL and
its features. The third section describes methods we chose
and tested in our application. Results of these tests are
presented and discussed in the fourth section. The final,
fifth section concludes our work and emphasizes the most
important points.

2 Related work

OpenGL specification [7], located at OpenGL website
www.opengl.org, contains detailed description of all Open-
GL 4.4 functions. This website also lists all avail-
able OpenGL extensions and their description in form
of plain texts. In addition to this, some extensions are
also described on sites of other companies that define
their own extensions; for example, NVIDIA presents at
https://developer.nvidia.com/nvidia-opengl-specs a list of
extensions that are available on many NVIDIA graphics
cards.

Features of new versions of OpenGL are often presented
at the SIGGRAPH conference; Lichtenbelt [3] gives us ad-
ditional information about version 4.4. However, some re-
searches focus just on a part of OpenGL. McDonald and
Everitt [4] describe how techniques introduced in Open-
GL 4.3 can reduce the number of functions that need to

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



be called to render the whole scene. Gateau [1] presents
techniques developed by NVIDIA to render complex ob-
jects in only a few (possibly one) draw calls. These works
unfortunately lack thorough testing and do not take differ-
ent hardware into account at all.

Much information about hardware can be found on the
hardware manufactures’ web pages intended for develop-
ers1,2. Additional information is given at conferences;
Kilgard [2] describes features of NVIDIA’s graphics cards
in association with newest versions of OpenGL. A list of
main features in which QUADRO professional graphics
cards and GeForce gamer cards differ can be found in [5].

3 Analysed techniques

In our work, we chose and compared several techniques
that solve problems of rendering scenes. We focused
on drawing commands, the type of pipeline, vertex array
setup and the rendering context used.

3.1 Draw commands

The current version of OpenGL supports two main meth-
ods of drawing primitives. The first method uses functions
glBegin and glEnd and defines vertices separately. The
other method stores all data of these vertices in arrays, and
uses functions like glDrawArrays and glDrawElements to
draw them all at once. OpenGL also improves the latter
method and offers functions like glMultiDrawElements,
allowing the packing of many glDrawElements calls into
one.

We may also use display lists in addition to these meth-
ods. These display lists allow the driver to store all com-
mands in the most effective way and then recall them when
appropriate. This method is used mainly when rendering
with glBegin and glEnd as it saves many function calls, but
it can be used to draw with vertex arrays as well.

3.2 Fixed-function and programmable
pipeline

OpenGL defines a set of operations that are applied to each
processed primitive. These operations include transfor-
mation, lighting, texturing and many more, and form a
pipeline. First versions of OpenGL defined a set of fun-
damental operations; to use them, programmers needed to
set their parameters and activate or deactivate them if nec-
essary. This is called fixed or fixed-function pipeline.

With time, the number of operations in pipeline in-
creased, and so did the number of their combinations. As
such, setting these parameters became impractical. Since
version 2.0, OpenGL allows some parts of its pipeline to
be programmed by small programs called shaders. These
shaders define which operations are performed on vertices

1developer.nvidia.com
2developer.amd.com

Vertex
attribute

Vertex
attribute

Vertex
attribute

Size
Type
Stride
Buffer

Size
Type
Stride
Buffer

Size
Type
Stride
Buffer

changed when
swapping buffer

(a) Before version 4.3

Vertex
attribute

Vertex
attribute

Vertex
attribute

Size
Type

Rel. offset

Size
Type

Rel. offset

Size
Type

Rel. offset

Binding
point

Binding
point

Stride
Buffer

Stride
Buffer

changed when
swapping format

changed when
swapping buffer

(b) Since version 4.3

Figure 1: Setting vertex array parameters before OpenGL
version 4.3 and since version 4.3

and fragments3 and manage their order. This is usually
referred to as a programmable pipeline.

When we render simple scenes with simple geome-
tries, simple lights and simple materials, we do not need
functionality of the programmable pipeline, as the fixed
pipeline fulfills our needs. For this reason, we do not
need to write and optimize complex programs of the pro-
grammable pipeline and thus we save some time and ef-
fort. On the other hand, well written programs may save
some costly state changes done in the fixed pipeline.

It is questionable which of these pipelines leads to a
better performance in given situations. Most of modern
graphics cards are programmable, and OpenGL’s fixed
functionality is programmed in the driver after all. Many
modern programs (especially computer games) utilize
shaders, which may lead driver programmers to dedicate
less effort to optimizing drivers for programmable pipeline
in comparison to fixed pipeline. On the other hand, fixed
pipeline exists since the first version of OpenGL and had

3There are also geometry shaders which operate on primitives and
tessellation shaders which subdivide them, however, our application uses
only vertex and fragment shaders.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Scene with the Fabia car used when measuring rendering speed

more years to get optimized for applications that uses it.

3.3 Buffer setup

OpenGL 1.1 came with vertex arrays and allowed to pro-
cess multiple primitives with a single call. It provided a
few functions to set parameters of these arrays, that is the
size and the type of vertex attributes, a buffer with these
data and the stride between them, but all of them had to be
set when an attribute or a buffer changed, as illustrated in
Figure 1a.

For many years, this was the only method to set up
buffers. In 2012, OpenGL 4.3 reviewed when vertex array
parameters are set and designed a technique that decreased
the amount of data set each time. It introduced binding
points, which are places where buffers can be bound, and
allowed us to bind buffers and set attribute parameters sep-
arately, as illustrated in Figure 1b.

In addition to this, vertex array objects (VAOs), pre-
sented in OpenGL 3.0, allow to create objects holding all
information about the setup of vertex arrays. They are sim-
ilar to buffer objects or texture objects, which have both
existed in OpenGL for many years. VAOs do not change
the way vertex arrays are set up. They only make switch-
ing between them easier.

We tested and compared both methods of setting vertex
arrays and VAOs. Moreover, we also decided to test an ex-
tension NV_vertex_buffer_unified_memory developed by
NVIDIA, available on their graphics cards. This exten-
sion is described in [6], and its main idea lies in querying
the address of memory allocated by vertex buffer objects.
Using this address in plane of a vertex buffer allows us to
save the driver some work which speeds up the rendering.

3.4 Rendering context

The last issue we focused on is aimed at the OpenGL con-
text. There are many parameters that are set when creating
this context. We tested two of them, the type of profile and
the presence of debug features, and measured their influ-
ence on the speed of rendering.

OpenGL profiles were introduced in version 3.2 as a
form of removing deprecated functions. OpenGL defined
two of them: core and compatibility. The core profile con-
tains only the most modern features, while the compatibil-
ity profile includes all functions since the first version of
OpenGL. As the core profile could be simpler to imple-
ment and optimise by drivers, we decided to test, whether
it leads to an increase in the number of rendered frames
per second.

Like many other libraries, OpenGL comes with new
methods to ease debugging and development of new ap-
plications. In addition to querying OpenGL for simple
errors, some implementations allow us to create a debug
context, giving us an option to set up callbacks that are
called every time an error occurs. Using this debug context
must obviously lead to a decrease in speed of rendering, as
it must handle not only these errors, but also all attached
callbacks. For this reason, we decided to measure its im-
pact on the actual speed of rendering.

4 Measurement

We measured the time our application needed to render a
single frame depending on several settings.

The measured scene contained a static model of the
Fabia car containing 4.6 million triangles, illustrated in
Figure 2. This model was represented by a hierarchy tree

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



Configuration GeForce QUADRO
CPU [ms] GPU [ms] CPU [ms] GPU [ms]

1) B/E 262.662 274.890 208.861 337.591
2) VA 199.759 261.961 15.776 77.987
3) VBO 25.876 243.702 6.624 26.397
4) DL + B/E 327.224 333.550 4.154 8.599
5) DL + VA 341.850 343.046 7.368 11.481
6) DL + VBO 340.475 342.296 7.403 11.480
7) VBO + Shaders 27.233 26.416 27.932 27.591
8) DL + VBO + Shaders 487.704 485.719 10.083 22.440
9) 7) + VAO 27.711 27.281 28.644 27.816
10) 7) + MDE 11.568 16.916 11.238 21.172
11) 7) + Bindless 13.499 16.717 13.973 21.260
12) 7) + MDE + Bindless 9.616 16.964 9.828 21.148
13) 7) + VAO + MDE 11.170 16.649 10.488 21.183
14) 7) + VAO + Bindless 14.659 16.764 14.776 21.301
15) 7) + VAO + MDE + Bindless 10.630 16.754 10.584 21.206
16) 7) + MDE + Format43 11.456 16.742 11.210 21.186
17) 7) + VAO + MDE + Format43 10.746 16.723 10.798 21.212
18) Core 27.953 27.445 28.369 28.001
19) 12) + Debug 33.244 31.384 — —

4) + Debug — — 5.043 8.775

Table 1: Rendering times of different configurations on both tested machines

with 1344 geometry nodes, containing 1342 triangle lists
and 145830 triangle strips. The model’s appearance was
described by 86 materials; one of them implemented a car
paint effect and used its own shaders, the rest were simple
enough to be rendered with the fixed pipeline. The scene
was lit by a simple directional light centered at the camera
(headlight).

We ran all tests on two machines. The first machine,
in the rest of the paper labelled as GeForce, contained
Intel i7 2600 processor with 8 GB of main memory and
GeForce GTX 580 with the display driver version 310.70.
It was chosen to represent consumer machines.

The other machine, labelled as QUADRO, contained
two Intel Xeon X5680 processors and 24 GB of main
memory. It had two QUADRO 6000 graphics cards with
the display driver version 310.70. It was chosen to rep-
resent professional workstations. Although this machine
contained two graphics cards, only one of them was active
so that the results could be compared with the results of
the first machine.

We measured a time these machines needed to render
the scene in configurations described below. Since the ac-
tual rendering runs asynchronically on graphics cards, we
separately measured the time needed to call all OpenGL
functions (labelled as CPU) and the time the driver needed
to execute and complete all commands (labelled as GPU).
We measured groups of 50 frames and chose three groups
with the smallest deviation. Since we focused on the maxi-
mum speed of rendering, we took the minima of measured
values (in milliseconds) and presented them in Table 1.

4.1 Configurations and Results

We tested the following configurations. First, we tested the
influence of draw commands used to render the geometry.
We compared rendering with glBegin and glEnd functions
(in the table labelled as B/E), rendering with vertex arrays
stored at the client site (VA), and rendering with vertex
arrays stored at the server site (VBO). Since all these draw
commands can be stored in display lists, we made the same
measurement again, this time using display lists (DL). The
results are shown in Table 1 with configurations numbered
1 – 6.

Next, we tested how shaders influence the speed of ren-
dering (configuration labelled as Shaders). The largest
part of the scene could be rendered using the fixed
pipeline, therefore, we compared the rendering speed
when using the fixed pipeline and the programmable
pipeline with shaders. These shaders simulated operations
of the fixed pipeline, however, we must note that they im-
plement per-pixel lighting. Despite the fact they are more
computationally demanding than the fixed pipeline, we be-
lieve the measured values are still comparable. The results
are numbered as 7 and 8.

We also measured the influence of vertex array
objects (labelled as VAO), glMultiDrawElements
(MDE), NV_vertex_buffer_unified_memory extension
(Bindless), OpenGL 4.3 technique of setting vertex
arrays (Format43) and their combinations. We chose the
configuration 7), that is VBO + Shaders, as a starting
configuration for this group of configurations. In the
Table, these configurations are numbered as 9 – 17.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0
5

10
15
20
25
30

Configuration

Ti
m

e
[m

s]
CPU time
GPU time

Figure 3: Rendering times of configurations achieved on GeForce. Times of configurations 1 – 6 and 8 are too large to
display

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0
5

10
15
20
25
30

Configuration

Ti
m

e
[m

s]

CPU time
GPU time

Figure 4: Rendering times of configurations achieved on QUADRO. Times of configurations 1 and 2 are too large to
display

Finally, we tested the influence of the rendering context
parameters. Rendering with the core profile (labelled as
Core) is numbered as 18, and automatically implies VBO
+ Shaders + VAO are active. For the debug context test
(labelled as Debug and numbered as 19), we chose as the
starting configurations the best configuration on each ma-
chines, that is the configuration 12 on GeForce and 4 on
QUADRO.

Figures 3 and 4 shows rendering times as line graphs for
the GeForce machine and the QUADRO machine respec-
tively. Rendering times greater than 50 ms are not shown,
so that the difference in time of other configurations could
be better visible. Also, configuration 19 is not present,
because it differs between both machines, and the figure
could lead to a misinterpretation of results.

4.2 Discussion

The measurement revealed several interesting facts. Mea-
sured rendering times in configurations 1 – 8 show, that
using shaders in cooperation with vertex arrays stored at
the server side in vertex buffer objects is essential for fast
rendering on the GeForce machine. On the other hand,
activating display lists led to a severe performance hit. We
believe this happened due to the fact that GeForce graph-
ics cards (as well as other consumer graphics cards) are
optimized for computer games that usually do not contain
static geometries and use modern features of graphics li-

braries, especially the programmable pipeline.
However, this was not true for the QUADRO machine,

where display lists were the most effective way of render-
ing geometry. This is probably the result of driver op-
timizations, since display lists are a perfect solution for
static geometries present in many professional applica-
tions.

Configurations 9 – 17 give us more information about
the contribution of other modern techniques to the speed of
rendering. Using vertex array objects showed a slight slow
down when compared to configuration 7. This could have
been caused by misunderstanding the role of these objects
leading to an improper implementation in our rendering
module, or by insufficient optimization in the driver.

Using extension NV_vertex_buffer_unified_memory
and glMultiDrawElements led to an increase in speed
of rendering. It is obvious that setting buffers and
calling draw commands were probably the bottlenecks
in our application, and these features effectively reduced
their impact on the final speed of rendering. OpenGL
4.3 technique to set up vertex arrays did not result in
any significant speedup. We should also mention an
interesting fact, that all configurations 10 – 17 show
approximately the same GPU time, but they differ in the
time the application needed to call all functions.

The last two configurations show that using the core
profile does not lead to any significant difference in per-
formance (compare configurations 9 and 18). Obviously,

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



debugging with debug context causes a performance loss.
This loss was much smaller on the QUADRO machine.
We, therefore, assume that professional graphics cards are
more optimized and therefore more suitable for debugging
than consumer graphics cards.

5 Conclusion

We measured and compared the speed of rendering of a
static scene in several configurations depending on tech-
niques used and the type of hardware. We found that us-
ing modern features of OpenGL such as shaders and ver-
tex buffer objects led to an increase in the rendering speed
on NVIDIA’s consumer graphics card GeForce. On the
other hand, professional graphics card NVIDIA QUADRO
achieved the best rendering times when we used display
lists and the fixed function pipeline. Given these results,
we believe neither old nor modern features are the absolute
choice for better rendering performance, as this highly de-
pends on the hardware the application runs on.

Acknowledgments

We would like to thank ŠKODA Auto a.s. for the model
of the Fabia car, and also Antonín Míšek for his ideas and
measuring on the QUADRO machine.

References

[1] Samuel Gateau. Batching for the masses: One glCall
to draw them all. SIGGRAPH, 2013.

[2] Mark J. Kilgard. NVIDIA’s OpenGL functionality.
GPU Technology Conference, 2010.

[3] Barthold Lichtenbelt. Announcing OpenGL 4.4. SIG-
GRAPH, 2013.

[4] John McDonald and Cass Everitt. Beyond porting.
Steam Dev Days, 2014.

[5] NVIDIA. NVIDIA Quadro vs. GeForce GPUs: Fea-
tures and Benefits, 2003.

[6] NVIDIA. OpenGL Bindless Extensions, 2009.

[7] Mark Segal and Kurt Akeley. The OpenGL R© Graph-
ics System: A Specification, 2013.

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)


