
Fast Photon Gathering in Progressive Photon Mapping Using
GPGPU
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Abstract

This paper describe an experimental method implement-
ing Progressive photon mapping on contemporary hard-
ware - PC with GPU. The overview of Progressive photon
mapping as well as its GPGPU-specific modification. The
experimental results are shown as well along with the per-
formance measurements.
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1 Introduction

From the beginning of computer graphics, there was an
effort to make nice photorealistic images. One way to do
this is to use global illumination methods. These meth-
ods have high computational cost and they are not always
suitable for massive parallelism on graphics acceleration
hardware, such as GPU. Photon mapping is a relatively
new approximation of global illumination and Progressive
photon mapping is its very promising variant. This pa-
per propose a naive implementation of Progressive photon
mapping on contemporary GPU and propose acceleration
approaches on this naive solution.

2 Related work

Best photorealistic rendering results today are achieved
using methods belonging to the global illumination ones.
These methods attempt to simulate physically correct light
propagation in scenes, and basis for all of the global illu-
mination methods was set in 1986 when James T. Kajiya
[5] formulated the rendering equation.

Rendering equation describes how to precisely compute
reflected radiance in a certain point by summing light con-
tribution from all direction in hemisphere around exam-
ined point. Using this approach, it is possible to com-
pute precise light propagation in the scene. The major
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problem of this approach is that this computation is done
by computing integral through hemisphere and computing
this integral is nearly computationally impossible for large
scenes.

In the paper that introduced the rendering equation, the
path tracing method was proposed as well. Path tracing
samples Rendering equation by examination random di-
rection in hemispheres. To get good result, very many ran-
dom paths have to be computed. Path tracing is, in fact,
using Monte Carlo approach for integral computation and
thus the methods based on path tracing are called Monte
Carlo methods.

Path tracing was probably the first complete global illu-
mination technique (although radiosity was invented ear-
lier, it assumes only diffuse light propagation) and using
this technique, it was possible to compute nice photoreal-
istic images. Extension of path tracing called bidirectional
path tracing was invented independently in 1993 [6] and
1994 [7]. Bidirectional path tracing traces paths from eye
and from light simultaneously and from this two paths, it
computes illumination. It is possible (in scenes with lot of
indirect illumination) to compute photorealistic images in
lower time using bidirectional path tracing comparing to
the original path tracing. Another extension of path trac-
ing is so called Metropolis light transport [8] and this tech-
nique sets another examinated path from previous path by
mutation of such path.

To achieve good photorealistic results using Monte
Carlo raytracing methods, many paths per pixels need to
be examined and it is very time consuming. Another way
how to approximate rendering equation is using Photon
mapping. Photon mapping was invented by Henrik Wann
Jensen in 1996 [4]. It is two-pass algorithm; in the first
pass light contribution in scene is computed by sampling
light distribution from scene, sample of light is called pho-
ton and the photons are saved in photon maps covering sur-
faces of the scene. In the second pass, an extended raytrac-
ing is used to compute final image. When this extended
raytracing computes local illumination model (for exam-
ple by phong lightning), illumination from photon maps is
included.

For good results in Photon mapping, large number of
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photons has to be saved in photon map and if photon
map is really big, searching in photon map becomes slow.
Extension of normal photon mapping, called Progressive
photon mapping [2] addresses this problem. The differ-
ence from the standard Photon mapping is that Progressive
photon mapping computes many smaller photon maps and
progressively improves results from another photon maps.
In 2009, Stochastic progressive [1] photon mapping was
proposed, extending Progressive photon mapping by dis-
tributed raytracing effects, such as depth of field, motion
blur, etc.

All of the above described global illumination methods
are consistent - this means that with increasing rendering
time method is approaching correct result. Monte Carlo
raytracing methods are unbiased - this means that even if
we compute one path per pixel and average large amount
of this images, we still get correct result. On the other
hand Photon mapping methods are biased and if we av-
erage many of rendered images we do not generally get
correct result.

3 Progressive photon mapping

Radiance estimation in photon mapping is an approxima-
tion of Rendering equation. Luminance at point x heading
in direction ~ω is computed as:

Lr(x, ~ω)≈ 1
πr2

N

∑
p=1

f (x, ~ω, ~ωp)∆Φp(x, ~ωp) (1)

where ∆Φp(x, ~ωp) is photons flux saved in photon map.
f (x, ~ω, ~ωp) is bidirectional reflectance distribution func-
tion. Sum involves N nearest photons from point x in pho-
ton map. Nearest photon in space generates sphere and
because it is possible to assume that photons are accumu-
lated from flat surface, the result is divided by area of cir-
cle where r is distance of farthest photons from point x.

For removing low-frequency noise in result images,
photon map has to have many photons, possibly infinitely
many. If photon map has infinite number of photons and
in radiance estimation is gets fraction of this infinite pho-
tons, radiance is estimated in radius approaching zero at
the limit. From this observation, it is possible to assume
that best results are obtained by radius as small as pos-
sible. With increasing number of photons in the photon
map, both memory and time complexities are increasing.

There was an effort to divide final large photon map into
several smallest photon maps, compute some sort of data
and get better result in faster time. One way was averaging
lot of computed images, but this does not lead to consistent
result.

Another way was invented with Progressive photon
mapping. This multiple-pass technique reorders photon
mapping in proper way and ensures that with another
passes, consistent result is obtained.

Figure 1: Progressive photon mapping schema[2]

Scheme of Progressive photon mapping is shown in Fig-
ure 1. First, raytracing is performed and after this, photon
tracing passes are performed. Raytracing is performed for
saving special positions in scene - so called hitpoints. Hit-
points are saved when ray intersect with diffuse surface,
and in each hitpoint lot of needed data are saved. This
data contains: position, material, normal, pixel location,
pixel weight, current photon radius, accumulated photon
count and accumulated reflected flux. Using this data it is
possible to synthesize final image.

Photon tracing pass is divided into iterations, with fixed
(smaller than in normal photon mapping) number of pho-
tons. Theoretically it is possible to process infinite num-
ber of photons on limited memory. In each iteration, new
random photon map is created and then for each hitpoint,
illumination from photon map is computed. As it was de-
scribed above, radius decreases with each iteration. Equa-
tion for computation new radius is written as:

R̂(x) = R(x)

√
N(x)+αM(x)
N(x)+M(x)

(2)

where R(x) respectively R̂(x) is radius in hitpoint x respec-
tively new radius in hitpoint x. N(x) is number of photons
saved in hitpoint x, M(x) is number of new photons in cur-
rent iteration in current radius R(x). α is value in range 0
- 1 and indicate how much new photons will be added to
illumination and how fast radius will be decreasing.

New flux τN̂(x, ~ω) in hitpoint x is computed as:

τN̂(x, ~ω) = τN+M(x, ~ω)
N(x)+αM(x)
N(x)+M(x)

(3)

where τN+M(x, ~ω) is sum of flux from previous iteration
and current iteration computed by equation 1 and values
N(x),M(x) and α is same values as in equation 2.

Final luminance in point x heading in direction ~ω is
computed as:

L(x, ~ω) ≈ 1
πR̂(x)2

τN̂(x, ~ω)

Nemmited
(4)

It is possible to render image after each photon tracing
iteration or after all iteration has been proceed.
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Using progressive photon mapping it is possible to ren-
der whole global illumination and very similar images like
using monte carlo raytracing methods. Progressive photon
mapping excel in rendering specular diffuse specular path
(SDS path) above all other monte carlo raytracing meth-
ods [2]. SDS path means that path from light is connected
through any number of specular surfaces, reflected on dif-
fuse surface and then again reflected through any number
of specular surfaces to eye. This effect can be seen for
example on bottom of swimming pool.

4 GPGPU model

Graphics Processing Units have a unique ability to accel-
erate general purpose tasks. Graphics cards were made in
order to accelerate realtime computer graphics; however,
lately the GPUs have been able to compute nearly any kind
of programmable task.

Few programing languages exist for programing GPUs,
the most used being CUDA and OpenCL. They vary by
notation and capabilities and because this paper is using
OpenCL for execution, OpenCL notions will be presented.

Execution model

Graphics card consist of a set of streaming multiproce-
sors. Streaming multiprocessors can be viewed as big en-
hanced SIMD (single instruction single data) processors.
One thread of parallel computation is called kernel. Kernel
are grouped into work group - it is set of kernels executed
on same streaming multiprocessor. When computation is
set on gpu, size of workgroup has to be set and size of final
number of threads have to be set.

Memory model

GPU executes many threads simultaneously, so it is not
possible to allow all operate with memory. In GPU, three
memory space exist. The first is a large global memory.
This memory is the biggest memory on GPU (in size of
gigabytes) and has the slowest access time of all memory
on GPU.

Other memory is the local memory available only to
threads in one workgroup; this memory is called local
memory and size of this memory is in the order of tens
of kilobytes. THe access time of local memory is much
faster than to the global memory because local memory is
on the same chip as the streaming multiprocessors while
the global memory is on another chip (because of it’s big-
ger size).

The third memory space is private memory space and in
this memory is exclusive only to one thread. This memory
is also mapped on registers and is used for variables, coun-
ters, etc. This memory has fastest access time but smallest
size.

GPU architecture is very different compared to the
CPU. The program execution must satisfy some require-
ments for fast execution. Memory operation has to be co-
herent or has to be in block. This means that all threads in
one workgroup has to read from one memory position or
from block of memory. Access time of memory operation
is much bigger than on CPU. From this requirements it is
clear that for programs with lot of memory operation gpu
is not beneficial as for program with less memory opera-
tions.

5 Simple GPGPU decomposition

Progressive photon mapping could be divided into several
blocks: raytracing, photon tracing, hitpoint illumination
and image synthesis.

Raytracing

Raytracing could be understood as sequential examining
each pixel’s color in final image. Examination routine of
one ray is same for each pixel, so it is possible to imple-
ment to one kernel examination of one ray. Global work
size of raytracing task is equal to number of pixels in final
image rounded to size of work group.

Raytracing routine is often written in recursive manner
on CPU. This recursive approach is not possible to use
on current GPGPU, because GPGPU programming lan-
guages do not allow recursive function calling. Therefore,
raytracing has to be written without recursion, stack or dy-
namic array. One possible way of doing this is make itera-
tive function calling (with maximum iteration) and called
function will return another ray.

Most scenes are described by set of triangles. There are
exists lot of ray-triangle intersection algorithms, chosen
technique in own implementation of simple GPU raytrac-
ing is Havel’s algorithm [3]. When ray is examining with
scene, it has to be tested through all triangles in scene.

Solving this problems and combining them into one ker-
nel it is possible to get naive GPGPU implementation of
raytracing.

Photon tracing

Photon tracing block uses very similar routines for scene
traversal like raytracing. Each initial photon is traversed
in separate kernel. The problem occurs when photon has
to determine random direction, in photon generating or in
photon reflection on diffuse surface. GPGPU does not
have any sort of random generator and therefore random
generator is needed. It is possible to use classic congru-
ential generator. Same as in raytracing, photon tracing has
set max recursion value. This is done, because before start-
ing photon tracing kernel memory to fixed size have to be
allocated.
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Hitpoint illumination

After each photon tracing pass, new illumination for each
hitpoint has to be calculated. It is only computation few
formulas if we get all information needed. The slowest
thing in whole hitpoint illumination is finding for each hit-
point x photons in radius R(x).

Very naive solution is going through all photons, com-
pute distance from each photons and process only those
photons with radius lower than R(x).

Image synthesize

Image synthesize is possible to perform after each photon
tracing and hitpoint illumination pass or at the end of all
iterations. All needed data are saved along with each hit-
point and therefore computation of luminance is very easy.
For each hitpoint will be executed one kernel and this ker-
nel will compute color for his hitpoint. This color will
scale by hitpoint weight and atomically add to framebuffer
in proper position given by hitpoint framebuffer position.

6 Evaluation of simple GPGPU im-
plementation

Naive implementation was done for evaluating bottlenecks
of progressive photon mapping on GPGPU. This naive im-
plementation was done on very simple scene only for ex-
perimental usage and for evaluating biggest bottleneck in
whole process. Image 2 show results of this simple im-
plementation. Implementation of progressive photon map-
ping was done on GPGPU and on CPU to evaluate perfor-
mace between this two execution possibilities.

CPU implementation was evaluated on laptop with In-
tel i7-4702MQ processor written in c++ and was com-
pile with Intel c++ 15.0 compiler. GPGPU implementa-
tion was written in OpenCL and was evaluated on nVidia
GeForce GT 750M. Speed of CPU implementation was
evaluated using std::chrono library and GPU implementa-
tion was evaluated using nvidia nsight timeline profiler.

GPU CPU
Raytracing 0.706 ms 1172 ms
Photon tracing 7.897 ms 317 ms
Hitpoint Illumination 2041 ms 1593 ms
Synthesize 0.247 ms 3 ms

Table 1: Performance evaluation between CPU and GPU
naive implementation with 320*280 resolution and 100
thousands photons in photon tracing pass

Table 1 and table 2 show performance between GPU
and CPU implementation for 320*280 and 1920*1080 res-
olution. In each photon tracing iteration 100 thousands
photons was traced. As it can be seen, GPU is far more

Figure 2: Progressive results of photon mapping. On top
image is result with one iteration, on the middle image is
result with 10 iterations, on the bottom image is result with
100 iterations. In each iteration 100 thousands photons
was generated

faster than CPU implementation in all blocks except hit-
point illumination. CPU block of hitpoint illumination is
using kd-tree and if this block will use bruteforce search
similar to GPU it will be much more slower. For resolution
320*280 bruteforce on CPU was performed in 68 seconds.

Speed of raytracing and photon tracing is influenced by
number of pixels / photons and by complexity of scene.
Even when testing scene was simple, photon tracing and
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GPU CPU
Raytracing 12.107 ms 6 197 ms
Photon tracing 7.897 ms 317 ms
Hitpoint Illumination 38 603 ms 23 957 ms
Synthesize 4.924 ms 91 ms

Table 2: Performance evaluation between CPU and GPU
naive implementation with 1920*1080 resolution and 100
thousands photons in photon tracing pass

raytracing aren’t bottlenecks because lot of accelerating
algorithm for spatial subdivision exists and it is possible to
use existing solution for this task for example nvidia OptiX
framework. Because of this, this paper will not focus to
implementing fast raytracing.

Hitpoint illumination is slowest block in progressive
photon mapping implementation on GPU and on CPU.
This fact is influenced by very naive implementation of
hitpoint illumination and this paper will furthermore focus
on accelerating hitpoint illumination on GPGPU.

7 Accelerated photon gathering

Bruteforce implementation of hitpoint illumination is very
naive and very slow. In this simple implementation, each
thread in workgroup load one photon from memory, com-
pute distance, check if distance is lower than proper radius
and optionally accumulate photon flux.

Memory loads are very costly on GPU, even if stream-
ing multiprocessor is multiplexing work between few
workgroups, it will wait long time in sleep mode to load
data from global memory. One way how to mitigate mem-
ory waiting is to use local memory.

This section will present accelerating approaches to ac-
celerate this task. Mostly every other approach will be
based on previous approach.

Local memory

Idea is to load block of photons into local memory and
go through this photons from local memory. Access to
local memory is faster than access to global memory, so it
should lead to acceleration.

Each thread in workgroup will load one photon into lo-
cal memory. Kernel driver will recognize this as block
loading and this block loading should be done faster than
sequential load of each photon.

Photon sorting

When illumination is computed for hitpoint x, in computa-
tion have to be included only those photons lying on same
mesh as hitpoint x. When illumination is computed by
bruteforce, in hitpoint illumination photons from all mesh
are included and when photon from other mesh is loaded

to illumination computation, this photon are discarded and
costly load was in vain.

One way, how to solve problem with loading photons
from different meshes, is to sort photons into unique pho-
ton map for each mesh. This task should be done in sep-
arate kernel. Each thread will load one photon, check its
mesh, by special operation called atomic inc will get po-
sition in separated photon map and this photon will save
into proper position in memory.

When hitpoint is illuminated it will check hitpoint mesh
look into proper photon map and will sequentially loading
photons from proper photon map. In this case it is not
possible to use local memory because it is not guaranteed
that all hitpoints in workgroup will lie on same mesh.

Hitpoint sorting

It is needed to ensure that all hitpoints in workgroup lie on
same mesh to use coherent approach (all thread are reading
from same memory location) to fast loading from memory.

Hitpoint sorting could be done on CPU size because this
work will done only once per whole render process. Hit-
points are loaded to CPU side after raytracing pass. This
hitpoints are sorted to separate arrays. In the end of each
hitpoint array, special filler hitpoints have to be saved.

This is because ending workgroup of one hitpoint array
is not filled fully, for instance we have size of workgroup
256 and in last workgroup of hitpoint array is only 150
hitpoints, so if we do not save 106 filler hitpoints, this last
workgroup will consist from hitpoints from two meshes.

If it is ensured that hitpoints in all workgroup is
same, performance should accelerate because all threads
in workgroup is loading sequentially from same memory.

Hitpoint sorting and local memory

If all photons are separated and similar hitpoints are saved
in one workgroup it is possible to use local memory to
save photons from separated photon map. This should lead
to best acceleration and should be much faster than naive
sequential loading.

Hitpoint clustering and spatial grid

Last proposed acceleration is to build spatial grid on each
scene objects and sort photons to appropriate subspaces.
Then all hitpoints will search only through limited space
and will not go through all photons on one mesh. For
speedup purposes photons in each workgroup photons
should be as close as possible, so some sort of clustering
is needed.

8 Experimental results

Acceleration approaches introduced in previous section
was implemented on same scene. Table 3 shows result
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of this implementation.

320*280 1920*1080
Naive solution 2041 ms 38 603 ms
Local memory 1109 ms 17 750 ms
Photon sorting 611 ms 10 539 ms
Hitpoint sorting 484 ms 8 384 ms
Hitpoint sorting, local memory 327 ms 5 422 ms

Table 3: Performance evaluation between all proposed ac-
celeration techniques.

As it can be seen, all proposed approaches lead to some
sort of speedup. Local memory accelerate computation
nearly twice. Photon sorting accelerate naive solution
nearly four times. Using this approach special kernel exe-
cution is needed. Kernel for photon sorting has been exe-
cuted in nearly 1ms, so final speedup of hitpoint illumina-
tion is much higher than overhead made by special kernel
execution.

Hitpoint sorting uses photon sorting with sorted hit-
points on CPU side, so some CPU overhead is needed.
Because this task is performed only once - after raytrac-
ing pass - this overhead does not matter. Last accelerating
approach use local memory with hitpoint sorting and pho-
ton sorting. This approach is much faster then all previous
approaches.

All of this test was written in OpenCL. OpenCL has
built-in function distance() and even when this function
should be very fast, it isn’t. When on last, fastest approach
was distance() function replaced by manual distance cal-
culation from high school, this block get nearly three times
speedup! Hitpoint illumination with hitpoint sorting and
local memory extended by manual distance calculation has
125 ms execution on 320*280 resolution and 1 941 ms ex-
ecution on 1920*1080 resolution.

Hitpoint clustering and spatial grid

For clustering, k-means algorithm was used. K-means al-
gorithm return hitpoints clustered in close clusters. One
problem occurs with this type of clusters, it is not possi-
ble to made fix number of hitpoints in one cluster so lot of
filler hitpoints have to be used to fill gaps in hitpoints so
one workgroup will only consist from hitpoints from one
cluster and eventually filler hitpoints. Lot of filler hitpoints
have to be used with k-means. For 1920*1080 resolution
nearly 33% filler hitpoints (in sum of all hitpoints) was
generated and this lead to slower performance without us-
ing grid.

Image 3 shows how clusters are made in scene. For
each object in scene, simple (naive) grid structure is pro-
posed. First bounding box of object is computed, then
longest axis is split by fixate number of pieces. Length
of one divided piece give length of cube of one subspace
and then this subspaces are uniformly distributed on ob-
ject. For each subspace on each object maximum size (in

Figure 3: Hitpoint clusters made by k-means

photons count) have to be set. This approach lead to easy
implementation and this approach has nice modification
options.

320*280 1920*1080
Hitpoint sorting, local memory 172 ms 2 852 ms
Grid structure 87 ms 730 ms

Table 4: Performance evaluation of naive grid structure
with clustered hitpoints.

Table 4 shows that by using clustered hitpoints and
naive spatial grid it is possible to achieve double accel-
eration.

9 Conclusion

This paper described an experimental implementation of
Progressive photon mapping by its decomposition into
several blocks suitable for GPGPU. More or less naive im-
plementation of these blocks in GPGPU was proposed as
well. The full Progressive photon mapping performance in
GPGPU was tested and compared to the CPU. The slow-
est block turned out to be Hitpoint illumination and for this
block, an acceleration approaches were proposed as well.

The Fastest evaluated approach was sorting photons into
a mesh, sorting hitpoints into a mesh as well, compute
clusters on each mesh and use grid for photon acceleration
search. Used grid is very naive and in future work this grid
should be replaced by more complex and efficient grid, but
this very naive grid with clustered hitpoints shows way to
accelerate hitpoint illumination block. Another thing in fu-
ture work should aim to efficient clustering with low filler
hitpoint ratio.

The future work also includes the overall profiling of the
GPGPU Progressive photon mapping implementation and
also various planned improvements in quality of rendering
and speed.
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