
Real-time Water Simulation with Wave Particles on the GPU

Daniel Mikeš∗

Supervised by: Jiřı́ Bittner

Department of Computer Graphics and Interaction
Czech Technical University in Prague, Czech Republic

Abstract

When rendering large bodies of water in real-time an effi-
cient method is required to model water waves. This ar-
ticle describes a method for real-time interactive gener-
ation of such waves. We use the wave particle method
to describe wave propagation in a fluid medium. The
method allows to simulate interactions of water with gen-
eral shaped rigid bodies in real-time. We present a GPU
implementation of the method and show results in scenar-
ios such as open ocean waters or pools with water bound-
aries.

Keywords: Wave particle, GPU algorithm, interactive,
realtime simulation, waves, water rendering

1 Introduction

In real-time applications such as video games it is crucial
that all the computations are fast enough to be computed
in a plausible frame rate, so both the rendering and the
simulation stages should be fast. In general lots of compu-
tationally complex tasks can be measured or pre-computed
and then used later on. On the other hand user interaction
cannot be simply predicted so the computation must run
on-line. For these reasons we usually need to settle for
approximate solutions meaning the rendering and the sim-
ulation step is not necessarily physically correct but offers
reasonable results.

Animation of large bodies of water such as lakes or
oceans is important part of computer graphics and it is still
an open challenge since 3D volumetric simulations are too
computationally complex for mentioned scenarios.

In this article, we focus on a real-time water simula-
tion of large bodies of water with local surface waves. We
address height field representation to describe the water
surface. In our simulation we use wave particles as a spa-
tial information about the water surface deformation. The
simulation utilizes the graphic hardware to efficiently dis-
tribute the wave particles onto the water plane according
to the motion of the rigid body in the water medium.

This articles is based on the work of Yuksel et al. [12].
They presented the original wave particles method which

∗dm.mikes@gmail.com

Figure 1: Real-time water simulation running on the GPU.
Open ocean scenario with boat interaction (left, 290 FPS),
Pool scenario with falling object (right, 270 FPS).

is briefly described in section 3. In contrast to their work,
we address using wave particles specifically on the GPU.

2 Related Work

Raveendran et al. [10] proposed a method for preserving
uniform particle density in SPH. Onderik et al. [8] pre-
sented a SPH method improvement with small scale de-
tails such as splashes and foam. A method which uses Eu-
lerian approach to simulate 3D water volume with a grid
cell reduction was described by Irving et al. [7].

Chen et al. [2] used height field representation with spa-
tial domain waves using shaders and bump mapping to cre-
ate small ripples on the water surface.

Chou et al. [3] described a simple method for ocean
simulation with one-way interaction between the water
surface and rigid bodies.

Galin et al. [5] presented a real-time interactive water
simulation method. They address special type of waves
created by the engine of the boat, which also creates foam
on the water surface. Therefore this method is usable only
for specific type of rigid bodies. In contrast to the wave
particle method they use a 2D grid to represent the waves
instead of particles, therefore the performance is depen-
dent only on the grid size and independent of the number
of wave fronts. They are also able to handle the diffraction
effect but the overall performance is lower, compared to
the wave particle method.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

δδ

Figure 2: Wave front generation from particles. Source
particles (left) and generated wave front (right) from the
top view. Dispersion angle δ of the parent particle is de-
picted yellow.

3 Wave Particles

The wave particle method uses a particle system for rep-
resenting surface deviation. Position x of each particle is
used for localizing the deviation function dv(x, t) and they
are totally independent of each other. Unlike Lagrangian
methods wave particles move in a plane which is coplanar
with the water surface. The wave particles do not repre-
sent elements of the water mass, but only a deformation
on water surface.

Set of local deviation function is synthesized to the
global deviation function

Dv(x, t) = y0 +∑
i∈P

dvi(x, t) , (1)

where x is the position on the water surface, t is the
time, dvi(x, t) is the local vertical deviation function of the
i-th particle, y0 is water base level, and P is a set of all
particles.

The local deviation function can be expressed as

dvi(x, t)=
Ai

2

(
cos
(

π|x−xi(t)|
ri

)
+1
)

Π

(
|x−xi(t)|

2ri

)
,

(2)
where Ai is the amplitude of i-th particle, ri is the wave

particle radius, x represents a point of the water surface,
xi(t) is a the position of the i-th wave particle in time t and
Π is a box function, which limits cosine function over a
finite region in 3D domain.

Π(x) =

{
1, − 1

2 ≤ x≤ 1
2

0, otherwise
(3)

3.1 Longitudinal Waves

The motion of the water surface is not limited only to the
vertical deviation. In reality water particles propagate in
circles which creates sharper peaks on the surface waves
as shown in figure 3.

dhi(x, t) = dvi(x, t)
(
−vi sin

(
πu
ri

)
Π

(
u

2ri

))
, (4)

dh

dv

Figure 3: The horizontal (dh) and vertical (dv) deviation
function. Original wave (green), the final wave (red), and
the vertical deviation (dashed blue).

t2

t1

t0

Figure 4: Dispersion angle partitioning after particle sub-
division operation at different time steps (t0, t1, and t2).
Dispersion angle of each particle (blue circle with an iden-
tifier) is marked by different colour to enhance clarity.

where u= |x−xi(t)|, the propagation direction vi and Π

is the box function. This model can introduce undesirable
self intersections if riA > 1. The problem is addressed by
a new parameter which affects the strength of longitudinal
wave.

3.2 Particle Subdivision

An expanding wave front arises when a wave is created in
one point and distributes further in all directions in a 3D
domain as shown in figure 2. The local deviation func-
tion does not allow changing the size of the wave particle
in time. This causes that wave particles are getting fur-
ther from each other while the wave front propagates. We
need to cover the whole size of propagating wave front by
placing one particle next to each other, so that even with a
constant particle size the wave front is continuous. This is
achieved by particle subdivision routine shown in figure 4.

If the distance between two neighbouring particles is
larger then a defined threshold, a new particle is created
on each side of the parent wave particle. The amplitude
of the parent particle is distributed to the child particles in
order to conserve energy.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

Since the particle velocity is constant we can compute in
advance at which time the distance between neighbouring
particles will be beyond this threshold:

wt = w0 +δv|t− t0|, (5)

where δ is the dispersion angle, w0 is the distance be-
tween neighbouring particles in the current time t0, and v
is the particle velocity.

The threshold is set proportionally to the particle radius
ri and it ensures that adjacent particles will never be further
from each other than the threshold parameter.

3.3 Wave Particle Properties

Besides the actual position x, each wave particle stores the
propagation angle α , dispersion angle δ , origin o and the
amplitude A.

The propagation angle represents the wave particle di-
rection in the 2D plane, dispersion angle δ is introduced to
describe a spatial range in which new particles appear after
subdivision process. The wave particle origin is the posi-
tion of the particle at time t = 0 and it is fixed as the wave
particle propagates. Amplitude represent the energy of the
wave particle. Particles with low amplitude have also low
contribution to the deviation function. In some scenarios
it is also useful to model waves with negative amplitudes.

3.4 Creating new Wave Particles

After particle is subdivided two new particles are added to
the system. Important property of the convincing physi-
cal simulation is the energy conservation criterion. There-
fore the amplitude is evenly distributed to the newly cre-
ated particles. The dispersion angle also changes because
each particle now describes one third of the original range.
Children particles are placed in the same distance rδ from
the origin. Descendants also inherit the origin of the parent
particle.

3.5 Water Boundary

Scenarios such as pools require a model for reflecting in-
coming wave fronts off of the water boundary. The bound-
ary represents the container which holds the simulated wa-
ter.

The distance from the particle to the origin rδ is im-
portant for the particle subdivision since it tells us when
subdivision occurs. To handle particle reflection, the ori-
gin has to be mirrored over the boundary in order to persist
the subdivision criterion. Since the distance between adja-
cent particles w does not change during the reflection, the
dispersion angle may change owing to the curvature of the
boundary as shown in figure 5.

o′i

oi

Figure 5: Wave particle (blue circle) reflection off of a
curved boundary with origin oi. The grey area represents
the boundary with the new mirrored origin o′i. The dotted
sector represents the dispersion angle before reflection and
the yellow sector is the dispersion angle after reflection.

w′ = w (6)

δ
′ = δ

rδ

r′
δ

, (7)

where δ is the dispersion angle immediately before re-
flection and δ ′ is the dispersion angle immediately after
reflection; the same notation is used for other symbols.
The curvature influences δ ′ indirectly via the origin o′.

4 Wave Particles on the GPU

In our particle system it is essential to preserve the data
on GPU memory without unnecessary data transfers from
main memory to GPU buffer and vice versa. We use at-
tribute data with point geometry to represent particles in
OpenGL.

OpenGL Transform Feedback Buffer (TFB) allows us to
capture the output of vertex or geometry shader inside the
GPU memory. Location of TFB in the OpenGL pipeline
is shown in figure 6. In each draw step the GPU fetches
vertices1 and pushes them in the vertex shader, where at-
tribute properties can be modified or simply passed further
in the pipeline. After that, the points can be stored in the
TFB meaning that the data are persistent in one draw step.

The actual buffer where the primitives are stored can
have different types. We use Vertex Buffer Object (VBO)
as the destination of Transform Feedback operation be-
cause we reuse captured vertices in the next frame.

Therefore, we use two Transform Feedback Buffers and
we chain them together in a way that output of the first
buffer is the input of the second buffer as shown in figure
7. The TFBs are connected in the other way respectively.
Two buffers are used due to the fact that OpenGL does

1Point is a 1D primitive and can be represented by one vertex. There-
fore, terms point, vertex and particle are interchangeable in this context.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

Tessellation

TessellationpEvaluationpShader

Primitivepassembly TessellationpControlpShader

VertexpShader

TransformpFeedback

Rasterization

Framebuffer

WPppropagation

WPpreflection

GeometrypShader

WPpsubdivision

WPpdeletion

FragmentpShader

WPppersist

Figure 6: Simplified OpenGL pipeline. Yellow coloured
boxes represents the programmable stages, blue are the
fixed stages, and violet represents output buffers.

not allow reading from and writing into the same Vertex
Buffer Object.

Wave particle propagation is done on the vertex shader.
Only limitation in the vertex shader stage is that there is
only one vertex in the input and one vertex on the out-
put for one shader invocation. That means we cannot use
vertex shaders for particle subdivision. For this purpose
we can use tesselation shader or geometry shader, which
is able to emit new vertices. Newly created vertices are
then also stored in TFB. Figure 6 also shows which of the
main tasks are performed in current stage of the OpenGL
pipeline.

Vertex 1
Vertex 2
Vertex 3

Vertex n

Vertex Buffer Object A

Trasform Feedback Buffer A

buffer base = A;

Vertex 1
Vertex 2
Vertex 3

Vertex n

Vertex Buffer Object B

Trasform Feedback Buffer B

buffer base = B;

store
datastore

feedback
data

store
data

Figure 7: Illustration of Transform feedback buffer swap-
ping. The output of first TFB is used as an input of the
second TFB.

vec4 a_Pos2_Orig_Size

vec4 a_Ampl_Prop_Disp_Spee

Size

Dispersion angle

Position.x Position.y Origin distance nBrdFrm

sgnA SpeedPropagation angleAmplitude

Figure 8: Wave particle structure encoded for the use on
the GPU. Each field represents one floating point number.

4.1 Particle Data Structure

In order to avoid large memory consumption, we need to
efficiently represent vertex attribute data.

Vertex attributes are internally packed and aligned into
a multiple of vec42 in OpenGL[1]. This means that it
is beneficial to use vec4 data type and fit all necessary
information to it as few member variables as possible.

Figure 8 shows the GPU packing of wave particle struc-
ture.3 The wave particle structure is packed into 32 bytes.

Propagation routine The entry point for the simulation
process is in the vertex shader, where particles are properly
moved according to the propagation angle. If the particle
should be subdivided or discarded, respective flag is set
and the particle is passed further into the pipeline.

Subdivision and deletion routine Vertices are passed
to the geometry shader, where the vertex can be either dis-
carded or emitted. The particle is discarded if the ampli-
tude is lower than a defined threshold and the influence of
the wave particle is neglectable.

Particle generation routine Particle generation is the
process of creating new particles based on the object to
water interaction. The result of the interaction step is
stored in the wave particle distribution texture. Wave par-
ticle distribution texture obtains information about spatial
distribution of direct and indirect wave effect which is con-
verted into particles in this step. Propagation direction is
also part of the texture. The process of obtaining distribu-
tion texture is described further.

Each texel represents a potential wave particle. There-
fore, we create a vertex buffer and fill it with vertices orga-
nized into 2D grid with the same resolution as the texture.
Consequently we set the wave particles properties to the
vertices from the texels and we convert the wave effect to
the amplitude. Particles with non-zero amplitude are emit-
ted and eventually captured by the TFB.

Wave particle reflection For performance purposes we
represent boundaries as a texture. Normal vector of the
boundary is encoded into each texel in order to compute

2GLSL representation of 4-dimensional 32-bit floating point number.
3nBrdFrames refers to number of consecutive frames behind border

and is used for error correction in wave particle reflection routine.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

the reflection. Discrete step collision detection can pro-
duce errors when the object is moving too fast and the ob-
ject passes through the boundary in one frame. We adjust
the texture mapping with respect to the particle speed to
handle these situations.

4.2 Particle Filtering

Particles are rendered as circles with the radius equal to
particle size. The final deviation of the water surface can
be obtained by rendering all the particles with additive
blending from a top orthographic view similarly to the
texture splatting. Instead we use smaller points to repre-
sent the information about the particle presence and render
them into texture. The wave particle render texture is fil-
tered and the contribution of each wave particle in a local
distance is accumulated. This is similar to the texture gath-
ering process.

In this step wave particle deviation function is applied.
The contribution of each wave particle in the filtering step
is weighted by the deviation function in equation 2. Note
that the function can be converted into separable filter.
This means we can perform 1D filtering process consec-
utively for each axis and compose the final result.

The filter function can be denoted as

dX
h (p) =

1
2

(
cos
(

π p
r

)
+1
)
, (8)

dY
h (p) =

1
2

(
cos
(

π p
r

)
+1
)
, (9)

where dX
h (x) is a X-axis horizontal deviation filter func-

tion, r represents the radius (kernel size), and p = [−r,r]
is the distance of a pixel to the kernel centre. The same
notation is valid for Y .

4.3 Water to Object Interaction

We address four types of forces, all of which have similar
implementation details: buoyancy, drag, lift and collision
force.

Common feature of these forces is that they are com-
puted for each face rendered from a top view orthographic
camera into a texture. Blending must be turned on so that
the information from some faces is not overridden. In or-
der to efficiently sum the texture on the GPU and transfer
only the result, we implement parallel reduction.

Buoyancy force In order to compute the buoyancy force
we need to know the volume of the object’s submerged
part. The volume is obtained as the depth difference of the
front and back faces of the rigid body. More specifically,
it is obtained by an orthographic projection with blending
and summed together.

Figure 9: Upper image row represents a water tank seen
from side view. We show different positions of a sphere
relatively to the water level. Note that the sphere is green
on the top (positive z-coordinate of the normal) and red on
the bottom (negative normal). The bottom row shows the
same object seen from a top view without the part which
is above the water level.

Drag and lift force Drag and lift force [12] are computed
for each face centroid and rendered into a texture similarly
to the buoyancy force.

Water-object collision This force is calculated from the
wave particle render texture. In addition of height value
we also render wave particle propagation direction and
speed in the remaining colour channels. Again we sum the
texture in order to obtain the final force. While summing
the forces we use buoyancy texture as an object silhouette
stencil to precisely select which particles are affecting the
object.

4.4 Object to Water Interaction

We have covered the process of the particle generated
based on the wave particle distribution texture in section
4.1. This section denotes the distribution texture genera-
tion.

In order to create wave particle distribution texture we
have to find out the silhouette of the submerged part of the
floating object when looking from a top orthographic view
and then distribute the wave effect (water volume) to the
contour of that silhouette.

Figure 9 shows an example of such case. The silhouette
is the union of the green and red part while the contour is
the outer border of the red part.

The direction of the created wave is dependent on the
direction of the object motion as shown in figure 10.

Important step of the object to water interaction stage is
distributing the indirect wave effect to the object contour.
This routine also smooths out the contour normals in order
to uniformly cover the circular area around the object by
the wave particle propagation angles.

Similarly to a parallel reduction approach we sum up
neighbouring pixels into one. In each step we merge four
adjacent pixels into one pixel. After few iterations when
the texels are summed together the process is reversed and
we reconstruct the original silhouette while using the tex-
tures from the intermediate steps. While descending to

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

I1 I2

Figure 10: Different cases of wave propagation with re-
spect to the position and the motion of the floating object.
Striped line represents the object position in the previous
time step. Cases I1 and I2 (inside) show the influence of
both direct and indirect wave effect inside the volume.

higher texture resolutions we distribute the total indirect
wave effect pixels recognized as contour pixels.

5 Results

To enhance the perception of the water surface, we render
the surface with an approximative method [4] for light re-
flection and refraction. For reflection, the method uses a
render of the flipped scene and modifies texture lookups
according to the surface normal. We also use adaptive tes-
sellation and tillable Perlin noise [6] as a height function
to add high frequency details to water surface. Longitudi-
nal waves are added in form of deformation of the x and z
axis of the water plane similarly to Gerstner waves [11].

We have tested the performance of each simulation step
in several testing cases.

Test case A In the first test case, particles are added
to the buffer until it is full. This test cast measures the
performance of the wave particle propagation procedure.
Note that in the wave particle method the number of par-
ticles is not directly proportional to the quality of visual
result. Especially when most of the particles in the sys-
tem have low amplitudes. We have compared the per-
formance of the wave particle routine to the performance
mentioned in the original article. They mention three test
cases with different maximal number of wave particles.
Since the wave particle generation routine is part of our
wave particle propagation routine, we have measured both
of those steps at once. Therefore, in our comparison we
have also summed corresponding columns from the orig-
inal article. Our test ran on the following configuration:
Intel Core i5-4590 3.30GHz, GIGABYTE GTX970 4GB,
8.0 GB RAM, Visual C++ compiler 18.00. We also show
the computing power of the processor used in the original
article (3.19 Gflops [9]) compared to our processor (12.5
Gflops [9]) to demonstrate the hardware difference. 4

4Both values are measured on the same benchmark test.

Implementation 10k 600k 8M
CPU approach[12] (2007) 1.430 3.87 200.04
our GPU approach 0.196 1.94 22.50

Table 1: Comparison of the wave particle method imple-
mentation with varying number of particles (ms).

Figure 11: Test case A: ocean environment (left). Pool test
case (right).

Test case B The second test case is a single boat floating
in the ocean scene (figure 11). We created two modifica-
tions of this test case. In the first run we test the influence
of the rigid body complexity on the performance of each
phase. For example computation of drag and lift force is
done per each face of the rigid body. Figure 12 shows the
testing results. Simulations steps which are not dependent
on the variable parameter are omitted.

Similarly we measured the influence of the wave par-
ticle render texture resolution (figure 12) on the perfor-
mance. Note that this parameter affects not only the tex-
ture resolution, but also indirectly affects the number of
fragment shader invocation etc.

Test case C The purpose of test case C is to show the
usage of the wave particle method in a real simulation sce-
nario. We have placed the boats in the scene in order to
maximize the number of interaction between nearby float-
ing object. Once the main boat moves, it creates wave
front which pushes away the other floating objects. We
measure the performance for different number of boats in
the scene.

Test case D The fourth test case captures a scenario with
high number of boats. Unlike the test case C, all the boats
are moving.

Table 5 shows the average frame rates for test case C
and D.

Ship count 1 2 4 8 16 32
Test case D 199 144 93 60 35 18
Test case C 145 136 97 60 33 24

Table 2: Average frame rate for the test case C and D.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

0

0,5

1

1,5

2

2,5

3

3,5

64 128 256 512 1024 2048 4096

Water surface

WP filtering

[ms]

32

Water6surface

Water6optics

Render6scene

WP6filtering

WP6propagation

W

0

0,5

1

1,5

2

2,5

3

705 2758 10896 43300 172620 689308

Water6to6Object6interaction

Object6to6Water6interaction

[ms]

Figure 12: Mesh complexity (number of faces) influence
on the simulation performance in ms (top). Particle render
texture resolution complexity (bottom).

5.1 Limitations

We have developed such structure that each floating ob-
ject contains its own render cameras, render textures, and
wave particle buffers. This means that each boat in our
simulation is independent and has every piece of local-
ized information needed for the simulations. On the other
hand, there is a structure using a single render texture with
a single wave particle buffer shared for each floating object
similarly to the implementation of Yuksel et al.

Our approach offers higher flexibility in terms of the
floating object setup e.g. positions are not limited by the
render texture resolution. Another advantage is that we

Figure 13: Test case C (left), and test case D (right).

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32

Water[surface

Water[optics

Render[scene

WP[filtering

WP[propagation

Water-Object

Object-Water

[ms]

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32

Water[surface

Water[optics

Render[scene

WP[filtering

WP[propagation

Water-Object

Object-Water

[ms]

Figure 14: Result of the test case C (left), and case D
(right).

can address only particles created by a concrete floating
object, which is beneficial e.g. in LOD approach when we
render only particles which come from a visible floating
object.

On the other hand this approach has a limitation in the
number of floating object in the simulation. Table 5 show
significant performance drop for a large number of floating
objects. Moreover, because we render the water surface
in one step, all the vertical deviation functions are added
at once to the global deviation. And since the number of
GPU texture units is limited, we cannot apply all deviation
function in one rendering step.

6 Conclusions

We have described theoretical background behind wave
particle method for the purpose of real-time water simu-
lation. We have showed how wave particles form contin-
uous waves and that it can be used in an interactive envi-
ronment. Consequently, we have implemented the wave
particle method on the GPU. Part of our implementation is
also the interaction between the water surface and a gen-
eral shaped floating rigid body which can be controlled by
user. We have measured and evaluated the performance
of our GPU approach and showed that it offers plausible
results at interactive frame rates.

References

[1] specification of OpenGL version 4.40.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

[2] Haogang Chen, Qicheng Li, Guoping Wang, Feng
Zhou, Xiaohui Tang, and Kun Yang. An efficient
method for real-time ocean simulation. In Technolo-
gies for E-Learning and Digital Entertainment, vol-
ume 4469 of Lecture Notes in Computer Science,
pages 3–11. Springer Berlin Heidelberg, 2007.

[3] CT Chou and LC Fu. Ships on real-time rendering
dynamic ocean applied in 6-DOF platform motion
simulator. In CACS International Conference, vol-
ume 3, 2007.

[4] Lund University Claes Johanson. Real-time water
rendering : Introducing the projected grid concept,
2004.

[5] E. Galin, J. Schneider (editors), H. Cords, and
O. Staadt. Real-time open water environments with
interacting objects, 2009.

[6] John C. Hart. Perlin noise pixel shaders. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, HWWS ’01,
pages 87–94, New York, NY, USA, 2001. ACM.

[7] Geoffrey Irving, Eran Guendelman, Frank Losasso,
and Ronald Fedkiw. Efficient simulation of large
bodies of water by coupling two and three dimen-
sional techniques. ACM Trans. Graph., 25(3):805–
811, July 2006.

[8] Juraj Onderik, Michal Chládek, and Roman
Ďurikovič. SPH with small scale details and im-
proved surface reconstruction. In Proceedings of
the 27th Spring Conference on Computer Graphics,
SCCG ’11, pages 29–36, New York, NY, USA, 2013.
ACM.

[9] Primatelabs. Cpu benchmarks.

[10] Karthik Raveendran, Chris Wojtan, and Greg
Turk. Hybrid smoothed particle hydrodynam-
ics. In Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation, SCA ’11, pages 33–42, New York, NY,
USA, 2011. ACM.

[11] Jerry Tessendorf. Simulating ocean water. in sim-
ulating nature: Realistic and interactive techniques.
ACM SIGGRAPH, 2001.

[12] Cem Yuksel, Donald H. House, and John Keyser.
Wave particles. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2007), 26(3), 2007.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

