Adapting Hair and Face Geometry of Virtual Avatars with the
Kinect Sensor

Hannes Plank
Supervised by: Stefan Hauswiesner

Graz University of Technology, Austria

Abstract

In this project, we developed a method for creating virtual
head models that look like the user. The resulting applica-
tion scans the user with a Microsoft Kinect sensor to ob-
tain RGB-D images. Based on these images, a virtual face
model can be adapted to resemble the users appearance.

A fast C++ implementation was created. To generate
hair, several hair parameters were obtained. A method
to personalize existing hair mesh templates was imple-
mented.

1 Introduction

Virtual avatars are virtual 3D representations of humans.
They can help users to feel more involved with an ap-
plication and enable a number of future high-impact use
cases. For example, users can see themselves in different
clothes in virtual dressing rooms. Computer games could
be customized to allow the user to be the main character
of a game, or interact with other people and their personal
avatars. High-end teleconferencing systems would allow
participants to collaborate naturally in a 3D virtual meet-
ing room.

We developed an implementation capable of creating
virtual avatars using the popular Microsoft Kinect sensor.
The implementation acquires several RGB-D frames of the
user. Using a face tracking algorithm, it tracks the users
head and fits a face tracking mesh for every frame. The
gathered RGB-D frames are converted to 3D pointclouds.
Using the head tracking information, the pointclouds are
placed over a generic morphable 3D face. The avatar is
morphed with an optimization algorithm, minimizing the
distance between the avatar and the pointcloud.

To ensure compatibility with common work-flows, we
use avatar data models that can be generated using DAZ
3D Studio. These avatars feature parametric head models
which are customizable.

To generate realistic hair, an algorithm detects various
hair parameters. Several hair template meshes for differ-
ent hair lengths were created. By evaluating the hair pa-
rameters, the best template is chosen automatically. The
template is morphed to adapt to the persons hairstyle.

The hair and face meshes are projectively textured by

using the best captured RGB image.
To demonstrate the algorithm, a fast C++ implementa-
tion, using the Kinect SDK and OpenCV was developed.

2 Related Work

The Microsoft Kinect was the first affordable depth cam-
era, available on the consumer market. Since the Microsoft
Windows driver appeared, a lot of Kinect and RGB-D
camera related research was accomplished.

There is an approach to scan a whole person with the
Kinect [Sum+13]. This method however needs 15 min-
utes to generate a watertight mesh, with an algorithm sim-
ilar to Kinect Fusion [Iza+11]. Our project is focused on
makeing the avatar personalization process as intuitive and
simple (from the users perspective) as possible.

Zollhofer et al. [Zol+14] present a very similar ap-
proach to our project. They built an interactive system
which reconstructs facial data in real time, while giving
the user feedback. Instead of morphing a pre-designed
face template mesh, like in this project, this implemen-
tation combines 200 different heads into a statistical shape
model. With depth fitting and regularization, they estimate
the parameters of the head. We apply morphing for our
implementation, which replaces the task of creating a sta-
tistical model.

If there is no depth information available, Jiang et at.
[Jia+05] show that it is also possible to reconstruct faces
by using 3D face shape databases. In their approach, the
2D face image is first aligned with a generic 3D face ge-
ometry. Since all face geometry is compressed by PCA,
the key features of the 2D face are used to compute the 3D
shape coefficients of the Eigen vectors. The face shape is
reconstructed by using these coefficients.

Cao et al. [Cao+13] show, that animating abstract
avatars can be performed just by using simple VGA cam-
eras. It is possible to transfer facial expressions from a
person in real time to any mesh. The paper demonstrates
how far interaction with personalized avatars can go, and
how much potential there is. As first step, the implemen-
tation requests the user to make several extreme facial ex-
pressions. The abstract avatars have geometrical models
of each these extreme facial expressions. In the interac-
tive initialization part, the algorithm registers the persons
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extreme facial expressions. During animation, it interpo-
lates the previously saved extreme expressions. This is
also possible with the avatars created by our project, how-
ever additional face meshes for the extreme facial expres-
sions would be required.

Chai et al. [Cha+13] show a very promising way to gen-
erate 3D volumes of human hair just by using an image
sequence. The gathered hair model is based on strands.
The model also enables physically plausible animation of
hair. As mentioned in section 5, the image quality of the
Kinect color camera was not sufficient to consider this hair
generation method.

Blanz et al. [BVO03] also use 2D images and a 3D scan
database to obtain face geometry. Their implementation
takes several 2D images of the same face to fit data to
a morphable 3D face model. Their morphable 3D face
model was created from a database of 3D scans. The goal
of this 3D scanning methods is face recognition rather than
realistic avatar generation.

There is also a way to reconstruct faces from a single 2D
image with a generic face mesh [Mag+13]. It exploits the
global similarity of faces and combines shading informa-
tion with generic shape information. With a Kinect depth
camera available, there is not much potential to use this
technique additionally. However some geometry adap-
tions, mentioned in section 5.3, are only influenced 2D
texture evaluation.

3 The Procedure

The virtual avatars are created by using RGB-D data to
morph a generic face mesh. At first, multiple RGB-D
frames are captured with the Kinect sensor. They are con-
verted to pointclouds and are aligned with a morphable
face mesh.

After morphing the head, some processing is done to
improve the avatar and add hair geometry. Additional pro-
cessing steps include the projective texture mapping, and

positioning the eyes.

Figure 1: The acquired data, the facetracking mesh aligned
with the morphable generic head mesh, the pointclouds
aligned with the head mesh, morphed result with eye and
hairmesh.

3.1 Data gathering

The data gathering software captures the RGB-D frames
and tracks the rotation and position with a head tracking
algorithm [Micl13]. Several frames are captured by the
Kinect RGB-D camera. The user presses a key to capture a

frame in a ten second interval. The optimal distance from
the sensor is one meter. Best results are obtained with a
bright diffuse illumination and a neutral background.

The following data is captured per frame:

e A color image.

e The depth information. Using the known camera pa-
rameters, a depth image is converted to a 3D point-
cloud. Due to the face tracking, it is possible to align
the pointclouds.

e A facetracking mesh. The Kinect facetracker fits
a Candide 3 [AhlO1] mesh to the face of the user.
The resulting low polygon facetracking mesh has the
same orientation and scale of the pointclouds.

e The rotation and translation of the head, calculated
by the Kinect facetracking algorithm.

e A projection matrix for projective texturing.

3.2 Face mesh production

The implementation goes through the following process-
ing steps as illustrated in Figure 1:

1. The Candide 3 headtracking meshes are in the
same coordinate system as their corresponding point-
clouds. Each pointcloud has one headtracking mesh,
so the pose of the users head is saveed in the pose
of the headtracking mesh. The orientation and posi-
tion of the facetracking meshes is used to calculate a
transformation for each point cloud. The transformed
pointclouds are aligned in the same coordinate sys-
tem. The morphable face template mesh is scaled and
placed close to the pointclouds..

2.
Px Vx dy
py =1 w |+ d |*f (D
Pz Vz d;

The morphing equation (1) transforms a vertex v in
direction d by a factor f. The external morphing
data from [Prol4] contains groups of vertices with
the same factor f,. Each vertex is assigned a direc-
tion vector v,,. The direction vector’s magnitude de-
fines how much influence a change in factor factor f,
has.

To be able to morph the head template, all morphing
equations are compiled into equation system (2).

0 p, 0 : |l o vy, 0o looa 0 (2)

The morphing factors are retrieved by solving the
equation system. This can be seen as a minimiza-
tion of the distances between the vertices of template
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mesh v and their nearest neighbours p in the point-
clouds. When the morphing factors are known, the
morphing equation 1 can be applied to each vertex v.
This enables to create a personalized, watertight DAZ
3D face mesh. This format can be incorporated into
existing workflows.

3. The mesh is projectively textured with a color image
and saved in Wavefront obj mesh file format.

4 Improvements

The avatars generated by the introduced algorithm resem-
ble the scanned person, however a better result is received
by some improvements.

Precise alignment of the pointcloud data and the mor-
phing template is crucial for good results. The mesh pro-
duced by the Kinect face tracker, is in the same coordinate
system as the pointcloud data. This means the necessary
pointcloud transformation can be calculated by aligning
the face tracking mesh with the morphing template. At
first the generic unfitted Candide 3 [AhlO1] face tracking
mesh was used. To take individual face proportions into
account, a fitted Candide 3 mesh as seen in Figure 2, was
used instead. This leads to better pointcloud alignment and
improves fitting the textures.

Figure 2: Fitted Candide 3 facetracking meshes, obtained
by the Kinect SDK facetracker.

Aligning the facetracking mesh with the morphable
facemesh is not trivial. Various alignment methods were
evaluated. Scaling along all dimensions did not produce
realistic looking faces, since the persons face proportions
got distorted. When the aligning aims to minimize the dis-
tance to the facial features, the rest of the head is distorted
tremendously.

Simply aligning the face tracking mesh by its center and
scaling by a calculated factor in every dimension as seen
in Figure 3, produced the best results. The result of the
alignment is shown in Figure 4.

Figure 3: The pointcloud data is placed on the virtual
avatar template with the help of the facetracking mesh.

Figure 4: Pointcloud data from the Kinect sensor over-
layed with the Candide 3 facetracking mesh.

4.1 Optimization

Since the creation of the virtual avatar is computation-
ally complex, a fast implementation was needed. Early
versions used the Kinect Fusion algorithm to obtain high
quality depth maps. Our experiments came to the conclu-
sion, that simple RGB-D images are sufficient.

We developed a fast C++ implementation using
OpenCV and the EIGEN Library. The solver of the Eigen
Library was utilized to solve the morphing equation. The
Kinect SDK is used to capture the RGB-D frames and per-
form headtracking. The implementation has an interface to
process live RGB-D frames from arbitrary cameras. It is
possible to align the pointclouds and capture new frames
at the same time in seperate threads. For direct and fast
display and further processing, there is an interface to re-
trieve the geometry data arrays in an OpenGL compatible
format. An external obj file format importer/exporter was
used to load the data from a Kinect capturing framework
and to produce the output meshes.
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5 Hair Reconstruction

Realistic virtual avatars need hair. There are various ap-
proaches, however only a few parameters can be obtained
by the data from the Kinect sensor. The resolution of the
Kinect RGB camera is not good enough to extract orien-
tations of hair strands. Therefore only color, shape and
geometry of the frontal hair are obtained.

To not completely rely on morphing, several hair tem-
plates for different length of hair were created. An algo-
rithm detects each hair type by evaluating the color input
images. The hair template as seen in Figure 11, is opti-
mized by modifying the shape by scaling or morphing.

5.1 Texture atlas

Since several data frames are captured, all hair parameter
detection can be performed on multiple frames and then
averaged. To explore a reduction in the processing time,
and eliminating false classifications, a texture atlas was
created.

It was necessary to associate color information with
each vertex of the pointcloud data. The vertices were pro-
jected into the corresponding texture. The pointcloud data
from all frames was aligned in the same coordinate space.
Just by removing the z-coordinate, the complete point-
cloud data got projected into 2D. By interpolating the color
information between the projected vertices, a texture atlas
was obtained.

For the depth data, a texture atlas was created as well.
Since the pointclouds are previously aligned in the same
coordinate system, a simple plane projection was sufficient
to create the depth-atlas. A depth and a RGB texture atlas
can be seen in Figure 5.

Figure 5: The texture atlas of the color and the depth im-
ages.

Performing all detections on all captured images proved
to be more robust. Calculating the variance from the atlas
for each image was a good method to eliminate erroneous
frames. It was also possible to vote on the frames, and cal-
culate a new weighted average texture atlas. Frames with
a high similarity to the original texture atlas were assigned
better weights than others. The improvement can be seen
in Figure 6.

However, hair segmentation using the atlas turned out
to be more difficult, because information is lost during the
averaging process.

.

Figure 6: Original texture atlas on the left, weighted tex-
ture atlas on the right

5.2 Hair Segmentation

To procedurally generate a realistic hair mesh, information
about the hair is required. Various methods were imple-
mented to segment the hair on captured RGB images.

The first attempt was to segment hair with k-means clus-
tering. By projecting the virtual avatar into the frame, the
face could be masked. The trick of the k-means clustering
in this application was to find a cluster containing hair. The
area on the forehead above the hairline was masked. After
the k-means clustering, the two most prominent clusters
on forehead were selected. These clusters were likely hair
clusters.

Figure 7: Red is the most prominent cluster, blue the sec-
ond prominent cluster.

K-means clustering as seen in Figure 7, was not robust
enough and did not consider the geometrical topology of
the hair.

The Growcut algorithm [VI05] as seen in Figure 8, takes
sets of pixels of the image as input and performs iterative
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clustering with cellular growth from these points. Pixels
similar to the hair color were chosen for the hair as input.
Random pixels in the face and on the background were
defined as starting points for the face cluster.

Figure 8: Clustering with grow cut

Since these results were not good enough, segmenting
the RGB images with a Graphcut implementation [GPS89]
was evaluated. Even with the depth information and dif-
ferent color spaces, the results were not good enough.

Because the goal of this project was an applicable and
robust implementation, a different strategy was chosen:

The hair length only gets estimated to choose a prede-
fined hair template. The template later gets personalized
by morphing. Only the following parameters had to be
obtained from the RGB images

Hairline

To find the point where the hair starts on the forehead, the
hairline need to be estimated. The position of the facial
features on the RGB images are known, since certain ver-
tices just need to be projected into these images. The max-
imum magnitude of the color gradient between the eye-
brows and the top of the head was searched on the 2D
images. It turned out to be a very robust approximation of
the hairline. The results of the hairline detection can be
seen in Figure 9.

Hair color

A good approximation of the hair color was the average
color of the pixels above the hairline. The pixels under the
hairline were identified as skin color and used during the
hair template morphing.

Figure 9: Red: Calculated hairline Green: Averaged hair-
line parameter.

Hair length

The obtained hair length in this implementation is only
a rough estimate to select a template with proper hair
length. Three templates were created with Sculptris
[Pix13]. The hair length was estimated efficiently by com-
paring the pixel color with the previously calculated hair
color. Masking the face and the background helped a lot
to get a robust estimate of the hair length. All parameters
were obtained for every captured RGB-D frame separately
and then averaged.

5.3 Hair Template Adaption

The hair length is classified into three categories. De-
pending on the detected category, a hair template mesh is
loaded. Figure 10 shows some examples for possible hair
templates. The template is positioned on the head of the
virtual avatar as seen in Figure 12. The mesh gets projec-
tively textured with a Kinect color image. Since the hair
color is known, vertices with a different projected color
are morphed.

All morphing operations face to the center of the head.
The operation is applied per vertex, but the surrounding
vertices are moved as well. The movement is linearly de-
pended to the distance from the center vertex. This elimi-
nates sharp creases and softens morphing. Several passes
are performed. The projective texture is mapped again at
the end of each pass, to ensure the morphing is stopped
when the hair template is in shape. Figure 13 shows the
result after the morphing.

Because there are only images of the front side of the
head captured, the back of the head neede to be textured
as well. To be able to also morph the back of the hair tem-
plate, the back of the head was textured projectively with
the front texture. However the face of the back texture was
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Figure 10: Hair templates for three different hair lengths.

Figure 11: Face mesh, face mesh with hair template, face
mesh with adapted hair template

masked and the hair color was interpolated. As a side ef-
fect, the backside of the head also has a hair texture which
blends with the front texture. The interpolation was sim-
ply done by replacing the face with the color of the hair
as seen in Figure 14. There is room for improvement by
using a better interpolation method.

6 Results

The results were retrieved in a scene with a clear back-
ground and bright lightning.

The final result as seen in Figure 15 consists of three
textured meshes. The three meshes are the face, eyes and
hair. They are separate meshes for exchangeability and to
ease future animation. The meshes are saved in the .obj
format, however the C++ implementation offers an inter-
face to use the mesh data live and interactively.

6.1 Execution time

The time to generate a mesh from 7 RGB-D frames on a
Pentium Dual Core CPU is about 45 seconds. However
most of the computation time is needed by I/O operations
with the slow OBJ fileformat. In an realistic application,
the templates are previously loaded. Since the results do
not have to be exported to an OBJ mesh, the system can
work significantly faster. The most crucial and computa-
tionally intensive part of the implementation is solving the
morphing equation. This part only takes 1.5 seconds using
the solver of the EIGEN library.

6.2 Problems

One problem is the false morphing of the cheeks of the
heads. In Figure 15, you can see white spots on some
cheeks. This is caused by the lack of depth data in these

Figure 13: Virtual avatar with morphed hair.

regions. The RGB-D image are usually gathered just from
the front side of the face. This might either be solved by
removing certain morphing vectors, or reshaping the face
mesh the same way as the hair mesh. Replacing the white
spots with the skin color might also be a viable option.

Another problem is the low texture resolution on the
side of the hair. This is a consequence of the dual pro-
jective texturing. Textures are projected on the front and
back, but not on the sides. During the development of the
implementation, using the best suiting texture for every
polygon was evaluated, but the desired OBJ mesh export
did not support multi-texture blending. However all the
information can be obtained by the C++ interface, and a
future interactive implementation can use shader programs
to blend all RGB frames for optimal mesh texturing.

7 Conclusion

Automatic avatar generation can be used to enrich games
and telepresence systems. We demonstrated that the con-
cept of template adaptation can be extended to generate
hair models and avatar generation can be performed in
a time frame that is suitable for the named applications.
Moreover, we came to the conclusion, that shortcomings
of the depth sensor can be compensated well enough.
However a bad RGB sensor yields directly to bad results.
Our system therefore needs decent lighting and a contrast-
ing neutral background. We assume that average users are
capable of meeting these two requirements. Due to the
wide availability of commodity depth sensors, such as the
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Figure 14: Texturing the backside.

From top to bot-

tom: Front texture, back texture with face automatically
replaced, front and backside of the projectively textured

mesh.

Microsoft Kinect, we believe that particularly games and
applications will contain automatic avatar generation fea-
tures in the future.
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