
Improved 3D Reconstruction using Combined Weighting
Strategies

Patrick Stotko∗

Supervised by: Tim Golla†

Institute of Computer Science II - Computer Graphics
University of Bonn

Bonn / Germany

Abstract

Due to the availability of cheap consumer depth sensors
and recent advances in graphics hardware, scenes can be
reconstructed in real time allowing a wide range of new
applications. Current state-of-the-art approaches use a vol-
umetric data structure and integrate recorded scans incre-
mentally to provide complete and accurate reconstructions.
However, scans usually contain noise and may be incom-
plete. Thus, using a simple update procedure becomes
impracticable. To overcome these issues, we introduce a
new weighting technique which combines different exist-
ing strategies. Typical strategies try to model such limita-
tions, like varying visibility and depth-dependent noise, in
order to estimate reasonable weights. Since the complex-
ity of modeling grows extremely fast with respect to the
number of considered limitations, development becomes
complicated and prone to errors. Instead, we consider each
limitation separately and construct easy-to-understand so-
lutions for each one. Combining these small strategies
leads to a more complex one and results in much higher
quality reconstructions.

Keywords: Real-time Reconstruction, Voxel Hashing,
GPU, Kinect, Weighting Strategies

1 Introduction

Since 3D models are extremely useful to describe the
world, they are widely used in many different areas. Possi-
ble applications might be related to online stores. Buying
furniture in big shops is often time-consuming and expen-
sive. To save traveling costs and time, clients would like
to use an interactive modeling tool for indoor rooms which
allows detailed views of the new room from all possible
perspectives. Other applications might be in the gaming
industry. Modeling detailed real world objects manually is
expensive and costs a lot of time and manpower. To reduce
costs, already existing objects can be scanned in real time
by cheap consumer hardware. In further steps, the given

∗stotko@cs.uni-bonn.de
†golla@cs.uni-bonn.de

3D model can be refined manually. Modeling large build-
ings is also quite expensive, so reconstructions captured by
a drone can be very useful and increase work-flows.

For 3D reconstruction, several approaches are developed
and many of them use the volumetric data structure by Cur-
less and Levoy [5]. They partition the world into small vox-
els and store the reconstruction implicitly using a signed
distance function (SDF). Thus, each voxel stores its signed
distance from the estimated surface with respect to the cam-
era. Since only the immediate region around the surface is
actually needed, they also introduced the notion of the trun-
cated signed distance function (TSDF). Instead of storing
the exact distance to the surface, distances beyond the user-
defined truncation region δ are cut off and only a relative
one inside the interval [−1 ,1] is stored. Under this im-
plicit scheme, scans can be integrated incrementally with
a cumulative moving average. However, in terms of noisy
data simple averaging is not appropriate since not every
data point is equally useful for the reconstruction. So scan
points need to be scored by a weight function.

The general problem of developing a weight function is
its growing complexity. For each new considered aspect
it increases by one dimension. Hence, development be-
comes error-prone and very slow. To overcome this issue,
a strategy to reduce this complexity is needed.

In this paper, we present a new weighting technique
which precisely addresses this issue. By separating the
weight function into smaller ones, each desired aspect can
be solved individually. This leads to easy-to-understand
solutions which can be easily compared and discussed. To
achieve a complete solution of the problem, we merge them
together afterwards. As a result, this technique greatly
reduces the problematic complexity and gives the user a
powerful tool to customize the weights for his needs.

In the following sections, we first review current state-of-
the-art approaches that provide different weighting strate-
gies to solve sensor limitations. Then, we briefly introduce
the structure of the 3D reconstruction algorithm used in
this paper. Based on this algorithm, we present our new
weighting technique and describe how it works with cur-
rent strategies. Finally, we conclude by comparing them
using our benchmark system.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

2 Previous work

3D reconstruction has been a very popular research topic
in the last decades. Several different approaches were de-
veloped including point-based methods, height-map based
representations and implicit volumetric approaches. In
case of depth maps, one popular approach is the volumet-
ric data structure introduced by Curless and Levoy [5]. It
subdivides the world into voxels and stores scans using a
signed distance function (SDF). To get a reconstruction,
the surface is extracted using ray casting [6] or similar
techniques. Their compelling results animated researches
to develop several applications on top of this scheme.

One prominent application is KinectFusion [10, 11]
which can reconstruct scenes in real time using the equally
named Kinect sensor. Since it originally used a regular
voxel grid, the space complexity was high and reconstruc-
tions were limited to small areas. To solve this drawback,
several strategies are developed including moving volume
approaches [16, 19, 20], streaming between CPU and GPU
[3, 13] or efficient data structures on top of the regular
voxel grid [3, 13, 15, 22]. One major improvement was
achieved by Nießner et al. [13] who used a hash table to
allow fast access to stored data. Voxel blocks, consisting
of a set of typically 83 voxels, are managed through the
hash table and efficiently processed in parallel. This tech-
nique achieved frame rates above the 30Hz frame rate of
the Kinect. So we use this algorithm as a base and extend
it with our new weighting strategy.

Other developments address the limitations of the depth
sensor. Nguyen et al. [12] developed a weight function
based on the measured noise of the Kinect sensor and
achieved higher quality with much more details. Hem-
mat et al. [7, 8, 9] also presented a distance based function
but only used scan points with higher weights for updat-
ing. With this approach, they achieved a similar reduction
of the reconstruction error. Functions based on visibility
are extensively analyzed by Sturm et al. [18]. Using them
allows detailed 360◦ reconstructions and prevents invalid
updates of voxels which causes strong artifacts.

3 Reconstruction algorithm

Since we have implemented the reconstruction algorithm
of Nießner et al. [13] in CUDA [14], we start with a brief
review of it. First, the given input frame is aligned to the
current reconstruction to obtain the new camera pose. Af-
ter estimation, we transform it into global coordinates and
integrate it into the volume. In the last step, the new recon-
struction is extracted and used for the next input frame.

3.1 Camera Pose Estimation

Before we can integrate the captured scan, the current pose
of the camera has to be estimated. Typical approaches
are based on the Iterative Closest Point algorithm (ICP)

[2, 4]. The idea is to find correspondences between two
given point clouds and compute a rigid transformation T =
[R | t] which minimizes the point-to-plane error between the
transformed source cloud P and the target cloud Q.

E =
n

∑
k=1
‖(T pk−qk) ·nk‖2

2 (1)

Hence, finding robust correspondences is essential, so we
use the efficient variant by Izadi et al. [10]. Correspon-
dences are found using the given vertex and normal maps
VP,NP and VQ,NQ by projecting each point pk ∈P to image
coordinates and choosing the point ql ∈ Q which projects
to the same coordinates. If the distance between them and
the angle between their normals is small, a match is found.

3.2 Integration

After the scan is transformed into global coordinates us-
ing the estimated transformation, it can be integrated into
the volume. First, we determine all voxel blocks that fall
into the current view frustum of the camera and integrate
them into the hash table. This is performed by the GPU
optimized variant of the Digital Differential Analyzer algo-
rithm (DDA) [1] of Xiao et al. [21]. In the next step, we
select all visible voxel blocks in the hash table and update
them using the weighted cumulative moving average.

tsdf i+1 =
tsdf i ·wi + tsdf ·w

wi +w
(2)

wi+1 = wi +w (3)

Here, tsdf i and wi are the old values of the voxel v, and tsdf
and w the TSDF value and weight estimated from the new
depth map Di. An appropriate choice for these estimated
values is presented later (see section 4). After updating,
outliers are removed through a garbage collection to keep
the hash table sparse.

3.3 Surface Extraction

In the last step of the algorithm, the new reconstruction
has to be extracted from the stored volume. For this task,
we use ray casting [6]. First, we initialize the rays using
the extrinsic and intrinsic parameters of our camera. Then,
we compute the traversal intervals [tstart(x,y) , tend(x,y)] for
each output pixel p = (x,y) by rasterizing all stored voxel
blocks and generating two z-buffers.

If all these parameters are known, we sample the vol-
ume using Adaptive sampling [6]. The base step size t0 is
dynamically reduced to t1 = 1

8 · t0 if the current distance to
the surface is smaller than a threshold. To find immediately
a point before and behind the surface during sampling, we
set the step size t0 to a multiple of the truncation region.

t0 = ctrav ·δ (4)

This approach works best using values around 2
3 since the

traversal starts at the boundary of the truncation region

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

where the TSDF values are around ±1. At the end, we
iteratively refine the found intersection and check whether
this point is really a desired surface point.

|tsdf candidate ·δ | ≤ cquality (5)

If its absolute distance to the stored reconstruction is
smaller than a quality threshold cquality, it will be accepted
and returned. To get high quality results, typical values of
this threshold are around one-hundredth of the voxel size.
In a final step, we compose the extracted isosurface to the
previous ones to get a full reconstruction. We summarize
multiple reconstruction points with a voxel grid filter which
has the same size as the infinite regular voxel grid of our
volume.

4 Weighting strategies

Choosing appropriate weights is one of the most important
parts during reconstruction since some scan points may be
corrupted with noise or other limitations of the camera.

4.1 TSDF functions

The TSDF function describes a distance estimation from
the reconstructed surface. Because we only search for the
position in the volume with value 0 (see subsection 3.3),
the real distance value sdf of a voxel to the surface is not
needed and can be truncated.

KinectFusion [10, 11] provides a very simple TSDF
function. It divides the real distance by the truncation re-
gion δ and cuts off large values.

tsdf KinFu(sdf) =


−1 if sdf < −δ

sdf
δ

if −δ ≤ sdf ≤ δ

1 if sdf > δ

(6)

Voxels that are inside the truncation region are valued with
truncated distances of the desired interval [−1 ,1], whereas
those which are outside the region are valued with ±1.

Since this function may cause problems with noisy data,
Nguyen et al. [12] introduced a function based on the noise
of the Kinect. They modeled the noise along the view
direction as a Gaussian distribution with zero mean and
standard deviation σz which depends on the depth d of the
measurement.

σz(d) = 0.0012+0.0019 · (d−0.4)2 (7)

The TSDF function is now given as a cumulative distribu-
tion function of the modeled noise distribution.

tsdf NM(sdf ,d) = sign(sdf)

√
1− e

− 2
π

sdf 2

σz(d)2 (8)

In contrast to KinectFusion, voxels near the boundary
of the truncation region are also considered as far away.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

SDF / truncation region

T
SD

F

NM
KinFu

Figure 1: TSDF functions.

Therefore, finer details can be reconstructed since false
zero-crossings due to noise are reduced.

For visualization in Figure 1, we fix the distance parame-
ter d to 1.5 (which is the mean range of the Kinect) and use
the relation δ = 3 ·σz(d) proposed by Nguyen et al. [12].
This suppresses the second dimension of the function and
allows a visual comparison.

4.2 Weight functions

Weight functions are used to measure the importance of a
scan point related to the currently updated voxel. In this
paper, three different classes of strategies are discussed:
Visibility based functions, depth based functions and angle
based functions.

Visibility based functions This class of functions only
uses SDF values to compute a weight. The signed distance
implicitly encodes visibility information, so this class can
be used in 360◦ reconstructions where a lot of occlusions
have to be taken into account. The main drawback of them
is depth-dependent noise. This effect can not be modeled
here since only the relative distance of the voxel to the
surface is known but not the absolute one.

In this context, the function of KinectFusion [10, 11]
shows a natural behavior of scoring visibility.

wKinFu(sdf) =


1 if sdf < 0
sdf
δ

falls 0≤ sdf ≤ δ

0 if sdf > δ

(9)

The function distinguishes between three different states.
Voxels which lie before the measurement are scored with
full weight of 1 indicating that they should be always up-
dated. A similar scoring is performed for voxels lying
behind the measurement. They might be part of the back
side of the object or part of another one so updating them
may cause problems. To prevent this, no update should be
performed resulting in weights of value 0. The last state
describes voxels inside the truncation region meaning that
they lie close to the measured surface. Here, the weight de-
creases from 1 to 0 to ensure a smooth transition between
the two other states.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

SDF / truncation region

W
ei

gh
t

KinFu
CM3D
Unity

Figure 2: Visibility based weight functions.

However, skipping the update of the background can
lead to reconstructions having a poor density of points and
small holes on the back side (see subsection 5.2). To over-
come this, Sturm et al. [18] developed a similar function.

wCM3D(sdf) =

1 if sdf < 0

max
(

wmin,e
− sdf 2

δ2

)
if sdf ≥ 0

(10)

Like KinectFusion, voxels in the foreground are updated
with full weight of 1, while those lying inside the trunca-
tion region or far behind the measurement are scored with
decreasing weights. But instead of a minimum weight of
0, a small positive one is used. This allows the algorithm
to update the back side of the reconstructed object, while
also keeping the original distance information. In this way,
small holes are filled and the voxels can quickly be up-
dated if better measurements become available. A visual
comparison of both function is given in Figure 2.

Depth based functions In order to compute a weight,
functions of this class use the absolute distance of the mea-
sured scan point to the camera. Hence, depth-dependent
noise can be modeled here. But in contrast to visibility
based functions, 360◦ reconstructions might be problem-
atic since no occlusion information is provided.

As in their TSDF function, Nguyen et al. [12] use the
depth to estimate the noise level first and then computes a
reasonable weight.

wNM(d) =
σz(dmin)

σz(d)
· d

2
min
d2 (11)

σz(d) = 0.0012+0.0019 · (d−0.4)2 (12)

Here, σz(d) is again the depth-dependent standard devia-
tion of the modeled noise distribution. The weight itself
is now computed as the quotient of the minimal noise and
depth and the observed noise and depth. This leads to a
strong decrease of confidence for voxels being far away
from the camera. Additionally, Nguyen et al. [12] also en-
coded implicitly a visibility based function in their update
process and used a 3×3 region around the desired pixel to
reduce noise and fill small holes. Since the different classes

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Depth [m]

W
ei

gh
t

DA
NM
Unity

Figure 3: Depth based weight functions.

of weighting strategies are analyzed here, we drop them.
The visibility based part is discussed separately and the
modified update process using the region around the pixel
only reduces noise perpendicular to the view direction of
the camera which is not considered here.

A similar function modeling this kind of noise is devel-
oped by Hemmat et al. [7, 8, 9].

wDA(d) =
1
d2 − 1

d2
max

1
d2

min
− 1

d2
max

(13)

Like Nguyen et al. [12], larger distances are weighted with
smaller weights where more noise is expected. The main
difference between the two functions is the way how they
handle the range interval [dmin ,dmax] of the camera. While
Nguyen et al. [12] only use the minimal range as a nor-
malization and ignores the upper bound, Hemmat et al.
[7, 8, 9] use both bounds to compute weights between 0
and 1. Especially for larger intervals, the former scores
two different high depth values with quite the same small
weight, whereas the latter returns small weights which dif-
fer much more from each other to indicate the difference
of the depth values.

Hemmat et al. [7, 8, 9] also used a modified update
behavior. Instead of integrating all captured scans, only
those with higher or similar weights than the previous ones
are used. The idea here is to suppress measurements with
higher noise than previously acquired ones to improve the
quality. But as mentioned before, such modifications are
not part of the considered class so we skip this step. For
a better comparison in Figure 3, we also set the scaling
parameter Wmax in the original function of Hemmat et al.
[7, 8, 9] to 1.

Angle based functions Another source of information
about the noise level is contained in the angle between the
surface normal and the view direction of the camera. Simi-
lar to the previously modeled distribution, noise increases
significantly if this angle gets larger. Large angles indi-
cate a relatively strong increase of the depth in the neigh-
borhood of the desired pixel meaning that the surface is
orientated away from the camera. In this case, measuring

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

0 15 30 45 60 75 90
0

0.5

1

1.5

2

Angle [deg]

W
ei

gh
t

Cos
Unity

Figure 4: Angle based weight functions.

the correct depth becomes harder or even impossible, so
a high noise level is expected here. To model this uncer-
tainty, Curless and Levoy [5] use the cosine of the angle to
compute weights.

wCos(θ) = cosθ (14)

As seen in Figure 4, high weights are assigned to voxels
where the surface is orientated to the camera and the angle
is small. With increasing angles, measurements become
more and more inaccurate so the weights decrease. Angles
around 90◦ indicate a rapid increase in depth and a high
potential error. Measurements can be completely wrong
now so no voxel should change its information and weights
should be close to 0.

4.3 Combined functions

In the previous section, we introduced some easy to un-
derstand functions developed in the last past years. Re-
searchers concentrated on several effects and achieved im-
pressive results. However, these functions can not be easily
extended. To overcome this issue, we separate them as de-
scribed in the previous section by skipping terms that are
not related to the desired class. The combination is now
performed using a multiplication of the functions each cho-
sen from a unique class.

wvisibility = fvisibility(sdf) (15)
wdepth = fdepth(d) (16)
wangle = fangle(θ) (17)

wcombined = wvisibility ·wdepth ·wangle (18)

One important aspect of a weight function is its bounds.
We assume that all used functions are non-negative and
bounded by some individual small constant.

∀sdf : 0≤ wvisibility(sdf) ≤Wmax visibility (19)
∀d : 0≤ wdepth(d) ≤Wmax depth (20)
∀θ : 0≤ wangle(θ) ≤Wmax angle (21)

Since the combined values are bounded by the product
of the individual bounds, these constants should be small.

This ensures that the combined function never reaches ex-
tremely large values. In our case, the combined bound is
given by

Wmax combined =Wmax visibility ·Wmax depth ·Wmax angle (22)

Ideally, all of them are set to 1 resulting in a combined
bound of 1. Because large weights might be problematic
in some implementations, future extensions like additional
classes can now be integrated easily and the update behav-
ior of the algorithm still remains as expected.

Naturally, also more than three strategies can be com-
bined to compute weights. But using two functions of the
same class does not necessarily increase the complexity of
the entire strategy. The combination of these two functions
is still a function of the same strategy class and is limited to
its properties. So it could be defined directly without using
this approach. However, this also can increase readability
and lead to a finer grading of the modeled limitations.

5 Evaluation

In this part, we discuss the results achieved by our new
technique and compare it with current approaches.

5.1 Test Environment

To allow applying the introduced algorithm and test the
weight functions with existent 3D models, we need to com-
pute depth maps on-the-fly. For construction, a virtual cam-
era consisting of extrinsic and intrinsic parameters has to
be defined first. The extrinsic parameters are also known as
the pose and are already computed during pose estimation.
The intrinsic parameters contain the camera resolution, its
range and field of view. With these parameters, we com-
pute the projection matrix introduced by Zhang [23].

P =

α 0 u0
0 β v0
0 0 1

 (23)

The skewness parameter γ is dropped here since we only
consider a virtual camera. The remaining coefficients can
be expressed in terms of the camera resolution nx×ny and
the horizontal field of view fovhorizontal .

α = f ·u0 = β f =
1

tan
(

fovhorizontal
2

) (24)

u0 =
nx

2
v0 =

ny

2
(25)

To construct the depth map now, we first transform the
given point cloud to the local camera coordinate system
using the estimated pose. Then, we compute the distances
to the camera and project all points by the projection matrix
P. Points falling into the same pixel are summarized by the
one with minimal distance to the camera. Finally, we store
these distances in an image to obtain the final depth map.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

Wsingle Wcombined

Unity KinFu CM3D NM DA Cos
KinFu
+ NM
+ Cos

KinFu
+ DA
+ Cos

CM3D
+ NM
+ Cos

CM3D
+ DA
+ Cos

Dragon
TSDFKinFu 3.7052 1.9951 2.4717 3.0804 2.9989 3.3534 1.8656 1.8429 2.2461 2.2374
TSDFNM 3.3918 1.8711 2.4328 2.6763 2.5801 2.9604 1.7657 1.7434 2.2153 2.2042

Angel
TSDFKinFu 2.9870 1.1662 1.5912 2.8978 2.9313 2.7380 1.1271 1.1290 1.5045 1.4977
TSDFNM 2.6760 1.1051 1.5117 2.5358 2.5328 2.4360 1.0835 1.0848 1.4385 1.4322

Table 1: Comparison of the mean error (ME) between different TSDF and weight functions (in mm).

Wsingle Wcombined

Unity KinFu CM3D NM DA Cos
KinFu
+ NM
+ Cos

KinFu
+ DA
+ Cos

CM3D
+ NM
+ Cos

CM3D
+ DA
+ Cos

Dragon
TSDFKinFu 5.6066 2.9967 3.3495 4.6405 4.5039 5.1886 2.7912 2.7653 3.2000 3.2545
TSDFNM 5.2296 2.9073 3.3482 4.1469 3.9830 4.6493 2.7319 2.7061 3.1820 3.2213

Angel
TSDFKinFu 4.5709 1.8169 2.1430 4.3310 4.3838 4.2221 1.7622 1.7800 2.0666 2.0574
TSDFNM 4.1803 1.7674 2.0573 3.8763 3.8563 3.8216 1.7310 1.7415 2.0097 1.9961

Table 2: Comparison of the root-mean-square error (RMSE) between different TSDF and weight functions (in mm).

For testing, we use the 3D models of the Asian Dragon
and the Christian angel Lucy provided by the Stanford
Computer Graphics Laboratory [17]. Reconstruction is per-
formed on a Intel Core i7-4930K CPU, 32GiB RAM and
a Nvidia GeForce GTX780 with 3GiB VRAM. Our imple-
mentation uses a hash table with 220 buckets each contain-
ing 2 entries. The reconstruction is stored in a predefined
voxel buffer with a total number of 218 voxel blocks and 83

voxels per block. We use a voxel size of 1mm and a trunca-
tion region of 12mm. Our virtual camera has a range from
1.25m to 2.25m and captures depth maps using a resolu-
tion of 1920×1080 pixels with a horizontal field of view of
60◦. Since the angel stands upright, the camera is rotated in
this kind of situation and uses a resolution of 1080×1920
pixels with a vertical field of view of 60◦. Additionally,
we add artificial noise to each depth sample according to
the previously mentioned Gaussian noise distribution with
depth-dependent standard deviation σz(d).

For reconstruction, all models are placed 1.75m in front
of the camera and scaled such that the heights of their
bounding boxes are equal to 75% of the vertical height
of the frustum at this depth. This ensures that the depth
maps contains the full object independently of its original
location in space.

5.2 Results

Reconstruction is performed by a single 360◦ round of the
camera with 360 depth maps captured in total. Averaged
reconstruction times per frame are 231.6ms (∼4fps), with
17.7ms (7.6%) for depth map creation, 89.8ms (38.8%)

for integration, 100.2ms (43.3%) for surface extraction
and 23.9ms (10.3%) for surface composting. Since the
used resolution is much higher than the one of the Kinect,
this demonstrates the scalability of the volumetric data
structure of Curless and Levoy [5].

Tests are performed among all possible combinations
of TSDF and weight functions and shown in Table 1 and
Table 2. More precisely, we test the unity function, the vis-
ibility based functions KinFu (Izadi et al. [10], Newcombe
et al. [11]) and CM3D (Sturm et al. [18]), the depth based
functions NM (Nguyen et al. [12]) and DA (Hemmat et al.
[7, 8, 9]), and the angle based function Cos (Curless and
Levoy [5]) as defined before. These functions only com-
pute a single weight and are the reference of our technique.
As the combined weights, we use all possible combinations
consisting of three different functions each chosen from a
unique class.

Because we consider a 360◦ reconstruction, visibility
based functions perform best. KinectFusion seems to
achieve the best result since it has the lowest error. How-
ever, the point density of its reconstruction is highly irregu-
lar. While there is a high density at the front side, the back
side only has a low one resulting in a low total number of
samples and many small holes. This is caused by using
zero weight on the back side which means that no update
is performed and relating voxel blocks are deleted by the
garbage collection. Sturm et al. [18] use a small positive
weight to overcome this and achieve very good results but
with a slightly higher error. Depth based and angle based
functions perform worse which is shown especially by the
root-mean-square error that penalizes non-regular recon-

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Original with 3609600 points. (b) Error heat map of the reconstruction
with 4883046 points using the functions
TSDFKinFu and WUnity.

(c) Error heat map of the reconstruction
with 6130290 points using the functions
TSDFKinFu and WCM3D.

(d) Error heat map of the reconstruction
with 4819152 points using the functions
TSDFKinFu and WDA.

(e) Error heat map of the reconstruction
with 4421626 points using the functions
TSDFKinFu and WCos.

(f) Error heat map of the reconstruction
with 5684977 points using the functions
TSDFKinFu and WCM3D+DA+Cos.

(g) Error heat map legend.

Figure 5: Asian dragon, used from Stanford Computer Graphics Laboratory [17].

structions. Furthermore, reconstructions are affected by
many artifacts and only have a slightly better quality than
the unity function (see Figure 5).

Best results among all test scenes are achieved by our
new weighting technique. All combinations outperform
the strategies which only use a single weight and achieve
improvements up to 10%. Especially the combination with
the function of Sturm et al. [18] performs best and achieves
a lower reconstruction error than current approaches. How-
ever, not all regions of the reconstruction have a lower er-
ror. As shown in Figure 5, the depth based and angle based
functions produce samples with high error at the head of
the dragon while the visibility based ones creates most sam-
ples with low error. As a result, the negative behavior of a
function is also integrated in the overall strategy and can
increase the error of some samples. Nevertheless, the posi-
tive and intended behavior of such a function overweights
its risks, so the averaged error over all samples is reduced.

6 Conclusion

We presented a new weighting technique which combines
existing strategies and assigns them to a certain class that
represents its properties. These classes can extend the

knowledge of the underlying problem and accelerate de-
velopment of more sophisticated strategies. For a complete
solution that captures all desired limitations, several func-
tions are combined, each taken from a unique class.

We demonstrated high quality reconstructions with a
smaller error than current state-of-the-art approaches. We
believe that the advantages of combined functions are even
more evident when more classes are developed and the
complexity increases. However, combining arbitrary func-
tions which might lower the error does not necessarily lead
to better results. The functions we used are developed care-
fully and proven to perform good, so the combination of
functions should also be chosen very carefully to achieve
good results.

References

[1] J. Amanatides and A. Woo. A Fast Voxel Traversal
Algorithm for Ray Tracing. In In Eurographics ’87,
pages 3–10, 1987.

[2] P. J. Besl and N. D. McKay. A Method for Registra-
tion of 3-D Shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):239–256, 1992.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

[3] J. Chen, D. Bautembach, and S. Izadi. Scalable Real-
time Volumetric Surface Reconstruction. ACM Trans.
Graph., 32:113:1–113:16, 2013.

[4] Y. Chen and G. Medioni. Object Modelling by Reg-
istration of Multiple Range Images. Image Vision
Computing (IVC), 10(3):145–155, 1992.

[5] B. Curless and M. Levoy. A Volumetric Method for
Building Complex Models from Range Images. In
Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, pages
303–312, 1996.

[6] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and
M. Gross. Real-Time Ray-Casting and Advanced
Shading of Discrete Isosurfaces. In Computer Graph-
ics Forum, volume 24, pages 303–312, 2005.

[7] H. J. Hemmat, E. Bondarev, and P. H. N. de With. Ex-
ploring Distance-Aware Weighting Strategies for Ac-
curate Reconstruction of Voxel-Based 3D Synthetic
Models. In MultiMedia Modeling - 20th Anniversary
International Conference, MMM 2014, Dublin, Ire-
land, January 6-10, 2014, Proceedings, Part I, pages
412–423, 2014.

[8] H. J. Hemmat, E. Bondarev, G. Dubbelman, and
P. H. N. de With. Improved ICP-based Pose Esti-
mation by Distance-aware 3D Mapping. In VISAPP
2014 - Proceedings of the 9th International Confer-
ence on Computer Vision Theory and Applications,
Volume 3, Lisbon, Portugal, 5-8 January, 2014, pages
360–367, 2014.

[9] H. J. Hemmat, E. Bondarev, G. Dubbelman, and
P. H. N. de With. Evaluation of Distance-Aware
KinFu Algorithm for Stereo Outdoor Data. In VIS-
APP 2014 - Proceedings of the 9th International Con-
ference on Computer Vision Theory and Applications,
Volume 2, Lisbon, Portugal, 5-8 January, 2014, pages
746–751, 2014.

[10] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. New-
combe, P. Kohli, J. Shotton, S. Hodges, D. Freeman,
A. Davison, and A. Fitzgibbon. KinectFusion: Real-
time 3D Reconstruction and Interaction Using a Mov-
ing Depth Camera. In Proceedings of the 24th An-
nual ACM Symposium on User Interface Software
and Technology, pages 559–568, 2011.

[11] R. A. Newcombe, S. Izadi, O. Hilliges,
D. Molyneaux, D. Kim, A. J. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
Fusion: Real-Time Dense Surface Mapping and
Tracking. In IEEE ISMAR, 2011.

[12] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling
Kinect Sensor Noise for Improved 3D Reconstruction
and Tracking. In 3DIMPVT, pages 524–530, 2012.

[13] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stam-
minger. Real-time 3D Reconstruction at Scale Using
Voxel Hashing. ACM Trans. Graph., 32(6):169:1–
169:11, 2013.

[14] Nvidia. CUDA. http://www.nvidia.com/
object/cuda_home_new.html, 2007. Ac-
cessed March 31, 2015.

[15] F. Reichl, M. G. Chajdas, K. Bürger, and R. West-
ermann. Hybrid Sample-based Surface Rendering.
In Vision, Modeling and Visualization, pages 47–54,
2012.

[16] H. Roth and M. Vona. Moving Volume KinectFu-
sion. In Proceedings of the British Machine Vision
Conference, pages 112.1–112.11, 2012.

[17] Stanford Computer Graphics Laboratory.
The Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/
3Dscanrep/, 1996. Accessed March 31, 2015.

[18] J. Sturm, E. Bylow, F. Kahl, and D. Cremers.
CopyMe3D: Scanning and Printing Persons in 3D. In
German Conference on Pattern Recognition, 2013.

[19] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and
J. McDonald. Robust Tracking for Real-Time Dense
RGB-D Mapping with Kintinuous. Technical report,
Computer Science and Artificial Intelligence Labora-
tory, MIT, 2012.

[20] T. Whelan, M. Kaess, M. Fallon, H. Johannsson,
J. Leonard, and J. McDonald. Kintinuous: Spatially
Extended KinectFusion. In RSS Workshop on RGB-D:
Advanced Reasoning with Depth Cameras, 2012.

[21] K. Xiao, D. Z. Chen, X. S. Hu, and B. Zhou. Efficient
implementation of the 3D-DDA ray traversal algo-
rithm on GPU and its application in radiation dose cal-
culation. Medical Physics, 39(12):7619–7625, 2012.

[22] M. Zeng, F. Zhao, J. Zheng, and X. Liu. A Memory-
Efficient Kinectfusion Using Octree. In Proceedings
of the First International Conference on Computa-
tional Visual Media, pages 234–241, 2012.

[23] Z. Zhang. A flexible new technique for camera cali-
bration. IEEE Trans. Pattern Anal. Mach. Intell., 22
(11):1330–1334, 2000.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

	Introduction
	Previous work
	Reconstruction algorithm
	Camera Pose Estimation
	Integration
	Surface Extraction

	Weighting strategies
	TSDF functions
	Weight functions
	Combined functions

	Evaluation
	Test Environment
	Results

	Conclusion

