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Abstract

We present a simple and efficient technique of the pupil
centre detection. This technique is addressed to the video
eye tracking solutions, in which pupil centre must be found
in image of the human eye. In contrary to previous work,
we assume stable light conditions that provide a correct
eye image. Such conditions can be achieved in many
eye tracking applications but our solution is especially ad-
dressed to the scientific activities related to the perceptual
experiments. We introduce a novel cross spread technique
in which it is assumed that pupil shape is similar to ellipse.
In this strategy, a parallel algorithm can be applied to de-
tect the pupil centre, which enables accurate operation in
less than 2 milliseconds. We present the OpenCL-based
implementation of the cross spread algorithm and its ap-
plication in the real-world eye tracker. The paper shows
the results of the experimental measurement of this eye
tracker accuracy performed for a number of human ob-
servers. The achieved accuracy close to 1.5 degree of the
visual angle is comparable to the commercial devices.

Keywords: pupil centre detection, cross spread, eye trac-
ing, eye tracking accuracy, perceptual experiments

1 Introduction

Detection of the pupil centre in the images of the eye is a
basic function of the video-based eye trackers. This type
of eye trackers consists of the infrared camera and the in-
frared light source, which are directed towards the eye.
The camera captures the image of the eye with the dark
circle of the pupil (see example in Fig. 2). The pupil fol-
lows the gaze direction during eye movement. Location of
its centre is used to estimate the gaze direction.

The field of view for both eyes spans more than 180◦

horizontally and 130◦ vertically, although, humans are
able to see details only in the fovea — the 2◦ patch of the
retina located in the middle of the macula. The eye mus-
cles enable fast gaze shifting to orient the eye such that
the object of interest is projected onto the fovea. There
are four types of eye movements: vergence movements,
vestibular ocular movements, smooth pursuit, and sac-
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cadic movements [6]. From the eye tracking perspective,
the most important is the latter one. Fast (up to 900◦/s) and
short (10-100 milliseconds [1]) saccades move the eye to a
new area of interest. They should be captured with at least
200 Hz frequency to allow accurate registration of the gaze
direction. Otherwise, eye tracker can register a gaze loca-
tion in the middle of the saccadic movement making its
identification challenging.

In this paper we propose a novel pupil tracking algo-
rithm called the cross spread. We assume that the pupil
shape is similar to ellipse. Then, we use basic image pro-
cessing operations to process the image of the eye and find
the pupil centre. The algorithm consists of three steps:
thresholding and binarization, noise reduction using me-
dian filter, and the core cross spread algorithm, which de-
tects the pupil centre. These operations are sufficient to
achieve the high accuracy of detection. However, a correct
image of the eye must be delivered from the camera to
avoid image analysis errors. The most important is a good
visibility of the pupil on the iris background. A correct
image of the eye can be taken in the stable light condi-
tions. Such conditions may be provided e.g. during the
perceptual experiments, that use eye trackers.

We implemented parallelised version of the cross spread
algorithm based on the OpenCL library, which detects the
pupil centre in less than 2 milliseconds. This implementa-
tion was tested with the Do-It-Yourself (DIY) eye tracker
- the custom-built head-mounted eye tracking system [4].
The paper shows the results of the experimental measure-
ment of DIY accuracy performed for a number of hu-
man observers. The achieved accuracy close to 1.5 degree
of the visual angle is comparable to the commercial eye
trackers.

In Sect. 2, an existing pupil detection techniques are
outlined. The cross spread technique is introduced in
Sect. 3, followed by the description of its parallel imple-
mentation and results of the performance tests. In Sect. 4
we present conducted experiments that measured the ac-
curacy of the custom-build eye tracker equipped with our
implementation of cross spread technique.

2 Previous work

Most algorithms for detection of the pupil centre binarise
the image of the eye and filter out the noise to achieve the
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best possible image of the pupil. Then, various scenarios
are implemented to detect the centre of the ellipse, which
shape reproduces the shape of the pupil.

The curvature detection algorithm [8] detects the edge
of the pupil by tracing rays in all direction from the start-
ing point located within the pupil area. For each ray, the
location of the pupil edge is detected. Then, a heuristic
curvature detection algorithm is used to eliminate the edge
deteriorations caused by the eyelids, cilia, or corneal re-
flections. Finally, the parameters of ellipse, which best fits
in the detected edge are computed using the least squares
solution.

In the starburst algorithm [2] rather complex noise re-
duction technique based on Gaussian filtering, threshold-
ing and morphological operation is used to achieve sat-
isfactory image of eye. Then, similarly to the curvature
detection technique, the rays are shot to find the pupil
edge. Finally, the best fitting ellipse is determined using
the RANSAC technique.

Other pupil centre detection algorithms are described
in [7] and [5]. The goal of all these techniques is to achieve
the best accuracy of detection. Much attention is paid to
noise reduction and accurate ellipse fitting. In the follow-
ing section we present simplified technique. We assume
that correct image of the eye is delivered from the cam-
era and more attention is paid to the processing speed. We
propose the parallelised implementation of this algorithm
adjusted to the GPU processing.

3 Cross spread technique

This section includes a detailed description of the cross
spread algorithm and discussion on the drawbacks of this
technique.

3.1 Detection pipeline

The whole algorithm consists of three steps presented in
Fig. 1. As an input, the eye image is taken using the in-
frared camera. Then thresholding and median filtering is
applied to binarise and denoise the image, respectively. Fi-
nally, the core algorithm is activated to detect the pupil
centre and compute (x,y) coordinates of this point. The
output values are expressed in pixels of the camera image.

Figure 1: The pupil centre detection pipeline.

The core cross spread algorithm is designed to search
elliptic shapes. Any deviation of continuity of the edges
or spatial coherence of the blob may reduce its accuracy.
The possible deterioration depends mainly on the area of
an artefact. Although the algorithm is designed to find
the centre of ellipse, it can work correctly also for other
convex shapes that are centrally symmetric.

Image thresholding

Thresholding is a simple image processing operation,
which binarises the image colours. The infrared camera
delivers image in the grey shades (see Fig. 2, left). After
thresholding, the pupil ellipse becomes black and the rest
of the pixels in an image become white. It is done based on
the threshold value - empirically chosen grey value below
and above which, the pixels are marked as black or white
respectively. Fig. 2 (right) presents an example image of
the eye after thresholding. The threshold value can be ad-
justed to the camera and lighting conditions. However, in
some cases it must be tuned for an individual observer.

Figure 2: Left: image taken by the infrared camera. Right:
the same image after thresholding.

Median filtering

The main task of median filter is to reduce the noise in the
thresholded image. After thresholding, some black pixels
can still exist in the pupil surrounding. These pixels are
filtered out using the median filter. Filtration efficiency,
i.e. the efficiency of impulse noise removal, depends on
the size of this neighbourhood (see examples in Fig. 3).
However, if one chooses too large surrounding the pupil
shape can be distorted.

Figure 3: Results of the median filter for 3x3, 7x7, 15x15,
and 31x31 pixel neighbourhoods (viewed from the top-left
corner). The median filter removes pixels that not belong
to the pupil.
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The median filter is computationally complex operation
for the colour images. It requires sorting of the pixels,
which is particularly expensive for the large pixel neigh-
bourhoods. For binary image, this operation is much aster,
because the final value of the pixel depends on the number
of white pixels in the surrounding. If this number is higher
than the number of all pixels in the surrounding, the final
value is set to 1 (white colour). Vice versa, the pixel value
is set to 0 (black colour).

Cross spread algorithm

The term cross spread refers to the process of searching
the boundary points. This technique is based on the hu-
man eye trait - circular shape of the pupil. Unlike pupils
of other mammals, the human pupil is close to the circle.
When the image of the eye is captured by camera, the pupil
forms various elliptical shapes, depending on the location
of the eyeball.

The cross spread technique is performed in the follow-
ing steps:

1. Choose the starting point located in the area covered
by the pupil (black pixels) (Fig. 4a).

2. Shoot 4 rays from the starting point in the horizon-
tal (left, right) and vertical (top, down) directions
(Fig. 4b).

3. Find the boundary points located on the pupil edge,
that are closest to the starting point (Fig. 4c).

4. Create a new starting point by averaging the coordi-
nates of the boundary points (Fig. 4d).

5. Iterate again from 1. until the location of the starting
point is stabilised between iterations.

The boundary points are identified as points not belong-
ing to the pupil, i.e. points with the high gradient between
the current and the next position. Abscissa and ordinate
of the new starting point are computed by averaging the
coordinates of the horizontal and vertical boundary points,
respectively.

Parallelisation

We implemented the parallelised version of the algorithm.
We apply the regular grid of horizontal and vertical lines
that covers the image. Candidate starting points are gen-
erated at the intersection these lines. The ones belonging
to the pupil are passed to further processing (see Fig. 5a).
Then, four rays from each starting point is traced in par-
allel and the boundary points for each ray are located (see
Fig. 5b). The location of the most advanced points in each
direction is stored (see Fig. 5c). These values are used to
find the pupil centre (see Fig. 5d).

Figure 4: An iteration of the cross spread algorithm.

Corneal reflections

Corneal reflections are the small bright spots in the image
of the eye (see Fig. 6). In the most eye tracking systems
they are caused by infrared light sources placed near the
camera.

If the corneal reflection is located within the pupil it in-
terferes with the trivial implementation of the cross spread
algorithm and can cause false detection of the boundary
points. Therefore, after detecting a boundary point, we
continue the search for the next few pixels. This toler-
ance depends on the size of the corneal reflection spots
and should be set empirically.

3.2 Implementation and performance tests

We implemented the parallelised version of the algorithm
using the OpenCL library 1. This library allows choosing
the computing device, which can be both CPU or GPU.
We created three kernels responsible for thresholding, fil-
tering, and the core cross spread algorithm. The kernels
share the same device memory.

We measured the execution time of the cross spread
algorithm using the profiling system provided by the
OpenCL platform. It enables to separate time spent for
individual kernels and also measures the overall execution
time. The test was run 1000 times and then, the results
were averaged. The final results are presented in Tab. 1.

Four different computation devices were evaluated: In-
tel Core i7-2670QM (2.20 GHz), Intel Core i7-3537U
(2.00 GHz), NVIDIA GeForce GT 555M, and NVIDIA
GeForce GT 740M.

As it was expected, the best results were achieved for
GPUs. Both graphics processors can compute the cross
spread in less than 2 ms, which is equivalent to processing
of more than 500 frames per second. The data prepara-
tion phase is rather expensive for GPUs (this is 70% of the

1Open Computing Language, https://www.khronos.org/
opencl/
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Figure 5: The parallel version of the cross spread algo-
rithm. a: red dots depict the starting points. b: the blue,
green, yellow, and pink dots are the boundary points. c:
location of the extreme points. d: the white dot depicts
the computed pupil centre surrounded by the red rectangle
defining the boundaries of the pupil.

Figure 6: The two corneal reflection spots located with the
pupil.

total execution time) because the camera image must be
transferred to the GPU memory .

Interestingly, we achieved satisfactory results also for
CPUs. The execution time of 4.4195 ms and 7.483 ms is
equivalent to processing of 225 and 133 frames per second,
respectively.

As can be seen in Tab. 1, the median filtering is the
main bottleneck of the CPU implementation. It accounts
for 60% of the overall execution time.

4 Accuracy evaluation

The goal of the experiment was to evaluate the accuracy
of the cross spread algorithm. However, we measured this
factor indirectly by testing the accuracy of the DIY eye
tracker equipped with our software.

4.1 Do-It-Yourself eye tracker

The DIY eye tracker is a custom-built low-cost eye tracker
of a basic construction [4] (see Fig. 7). It consists of two

Computing device

Intel Core

i7-3537U

2.00 GHz

Intel Core

i7-2670QM

2.20 GHz

NVIDIA

GeForce

GT 555M

NVIDIA

GeForce

GT 740M

Thresholding 0.9613 0.5080 0.0944 0.1388

Median filtering 4.4191 2.4243 0.1158 0.1776

Cross spread 0.3036 0.2001 0.2198 0.2128

Overall time 7.4830 4.4195 1.9031 1.8260

Data preparation 1.7989 1.2871 1.4731 1.2968

Table 1: Execution times of the paralleled version of the
cross spread algorithm. Time in milliseconds.

main components: a modified safety goggles that act as
a frame, and a typical web camera: Microsoft Lifecam
VX-1000, working in 640x480 pixels resolution. The only
change made to the camera is replacing the infrared light
blocking filter with the visible light blocking filter to en-
able capturing images in the infrared light spectrum. The
camera is mounted on the frame in 5 cm distance from
the left eye. It is connected to computer via the USB ca-
ble. The eye is illuminated by three infrared LEDs placed
close to the camera lens.

Figure 7: Head-mounted Do-It-Yourself video eye
tracker [4].

Formerly, the DIY eye tracker was controlled by the
ITU Gaze Tracker software. We reimplemented the whole
eye tracking pipeline replacing all the tasks made by this
software with our algorithms. Our implementation in-
volves pupil detection based on the cross spread algorithm,
but also communication with the camera, eye tracker cali-
bration, and gaze position estimation.

The principle of the eye tracker operation is based
on the observation that the pupil follows the gaze direc-
tion during eye movement. Therefore, the location of
the pupil centre can be used to estimate the temporary
gaze position/direction. The cross spread algorithm de-
tects the pupil centre as the position in camera image co-
ordinates (in pixels). These coordinates must be trans-
formed from the camera space to the screen space to com-
pute the gaze position on the screen. It is done using the
mapping defined as the polynomial transformation citeRa-
manauskas06:
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{
sx = a0 +a1x+a2y+a3xy+a4x2 +a5y2,
sy = b0 +b1x+b2y+b3xy+b4x2 +b5y2,

(1)

where (sx,sy) depicts gaze position in the screen coor-
dinates (in pixels). a0...5 and b0...5 are coefficient com-
puted during the eye tracker calibration. Calibration is the
mandatory part which precedes every eye tracking session.
During calibration, people are asked to look at the target
points displayed on the screen, so one can assume that lo-
cations of these target points are known (i.e. (sx,sy) for
each target point is known). The pupil centre (x,y) is com-
puted by the cross spread algorithm in the camera space.
Then, the polynomial coefficients can be calculated using
the Singular Value Decomposition technique (SVD) [3].
During actual eye tracking, the polynomial with known
coefficients can be used to transform the centre of pupil
location from the camera space to the screen space.

Stimuli and procedure

Observers sat in the front of the display in 60 cm distance
and used the chin-rest adopted from an ophthalmic slit
lamp. The experiment started with a 9-point calibration.
This procedure took about 20 seconds and involved obser-
vation of the markers displayed in different areas of the
screen. The data processing including computation of the
calibration polynomial coefficients was performed by the
custom software.

In validation phase, participants looked at the circle
marker displayed for 2 seconds at 25 different positions
located on the regular grid (see Fig. 9). These positions,
called the target points, acted as known and imposed fixa-
tion points. The marker was moved between target points
in random order. We noticed that smooth animation of the
marker between target points allows for faster observer’s
fixation and reduces number of outliers. Additionally, the
marker was minified when reaches its target position to
focus observer’s attention on a smaller area. The data
recorded before 800 ms from the beginning of the marker
movement was removed from the analysis. Also the data
collected over the last 200 ms were filtered out. Thanks
to this it was possible to avoid the errors arising from the
gaze transfer between the reference points.

The experiment was performed in a darkened room. Im-
ages were displayed on LCD monitor with native resolu-
tion of 1920 x 1080 pixels.

Participants

We repeated the experiment for 11 volunteer observers
(age between 20 and 22 years, 9 males and 2 females).
They declared normal or corrected to normal vision and
correct colour vision. The participants were aware what
they should do, but they were naı̈ve about the purpose of
the experiment.

4.2 Results

The accuracy of eye tracker is quantified as the aver-
age distance between the physical target position and the
measured gaze position. During experiment described in
Sect. 4 we registered over 30 thousand gaze points with
the known reference. Due to the eye tracking inaccuracies
these points are located in a circular neighbourhood of the
physical target points.
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Figure 8: The average DIY eye tracker error.

We present the average eye tracker error as the co-
variance ellipses (see Fig. 8). The direction of the radii of
ellipse corresponds to the eigenvectors of the covariance
matrix and their lengths to the square roots of the eigen-
values. An eye tracker will have a good accuracy, if the
distribution of the error will have the circular shape corre-
sponding to the normal distribution and the centre of this
circle will be located in (0,0) position. Additionally, the
ellipse radii should be as small as possible.

As can be seen in Fig. 8, the average eye tracker error
is closed to 1.51◦ of visual angle. The ellipse is noticeably
shifted in vertical direction, which indicates the systematic
error of the gaze estimation. We suspect that this error
was caused by involuntary movements of the head during
measurement. The DIY eye tracker is not immune to the
head movements. We used the chin rest to stabilise the
head but even small movements caused by e.g. swallowing
could introduce some inaccuracies.

Fig. 9 shows covariance ellipse calculated for individual
target points. The inaccuracies are larger for higher view-
ing angles. It is particularly evident for the target points
located at the edges of the screen, for which the ellipses
are distorted. We suspect that it was caused by occlusion
of the pupil by the eye lids. Notice, that the distance from
the centre of ellipse (i.e. average gaze location) is more
meaningful for accuracy estimation than the radii of el-
lipses. For example, for (-10.1,5.72) [deg] target point lo-
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Figure 9: Covariance of the averaged locations of the gaze points recorded by the DIY eye tracker for each reference
point.

cation, the distance is rather small despite the large size of
the ellipse, which can be caused by some unfiltered gaze
points which occurred during blinks.

5 Conclusions and future work

We have implemented a new pupil centre detection tech-
nique, which skips some time consuming operations per-
formed by typical methods to increase the processing
speed. The core of the technique is the cross spread algo-
rithm, which detects the centre of the pupil by tracing only
horizontal and vertical rays. This simple approach gives
satisfactory detection accuracy for the pupil images of the
centrally symmetric shape. This accuracy is comparable
to ITU Gaze Tracker software results.

Our OpenCL-based implementation of the cross spread
technique is executed in less than 2 milliseconds, which is
equivalent to processing more than 500 frames per second.
This frequency is satisfactory for accurate recording of the
saccadic movements and only slightly worse than in the
commercial high-end eye tracking systems.

We have integrated the cross spread method with the
low-cost DIY eye tracker and tested the accuracy of this
setup. The perceptual experiments have revealed satisfac-
tory accuracy of the eye tracker equal to 1.5◦ per visual
angle.

In future work we plan to conduct a detailed analysis of
the accuracy of the cross spread algorithm. In particular,
we are interested in challenging scenarios, in which the
pupil is partially obscured.
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