
Generation of lecture notes as images from recorded whiteboard
and blackboard based presentations

Ondrej Jaribka∗

Marek Šuppa†

Supervised by: Zuzana Černeková‡

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

With raising amount of e-learning materials such as lecture
videos or on-line video courses, we decided to develop an
application, which can help students or content creators in
their effort to prepare study materials. Main goal of our
application is to create slides from given video depicting
a black or white board without any occluding objects such
as lecturer standing in front of this board. Slides will con-
tain valid information from key frames of the given lecture
video. Based on the assumption that the board is static in
the video, this is done by extracting the board from video
frames, which is then segmented into equally sized rectan-
gular cells. These cells are stored and the change of infor-
mation inside them is tracked. Afterwards, the final image
is created from saved cells when all cells are sufficiently
stable.

Keywords: whiteboard, blackboards, lecture, generation
of images, slides, e-learning, video presentation, percep-
tual hashes, board extraction, key frame generation, slide
generation

1 Introduction

With increasing amount of lectures, courses and other e-
learning materials available on-line, it is becoming more
and more apparent that students as the primary consumers
of such content lack tools necessary for its usage in an
effective fashion. Given the rise of massive open on-
line courses [9] a strong push for creation of instructional
videos can also be seen in academic environments. As
stated in [12]: “fast expansion of the Internet and related
technological advancements, in conjunction with limited
budgets and social demands for improved access to higher
education, has produced a substantial incentive for uni-
versities to introduce e-learning courses”. In [11] the au-
thors also claim that “many users stop their on-line learn-

∗o.jariabka@gmail.com
†marek@suppa.sk
‡zuzana.cernekova@fmph.uniba.sk

ing after their initial experience”. They further state that
“instructor attitude toward e-Learning, e-Learning course
flexibility, e-Learning course quality, perceived useful-
ness, perceived ease of use, and diversity in assessments
are the critical factors affecting learners’ perceived satis-
faction”.

It is not difficult to find inefficiencies in the ways in-
structional video content is most often consumed. For
example it is very impractical to always rewind on-line
lecture to get to the exact point where specific detail was
discussed, pause the video, essentially “copy” the infor-
mation from the paused video frame and then continue
watching. Not only does it break the user’s focus but it
also requires additional interaction with the video content,
that might result in undesired increase of the user’s frus-
tration, which is certainly not desired.

For this reason we decided to develop a tool that could
help potential viewers extract information from these pre-
sentations or lectures into a more practical format. This
could also help content creators to prepare and create con-
tent which can be then perceived more easily. As stated in
[11] technology is one of the main factors affecting user
satisfaction.

In our work, we focus on whiteboard and blackboard
based lectures or presentations. The methods we present
select key frames, from which a slide containing the in-
formation previously shown on board is created. Another
requirement we enforce is that these slides should contain
only information that is on the board, and therefore any
occluding objects ought to be removed from the scene and
information behind them should also be shown on our final
slide.

This paper is structured as follows: in the Related work
section we present an overview of academic literature, that
touches the problems our work is designed to solve. Then
we proceed to describe methods for Board extraction, Re-
moval of occluding objects and Change detection. In the
end, we present the results obtained thanks to our imple-
mentation of aforementioned methods in the Results sec-
tion and finally conclude with a short summary of the most
important results and possible directions for future work in

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



the Conclusions and future work section.

2 Related work

While our work tries to solve a very specific problem, there
are a number of similar projects inspired by the increasing
amount of readily available video-based lecture material.

Visual Transcripts [10] aims to create lecture notes from
blackboard-style videos. Unlike our work, their system as-
sumes that the video only has a blackboard in it, and that
the video is static, except for content which is continu-
ally added and a mouse pointer which is used to highlight
certain parts of the blackboard. The same type of video is
used in another related work [8], in which the authors sum-
marize the input video in form of a single image. Parts of
the image function as links to positions in the input video
and make it very easy to jump to the precise moment where
a specific concept was first introduced.

The focus of many authors is mainly on one or few
methods for specific subtasks, that represent the respective
parts of our system. For example most papers on remov-
ing occlusion events from videos focus on 3D objects or
use multiple cameras to generate the final image, as de-
scribed in [4] and [3]. These methods are quite efficient,
especially when implemented on GPUs. They might also
be called accurate but they are not quite suited for our pur-
pose.

On the other hand, many approaches are focused on cre-
ating fast and efficient methods for recognition of change
in images and search for similar or unique objects in im-
ages. Various methods were designed in order to solve
these tasks, such as using image features to detect simi-
lar objects in images or using perceptual hashes [13] to
detect significant change. In [2], the authors developed a
new method for image hashing, which can be used for fast
look-ups of similar images. The thesis of Christoph Za-
uner [14] focuses on implementation and benchmarking
of various image hashing algorithms and methods. While
the primary aim of these methods was different, they can
be easily adapted for the purpose of searching for change
in information in series of frames generated from a video
sequence.

Algorithms for detecting a change in scenes of video
sequences were also proposed in [6] and [7]. These al-
gorithms search for “drastical” points of change, such as
hard cuts or special editing effects 1. Even though these
methods were quite useful as a model, we could not adapt
them because our work is focused more on fine grained
change between multiple frames and longer lasting se-
quences, where change is being slowly added through the
span of multiple sets of frames.

1An example of thee effects are dissolve or wipe transitions.

3 Board extraction

Creators of instructional videos strive to give their content
(be it on black or white board) the majority of visual space
the video provides. Despite their efforts, often there are
parts of video frames one would not expect to find in a
“presentation slide”. Moreover, variability in these parts
of video frames might cause issues in further stages of the
processing pipeline, as it might be mistaken for the actual
content. It follows, that in order to create a “presentation
slide” from a set of video frames, only the significant parts
of the frame need to be considered.

In this section, we describe main methods used for ex-
tracting board from video sequences. In our research we
focused mainly on videos with one board present in the
video or multiple boards not separated by a bigger gap in
between them (Figure 1a). Before we detect the main re-
gion of interest where the board is located, we have to de-
cide if we are looking at a white or black board. A simple
preprocessing method ran on every input frame is used.
This method first converts RGB image into grayscale and
then computes a histogram. Since we focus only on white
or black boards, the dominant colour from these is selected
under the assumption that the area of a board occupies
wast majority of given frame. This colour is then accen-
tuated by thresholding the image to only extract colours
that are close to our chosen colour. Thresholding value is
different for every channel and it is approximated to pre-
viously found dominant color of our image. The mask
obtained by this method is then used to compute bitwise
AND in separated colour channels in order to boost our
dominant colour (Figure 1b). After this process one of the
proposed method is used to obtain main region of a board.

3.1 Histogram method

This method at first reduces colour spectrum of the image
by thresholding the dominant colour one more time. In
the next step, all the values in every row and column are
summed up separately into two arrays. The first derivation
is then computed on the acquired arrays to identify spikes
in colour change. Extremes of these arrays then specify
corners of the board. Finally, a bounding box around board
is formed from the obtained points.

3.2 Region growing method

This method is based on a simple region growing algo-
rithm. At first we have to select a seed for our algorithm.
This is done by thresholding the main colour with almost
maximum value found from the histogram computed in
advance, as part of the preprocessing step. This highlights
“blobs” of colour with highest values, so that we can be

2We used the video titled "Definite Integration by Parts" by Rob Tar-
rou which can be found at https://www.youtube.com/watch?
v=6rWG5WPysgE

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Original image frame from the video.

(b) Output of the preprocesing function applied on the origi-
nal frame. Note that green colour is accentuated while white
or highly illuminated sections are attenuated.

Figure 1: Images of original video2 frame and the resulting
frame from the preprocesing function

almost sure that we are starting somewhere in the region
of a board and not for example on the person standing in
front of it. Then, we randomly pick one region where we
place our seed. A simple region growing follows, in which
we compare 4 neighbouring pixels to check if they fit our
colour threshold (if they are part of the board). Once this is
done, we obtain mask of a board. We search for contours
and extract the biggest one. This contour is then returned
as the bounding box of our board.

3.3 Processing of output from board extrac-
tion models

Output of every model is then submitted to the last test
which checks if area occupied by the the bounding box
is at least one third of a given image and if its shape is
rectangular. Finally, the image is cropped. If a video or an
image is taken from a slight angle, perspective of cropped
board is then slightly shifted to compensate for this, so
that the resulting slide would look more like an observer is
standing in front of a board.

4 Removal of occluding objects

This section describes algorithms that we design in order
to remove occluding objects from lecture videos. We con-
sider as occluding object anything that is bigger than at
least one third of a board and performs some sort of a
move. An example of such an object can be a student
or a lecturer. The main idea is to segment the board into
smaller sections called cells and then keep track of how in-
formation changes in these cells by keeping a simple count
of on how many frames we saw individual cell. This pro-
cess can be described as a sequence of the following steps:

• Divide board into smaller cells

• Initialize each cell

• Compute mask of occluding objects

• Check each cell to see whether it is occluded by an-
other object

• Change “seen” counter for each cell based on occlu-
sion events

• Stitch individual cell into final slide

4.1 Initialization

We divide our cropped image of the extracted board into
equally sized rectangular cells based on parameters of the
input image. Individual cells are overlapping by values
spanning between 10 to 20 pixels based on the size of a
given frame. Each cell is then initialized by setting “seen”
counter to 0 and its value is stored in an array. When cells
are initialized, then we evaluate each of them to check if it
is partly or fully occluded by another object3. This is done
by computing bitwise AND between section and occlusion
mask (see Section 4.2 and Section 4.3). If there is overlap
detected the counter is not increased, otherwise it is incre-
mented. For obtaining occlusion mask, we proposed two
methods (Figure 2a).

4.2 Region growing based method

The First method is the same as our region growing algo-
rithms since this method only considers pixels that fit our
board condition. Pixels representing skin, person or other
objects are omitted. This can then specify any objects that
are in front of the board. If region growing algorithm was
previously used for board extraction, mask produced by
this method is then considered as mask of the board. This
mask is then inverted and series of dilations and erosions is
performed to remove error areas and to accentuate edges.
Finally, we search for contours and filter out those, that are
smaller than one third of the image.

3Note that if a cell is occluded throughout the whole video we believe
that it is save to assume that there is no valid information behind it. Our
software provides a way to leave out or add such a cell based on user
input.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



4.3 Absolute difference based method

The second one uses the last slide which was saved and
therefore we assume, that this frame contains valid infor-
mation and it is without any occlusion events. First, we
calculate the absolute difference between current frame
and this frame. This generates mask of events that changed
from slide to slide. Then, we threshold this mask to re-
move pixels that arose from slight light changes for exam-
ple person casting a shadow onto a background. Finally,
similarly to the previous method we search for contours
and filter out those, that are not at least one third of given
image.

4.4 Final slide generation

The final slide, shown in Figure 2b, is then “stitched” to-
gether from the last saved slide and currently stored sec-
tions where we threshold each section’s counter with two
values. If the counter value is higher then upper thresh-
old we saw that section enough times to be sowed into
the image. If the value is under lower threshold section
is rejected and part of the old image is used. If the value
is between these two thresholds one of the methods dis-
cussed in the section 5 is used to detected how much old
and new section differ. If this similarity measure is higher
then our threshold then section is rejected because sections
where too similar and old part of the slide is used. If it is
lower, the section changed enough so it can be sowed into
the image.

5 Change detection

This section focuses on how are we actually going to
choose key frames in the lecture or how we detect how
much information in processed slides differ. The Main
problem, that we faced was how we can choose key frame
in the video or presentation. When we can say that enough
information was added or subtracted from a board, so we
can create slide of given board. For this we developed two
main approaches: first one uses feature detection and sec-
ond computes perceptual hash with one of the specified
methods.

5.1 Feature detection

To detect change with this method we used ORB detector
for feature detection. First step is to detect features in both
last saved slide and current slide. Next, brute force match-
ing, between features of these two image, is performed.
Number of matched features is then compared to maxi-
mum of found matches. This value is then returned to be
latter compared as our similarity measure for further tests.

(a) Input image segmented into grid of rectangular cells.
Note that overlap of the individual cells is not shown on the
image.

(b) Output of “stitching” algorithm without any further post-
processing

Figure 2: This images show main steps in objects removal
processing pipeline process.

5.2 Perceptual hashes

Another approach to detect change in our slides is through
perceptual hashes. We implemented and compared proba-
bly three most known functions.

Average hash is a hashing function which computes
hash of a file by firstly converting given image to
grayscale. Then reducing a size of image to small square
usually of size 8x8 to remove high frequencies. Hash is
then created by computing mean value of pixels in trans-
formed image which is then plugged into the thresholding
function 1.

f (x,y) =

{
1 if f (x,y) is > mean
0 otherwise

(1)

Difference hash or dHash, similarly to average hash,
computes its value by firstly reducing a size of given image
and converting into grayscale, then it calculates difference
between adjacent pixels. This identifies relative gradient
direction in the image. After this, it determines resulting
value by using thresholding function.

f (x,y) =

{
1 if f (x,y) is brighter than f(x-1,y)
0 otherwise

(2)

While the first two algorithms are quick and easy they
might be too rigid in comparison. For instance, it can gen-
erate false-misses if there is gamma correction or colour

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



histogram applied to a image. To reduce this effect we use
perceptual hash.

Main idea behind perceptual hash, or more commonly
know as pHash, is that it uses discrete cosine transform
(DCT) to reduce high frequencies in the image. Same as
previous hashes initial step is to reduce size of given im-
age and convert it into grayscale. Then it computes DCT
on given image and subsequently reduces it to keep just
lower frequencies of the picture. Next step is to calculate
the mean DCT value while excluding the first term. This
leaves out completely flat image information from being
included. Finally, it further reduces DCT and computes
resulting hash values based on the thresholding function
similar to average hash.

f (x,y) =

{
1 if f (x,y) is > mean DCT
0 otherwise

(3)

These hash functions are used to compute hashes of the
last saved slide and the currently processed slide. Ham-
ming distance is then computed between these hashes. To
unify the output from these functions and feature detection
function we compare length of last hash and hamming dis-
tance.

Output from these similarity functions is then compared
to our similarity threshold. If our measure is lower than
this threshold, slides differ and information on the board
have to be different, so slide is created. If it is greater,
then slides are similar. Current slide is thrown away and
all counters are reset.

This section summarizes the results of the proposed
methods. We created a dataset of videos and presentations
from various on-line lectures and courses. We chose to
implement our methods in Python programming language
using an Open source computer vision library - OpenCV
[1]. The tests run on single desktop workstation, using the
following hardware: NVIDIA Corporation GeForce GT
650M, Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz.
Preprocesing of every frame in a video, took on average
with 300 method calls - 7.02 ms (+- 0.31 ms). Every
method was tested for performance from 300 method calls
by measuring its individual speed in milliseconds in our
processing pipeline.

5.3 Board extraction results

In this section, we present performance values as well as
precision and recall values for individual methods.

Method name speed in ms sdv
Histogram 4.75 0.65
Region growing 2.03 0.57

Table 1: Average performance values in milliseconds with
standard deviation for individual methods

As we can see in Table 1, the Histogram algorithm was
on average about two times slower than the region growing

algorithm. This is understandable as the histogram algo-
rithm is much more complex and needs to perform more
operations than a simple region growing algorithm.

While this comparison might be interesting it only
shows how fast the respective methods are. In order to
evaluate the system as a whole we are more interested in
their performance: essentially the answer to the question
how well were these two methods able to extract the board
from input images.

In order to answer that question, we used a dataset of
19110 images. For these images the bounding box of the
board was marked by a human expert. This should serve
as the “ground truth” in our experiments [5].

To compare these two methods we compute precision
and recall for both of them. We define precision as:

precision =
true positives

true positives+ f alse positives
(4)

and recall as:

recall =
true positives

true positives+ f alse negatives
(5)

In both of these equations true positives are defined as
the area of the image which was marked by the method
as a board and the “ground truth” agrees with that. False
positives is defined as the area that was marked by the
method as a board but the “ground truth” did not mark it as
a board and false negatives is the area which was marked
by “ground truth” as a board but the method does not agree
with that.

These two values can be put together into a single metric
that is called F1 score that is defined as the harmonic mean
of precision and recall:

F1 = 2 · precision · recall
precision+ recall

(6)

Note that while these methods are traditionally more of-
ten used in information extraction, they are also consid-
ered a well defined metric in computer vision and image
processing [5].

Method name precision recall F1 score
Histogram 0.4245 0.9828 0.5929
Reg. growing 0.9899 0.9356 0.9620

Table 2: Precision, recall and F1 score values of board
extraction methods.

Given these metrics, we can observe some interesting
statistics about the proposed methods in Table 2. We can
see that while the histogram algorithm has a very high re-
call and therefore produced quite few false negatives its
precision is quite low on the other hand. This suggests
that it produced quite a lot of false positives which might
not be desired for the final processing pipeline.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 3: Output images obtained by running the final processing pipeline on an example video.

The region growing algorithm on the other hand shows
balanced values for both precision and recall. This sug-
gests that it is a robust method, even though it produced
an increased amount of false negatives which might not
be desirable, since it would mean that parts of the board
would be lost.

As we can see from the comparison of F1 scores, the re-
gion growing algorithm seems to be a more robust method
and therefore we can conclude that it might be a better
choice than the histogram based method.

5.4 Object removal results

While in the previous section the metric for performance
comparison of methods was quite straightforward, finding
one for object removal has proven difficult. In the end
we used a hand-curated dataset of 150 images for which
the ground truth (object to be removed) was provided by a
human expert.

Method name precision recall F1 score
Reg. growing-based 0.2531 0.5595 0.3485
Abs diff-based 0.4767 0.9877 0.6430

Table 3: Precision, recall and F1 score values of board
extraction methods.

The precision, recall and F1 score value for both of the
suggested methods can be found in table 3. As we can
see, the scores of the absolute difference-based method are
better. This can be explained by the nature of the region
growing-based method: given its randomized seeding, it
might easily start growing the board’s region from a point
in the middle of the object, that should be removed. This
essentially means, that it does the inverse task and pro-
duces incorrect result. Looking at the performance val-
ues in table 4 we can see that while region growing-based
method is faster, the difference is not substantial. Based
on this analysis we chose the absolute difference-based
method to be used in the final pipeline.

Name speed in ms sdv
Reg. growing-based 160.47 0.91
Abs diff-based 195.68 0.84

Table 4: Average performance values in milliseconds with
standard deviation for individual methods

5.5 Change detection results

It was difficult to design a measure that would express
how well is function performing in terms of selecting key
frames in video. This was due to the fact, that even though
we can have individual frames in sequence tagged the re-
sulting value, if the selected key frame is in the right place,
is very perception dependent.This is why we chose to only
measure how many frames will a method create and how
long will it take the whole pipeline (with a given measure)
to do so.

Name speed in ms sdv
ORB algorithm 13.13 0.85
pHash algorithm 7.52 0.76
dHash algorithm 5.32 0.43
aHash algorithm 3.23 0.59

Table 5: Average performance values in milliseconds with
standard deviation for individual methods

As we can see in Table 5, the ORB algorithm was the
slowest which is understandable as it is also the most
complex algorithm. Performance of hashing methods was
comparable with fastest one being the aHash algorithm4

This can be also closely related to values in Table 6 where,
aHash not only has the best performance values but it also
managed to create most slides. This can be associated
with aHash being one of the the simplest methods that is
very vulnerable to even slight light intensity change in the

4Which is not very surprising since it performs simple mean on given
images.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



scene. In a similar fashion, dHash suffers from the same
problem, as it also created the same number of slides.

Name speed (sec) # of slides
ORB algorithm 1783 7
pHash algorithm 1117 6
dHash algorithm 1115 8
aHash algorithm 1112 8

Table 6: Average performance values in seconds for in-
dividual runs of entire pipeline with given method on the
whole input video and the number of slides created using
these methods.

From values in tables 5 and 6 we can conclude that
pHash is the best choice for detecting change in our video
sequences. It provides the best ratio between speed of in-
dividual methods, speed of the entire run of a pipeline and
number of created slides. While feature detection did rea-
sonably well in comparing images, its performance could
not compare to hashing algorithms.

6 Conclusion and future work

In our work, we present and compare methods for detect-
ing and extracting boards from white or black board video
based presentation. This setup can later be abstracted to
detecting and extracting large scale object in image or
video that matches some sort of a predicate. In our case,
it was colour and shape of an object. We got sufficient re-
sults with regards to board extraction with the best method
being region growing.

We also tested and evaluated functions for comparing
how similar are two images in order to generate key frames
in the video sequence. Finally, we proposed methods for
extracting information from given presentation even with
occluding events present in the sequence. In this category,
we also managed to achieve sufficient results with hashing
functions with the best one being the pHash algorithm.

We proposed two methods for removing objects in front
of our board. The performance of the absolute difference-
based one was found to be better overall and chosen for the
final pipeline. The slides created by our final processing
pipeline can be seen in 3.

Many of these algorithms can be improved. For exam-
ple after function that creates final slide, we can use post
processing method to smooth transition between sections
of the old image and the new one. Or it might be pos-
sible to further shift perspective in order to better fit the
current slide if for instance camera moved during the pre-
sentation. Support for multiple boards with bigger gaps
between them can be added. Also based on colour of a
board, text on slide can be further enhanced for latter used
in OCR algorithm.

Given our focus on simplicity, performance and speed,
we also believe that the proposed algorithms might serve

as a basis for a system, that would produce slides as images
from white and black board based videos in real time.

References

[1] Gary Bradski et al. The opencv library. Doctor
Dobbs Journal, 25(11):120–126, 2000.

[2] Cédric De Roover, Christophe De Vleeschouwer,
Frédéric Lefèbvre, and Benoit Macq. Robust im-
age hashing based on radial variance of pixels. In
Image Processing, 2005. ICIP 2005. IEEE Interna-
tional Conference on, volume 3, pages III–77. IEEE,
2005.

[3] Takahide Hosokawa, Songkran Jarusirisawad, and
Hideo Saito. Online video synthesis for removing
occluding objects using multiple uncalibrated cam-
eras via plane sweep algorithm. In Distributed Smart
Cameras, 2009. ICDSC 2009. Third ACM/IEEE In-
ternational Conference on, pages 1–8. IEEE, 2009.

[4] Byung-Gook Lee, Ho-Hyun Kang, and Eun-Soo
Kim. Occlusion removal method of partially oc-
cluded object using variance in computational inte-
gral imaging. 3D Research, 1(2):6–10, 2010.

[5] Vladimir Y Mariano, Junghye Min, Jin-Hyeong
Park, Rangachar Kasturi, David Mihalcik, Huiping
Li, David Doermann, and Thomas Drayer. Perfor-
mance evaluation of object detection algorithms. In
Pattern Recognition, 2002. Proceedings. 16th Inter-
national Conference on, volume 3, pages 965–969.
IEEE, 2002.

[6] Jianhao Meng, Yujen Juan, and Shih-Fu Chang.
Scene change detection in an mpeg-compressed
video sequence. In IS&T/SPIE’s Symposium on Elec-
tronic Imaging: Science & Technology, pages 14–25.
International Society for Optics and Photonics, 1995.

[7] Takafumi Miyatake, Satoshi Yoshizawa, and Hiro-
tada Ueda. Method for detecting change points in
motion picture images, January 28 1992. US Patent
5,083,860.

[8] Toni-Jan Keith Palma Monserrat, Shengdong Zhao,
Kevin McGee, and Anshul Vikram Pandey. Notev-
ideo: facilitating navigation of blackboard-style lec-
ture videos. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,
pages 1139–1148. ACM, 2013.

[9] Laura Pappano. The year of the mooc. The New York
Times, 2(12):2012, 2012.

[10] Hijung Valentina Shin, Floraine Berthouzoz, Wilmot
Li, and Frédo Durand. Visual transcripts: lecture
notes from blackboard-style lecture videos. ACM
Transactions on Graphics (TOG), 34(6):240, 2015.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)



[11] Pei-Chen Sun, Ray J Tsai, Glenn Finger, Yueh-Yang
Chen, and Dowming Yeh. What drives a successful
e-learning? an empirical investigation of the critical
factors influencing learner satisfaction. Computers &
education, 50(4):1183–1202, 2008.

[12] Thierry Volery and Deborah Lord. Critical success
factors in online education. International Journal of
Educational Management, 14(5):216–223, 2000.

[13] Tom Yeh, Konrad Tollmar, and Trevor Darrell.
Searching the web with mobile images for location
recognition. In Computer Vision and Pattern Recog-
nition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2,
pages II–76. IEEE, 2004.

[14] Christoph Zauner. Implementation and benchmark-
ing of perceptual image hash functions. Master’s the-
sis, FH Hagenberg, 2010.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)


