
Recognition of Important Features
of Triangulated Human Head Models

Kateřina Kubásková
Supervised by: Ivana Kolingerová

Department of Computer Science and Engineering
University of West Bohemia

Pilsen / Czech Republic

Abstract

Feature detection is often used in geoinformatics or com-
puter graphics. A lot of feature detection methods have
been developed. The goal of this work is to find methods
suitable to detect features, implement and test them on the
triangulated model of human head which is used to create
an identikit.

Keywords: feature, curvature, thresholding, triangular
model, morphological operators, MLS approximation

1 Introduction

The features of the model usually refer to a region of a part
with some interesting geometric or topological properties.
The detection of features is automatic and simple for hu-
man brain, but not for the computer. There have been deve-
loped many methods for recognition of features and they
are used in various fields; CAD, NPR, computer vision,
computer graphics, geoinformatics or cartography.

The aim of this work is to find methods suitable to detect
features, implement and test them on a triangulated model
of human head used to create a 3D identikit - a 3D por-
trait enabling to identify a person. The proposed method
should be able to detect the features automatically or ma-
nually. Next step is to detect important points - the control
points (the corners of eyes, lips, etc.). It is important to de-
tect them, because they are used to deform a human head
model or add a texture (see Figure 1). These points have
been found manually and it was very time-consuming.

The rest of the paper is organized as follows. Section 2
gives an overview of the needed theory and existing me-
thods. Section 3 presents the proposed methods to detect
features on models of human head. Section 4 analyses re-
sults and experiments and Section 5 offers conclusions.

2 Theory and state of the art

In this section we briefly describe necessary background
needed for the methods that can be used to recognize im-
portant features.

Figure 1: Identikit of a man seen together with control
points.

2.1 Differential geometry

At the beginning it is necessary to define a regular sur-
face. Let D⊂ R2 denote an open subset. A smooth vector
function r : D→ R3 of two variables is called parametri-
zation for the surface S⊂E3 consisting of all points P with
~OP = r(u,v) with (u,v) ∈ D if
1. r is one-to-one map,
2. the partial derivatives ru(u,v) = [xu(u,v),yu(u,v),

zu(u,v)] and rv(u,v) = [xv(u,v),yv(u,v),zv(u,v)] are li-
nearly independent at every point (u,v) ∈ D. A subset S
that has a parametrization r as above is called a regular
surface [12].

Next we define the tangent plane to the surface S⊂ E3

at P as a plane that contains all tangent vectors to curves
on S in a point P. The tangent plane is spanned by the
tangent vectors to two parameter curves: ρ(s, t) = r(u,v)+
sru(u,v)+ trv(u,v) .

A vector n ∈ R3 is called a normal vector to S at P if n
is perpendicular to all tangent vectors v ∈ ρ(s, t). Let n be
a unit normal vector, then
n(P) = n(u,v) = ru(u,v)×rv(u,v)

|ru(u,v)×rv(u,v)| [12].
An important property that characterizes a surface is

curvature because it measures a local bending. The nor-
mal curvature nκ(i) is defined as the curvature of the
curve that belongs both to the surface S and to the nor-
mal plane containing both n and unit tangent vector of the

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

curve. The normal curvature can be computed as nκ(i) =
r̈ ·n, where r̈ is the second derivative of a vector function r
parametrized by the arc length. It can be negative, positive
or zero [10].

At every point we define two types of directions - prin-
cipal and asymptotic. Asymptotic directions are the di-
rections with normal curvatures equal to zero. Principal
directions are orthogonal directions with maximal or mi-
nimal normal curvatures. These two principal curvatures
are called maximal curvature κmax and minimal curvature
κmin.

The principal curvatures determine the range of the cur-
vature of the surface in local neighborhood of a point. We
can use the principal direction to compute other curvatu-
res. The Gaussian curvature at a point P ∈ S is obtained
by the relation in Equation 1.

K(P) = κmax(P) ·κmin(P). (1)

The average of principal curvatures is called the mean
curvature (Equation 2).

H(P) =
1
2
(κmax(P)+κmin(P)). (2)

More information can be found in [1, 10, 12].

2.2 Methods for feature recognition

There are several different representations for surfaces
used in computer graphics but triangular meshes seem to
be prevalent. Our head models are represented by 3D tri-
angular meshes defined by a graph G = (V,E,F), where
V is a set of vertices of the mesh, E is a set of edges, F is
a set of triangles. Due to popularity of triangular meshes
representation there are many studies on feature detection
on them.

There are some classical methods which somehow eva-
luate (classify) the vertices or edges and threshold them as
belonging to a feature or not. Hubeli et al. in [3] describe
some classification operators such as second order diffe-
rence or best fit polynomial. Another classification opera-
tors can be the disrete Laplace-Beltrami operator from [5].

A range of robust methods is available to detect features
directly from the meshes. Rössl et al. [4] compute curva-
ture and use morphological operators to produce feature
lines. Ohtake et al. [7] have developed a technique that is
based on computing curvature tensors and their derivatives
at each vertex by means of the projection and global ap-
proximation of an implicit surface. Their method achieves
good results, but the detection process is time-consuming.
Yoshizawa et al. [8] used local polynomial fitting of tri-
angulated meshes to estimate curvature tensors and their
derivatives and it reduces the computation time. Another
reduction of time-complexity of estimation of the curvatu-
res and their derivatives are addressed in [9] by applying
the modified moving-least-squares (MLS) approximation
directly to the mesh.

Kim et al. [11] have developed a technique based on vo-
ting tensor theory, which can handle n-dimensional trian-
gular mesh. Karlı́ček in [2] tested and compared methods
suitable for various classes of geometric objects, including
triangulated head models.

3 Proposed method

In the previous section we described some methods that
are used for detection of features. We selected and com-
bined those methods that can handle sharp angles be-
tween neighbouring triangles and triangulated approxi-
mation of smooth surfaces and also work in optimal
time-complexity. Our proposed method consists of the
following parts:

• Vertex evaluation - for detection of features

• Evaluation thresholding

• Detection of important areas

• Detection of control points

3.1 Vertex evaluation

We experimented with three methods. The first one uses
discrete curvature and was chosen because of good expe-
rience reported for head models in [2]. The second one
uses a modified MLS approximation and the last one is
Laplace-Beltrami operator.

3.1.1 Discrete curvature

The triangular model is a piecewise linear function and it
is not possible to determine the derivation. We use appro-
ximation equations for curvature described in [10].

To compute the discrete curvature, a ”mixed area” for
each vertex, denoted Amixed , is needed. It is based on Vo-
ronoi region defined for non-obtuse triangle. The area of
the Voronoi region can be computed as

AVoronoi =
1
8 ∑

j∈Ni

(cotαi j + cotβi j)||vi− v j||2,

where Ni is the set of 1-ring neighbour vertices of vertex
vi, αi j and βi j are the two angles opposite to the edge in the
two triangles sharing the edge (vi,v j) (see Figure 2a). This
expression for the Voronoi area does not hold in case of ob-
tuse angles. If there is an obtuse triangle among the 1-ring
neighbours, the Voronoi region either extends beyond the
1-ring or is truncated compared to our area computation.

The mixed area Amixed is computed as follows: for each
non-obtuse triangle we use the Voronoi area, for each ob-
tuse triangle we use the midpoint of the edge opposite to
the obtuse angle and connect the midpoint to the centers
of the adjacent edges. The mixed area is in Figure 2b.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Now when the mixed area is explained, we can express
the curvature. Mean curvature is computed by Equation 3:

H(vi) =
1

4Amixed
∑
j∈Ni

(cotαi j + cotβi j)||vi− v j||2. (3)

Gaussian curvature is given by Equation 4:

K(vi) = (2π−
f

∑
j=1

θ j)/Amixed, (4)

where θ j is the angle of the j-th face at the vertex vi, and
f denotes the number of faces around this vertex. This
operator will return zero for any flat surface.

a) b)

Figure 2: a) 1-ring neighbourhood of vertex vi. The angles
opposite to the edge (vi,v j) are α and β . Cotangent (green)
Laplacian vectors for vertex vi [5]. b) Mixed area at vertex
vi. Light blue are the areas in non-obtuse triangles, dark
blue is in a triangle with an obtuse angle at the vertex vi
and the purple area in the triangle with an obtuse angle at
one of the remaining vertices [2].

We have seen in Section 2.1 that the mean and Gaussian
curvatures are easy to express in terms of the two principal
curvatures nκmin and nκmax. Therefore we can define the
discrete principal curvatures by Equation 5.

nkmax(vi) = H(vi)+
√

H2(vi)−K(vi),

nkmin(vi) = H(vi)−
√

H2(vi)−K(vi).
(5)

We must make sure that H2 is always larger than K to
avoid numerical problems. If it is not the case than set√

H2(vi)−K(vi) to zero.

3.1.2 MLS approximation

In this section we use modified MLS approximation de-
scribed in [9].

Given a vertex vi, we first find a local reference plane
H. We use a tangent plane orthogonal to a vertex normal
at vertex vi as a local reference plane. Estimation of the
normal vector n = (n1,n2,n3)

T at each vertex is done by
averaging the normals of a 1-neighbourhood of triangles
and the vertex itself. The tangent plane in general form is
obtained

H : x ·n1 + y ·n2 + z ·n3 = d.

Let Nk
i be k-neighbourhood of vertices at vertex vi, and

let X = {xi}i∈Nk
i

be the orthogonal projections of the verti-

ces Nk
i to H, represented in a specific orthonormal coordi-

nate system defined on H, so that the origin is vi. The size
of the k-neighbourhood depends on the user. But 1 and 2-
neighbourhood generates a poor MLS surface in which it
is difficult to locate the principal directions. Adding more
neighbors leads to an increased time-complexity. In our
experiments we usually use 3-neighbourhood.

Next, we define a local approximation to the surface as
the third-degree polynomial p that minimizes the weighted
least-squares error given by

E = ∑
v j∈Nk

i

(p(x j)− f j)
2
θ(‖vi− v j‖),

θ(‖vi− v j‖) = e−(‖vi−v j‖2/h2),

where the function θ is Gaussian non-negative weighting.
The parameter h is the average of the lengths of the 1-
neighborhood edges of vi and f j = nT v j−d are the heights
of the vertices v j over H.

The error function can be rewritten as

E = ∑
v j∈Nk

i

(b(x j)
T c− f j)

2
θ(‖vi− v j‖).

where p(x) = b(x)T c, b(x) is the base vector of the po-
lynomial and c is a vector of unknown coefficients. Then
we put the partial derivations of the error function equal
to zero to find the coefficients of the polynomial and get a
linear system of equations given by Equation 6.

Ac = d, (6)

where A = ∑

vi∈Nk
i

2b(x j)b(x j)
T ,θ(‖vi− v j‖) and

d = ∑

vi∈Nk
i

b(x j) f j θ(‖vi− v j‖). The solution of the linear

system is c = A−1d.
Now we can estimate the principal curvatures at each

vertex vi. We convert the MLS polynomial z = p(xi) into
the implicit surface F = z− p(xi).

For each vertex vi we can estimate the unit normal vec-
tor at vi as n = ∇F/(|∇F |). Next we can estimate the prin-
cipal curvatures κ in the associated principal directions
t = (t1, t2, t3) as follows

κ =
Fi jtit j

|∇F |
,

where Fi j denotes the second partial derivatives of F . Di-
rections tmax and tmin are given by eigenvectors correspon-
ding to the two non-zero eigenvalues of ∇n. The matrix
∇n is given by Equation 7.

∇n =


∂n1
∂x

∂n1
∂y

∂n1
∂ z

∂n2
∂x

∂n2
∂y

∂n2
∂ z

∂n3
∂x

∂n3
∂y

∂n3
∂ z

 . (7)

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Mean and Gaussian curvature can be then estimated
using principal curvatures by expressions in Section 2.1.
Unlike the method in Section 3.1.1, now we can get also
negative values.

3.1.3 Laplace-Beltrami operator

The last method for classification of vertices is the
Laplace-Beltrami operator [5, 6]. The discrete Laplace-
Beltrami operator for a triangular mesh at the vertex vi is
defined in Equation 8.

δi = ∑
(vi,v j)∈E

ωi j(v j− vi), (8)

where ∑
(vi,v j)∈E

ωi j = 1 and the choice of weights defines

the character of δi.
We choose the cotangent weights ωi j = cotα+cotβ

2 ,
where α and β are the angles opposite to the edge (vi,v j)
(see Figure 2a). The cotangent Laplacian is zero on planar
1-rings because of geometry-dependence. The cotangent
Laplacian vector can be seen in Figure 2.

The cotangent Laplace-Beltrami operator is dependent
on the size of triangles, therefore, for evaluation of vertices
we have to use a modified cotangent Laplacian, which is
defined in Equation 9.

δi =
1
di

∑
(vi,v j)∈E

ωi j(v j− vi), (9)

where di =
Si
3 and Si is the area of the adjacent triangles at

vertex vi. The discrete Laplace-Beltrami operator is a vec-
tor, therefore, we use the size of the vector for evaluation
of vertices.

It is also possible to use truncating of evaluation. A per-
centage of vertices with the highest evaluation are selected
and they get a new value, the highest evaluation without
already selected vertices.

3.2 Thresholding

After we have classified vertices using the described me-
thods, we apply a standard thresholding to evaluate the
vertices. The user specifies the threshold parameter as mi-
nimal weight that a vertex must have to be included into
the subset of feature vertices. In case of the curvature com-
puted using MLS approximate we have also negative wei-
ghts; so in negative thresholding the user specifies a maxi-
mal weight.

We normalize the values of evaluation using the
Equation 10.

w(vi) =
w(vi)

|wmax|
·100 [%], (10)

where w(vi) is either the curvature from Section 3.1.1 or
3.1.2 or the size of cotangent Laplacian from Section 3.1.3

and |wmax| is the absolute value of maximum evaluation of
all vertices.

In agreement with recommendation in [2] we can
also apply morphological operators on feature vertices to
achieve better results. Morphological operators deal only
with binary values. So we use a thresholding operation to
determine the feature vector Ω:

Ωi =

{
1 f or wi ∈ [a,b]
0 otherwise,

where wi is evaluation at vertex vi and a,b are threshol-
ding parameters. A set Fs of significant vertices can be
expressed as Fs := {v j ∈ F |Ω j = 1}.

The morphological operators for triangulated meshes
are defined as follows.

Dilation
Let Fs ⊆ {1, · · · ,N}. The dilation of Fs by k-

neighbourhood Nk is defined as.

dilatek(Fs) := {v j |∃vi ∈Fs : v j ∈ Nk
i }.

The dilation operator adds vertices to the feature. It can
therefore be used to fill ”holes” in the features.

Erosion
Let Fs ⊆ {1, · · · ,N}. The erosion of Fs by k-

neighbourhood Nk is defined as

erodek(Fs) := {v j |Nk
j ⊆Fs}.

The erosion operator reverses the effect of dilation. It cuts
off undesired branches.

Opening
The opening operator is defined as

openk(Fs) = dilatek(erodek(Fs)).

The opening operator applies the erosion and after it ap-
plies the dilation. This application removes undesired arti-
facts, but the size of the feature is not preserved.

Closing
The closing operator is defined

closek(Fs) = erodek(dilatek(Fs)).

In closing F the feature is first grown and shrinked after-
wards. It fills holes in the inner region of the feature and
fills bays along the boundary.

3.3 Detection of important areas

Our aim is mainly to detect features automatically. In this
case, we have to find a suitable threshold that gives the
best result. One minimal threshold does not achieve a good

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

result on the whole model. Due to this we decided to detect
important areas, which include the entire area of eyes, ears,
nose and lips. Then we detect features and by applying
different thresholds in different areas we get better results.

We based the detection of important areas on the sim-
plest from the presented vertex evaluation approaches, i.e.
the mean curvature from Section 3.1.1. The minimal thre-
shold is selected as an average of evaluations. In Figure 3
we can see the resulting features. Then morphological ope-
rators are applied: closing operator, the opening operator,
another closing operator and a dilation. The results of this
algorithm are dependent on the choice of k-neighbourhood
and the number of vertices N.

From experimental results we chose the following k-
neighborhood:

• N ≤ 13000 ⇒ k = 5,

• 13000≤ N ≤ 20000 ⇒ k = 10,

• N > 20000 ⇒ k = 15.

If an automated processing is not required, the user may
select whether the last operator, the dilation, is applied and
chooses its k-neighborhood.

a) b) c)

Figure 3: Detection of important areas: a) Features after
evaluation by mean curvature and thresholding by average
of evaluations. Detection of important areas with b) 15, c)
10 - neighbourhood.

Now the important areas on the head are detected. The
area of ears is already separated but the rest is so far con-
nected which is not what the user needs.

To separate these areas, two methods can be applied.
The first method uses a simple distance based selection.
The boundary between eyes and nose is in the half of
distance between the point with maximal x-coordinate and
the peak of the nose (maximal y-coordinate). The boun-
dary between the nose and the lips is in the two thirds of
the distance between the peak of the nose and the point
with the minimal z-coordinate (see Figure 4).

The second method is based on the first, but the de-
tection of the nose is modified. The area of the nose con-
tains all vertices in the marked region in Figure 5. This
region is formed by the nose root (the lowest point on the
line of the nose), the boundary between the eyes and the
nose and the width of the nose.

Figure 4: First method of separation of areas.

Figure 5: Second method of separation of areas.

3.4 Detection of control points

Next goal is to try to find the control points - the most
important points of the feature. By the feature detection
we get the border of the lips, eyes and ears, then detection
of the control points is not difficult as described further.

Eyes On the eyes we need to detect the corners and 8
points. The corners of an eye have extreme x-coordinates
(see Figure 6).

Figure 6: Detection of control points on eyes. Features
(red) and control points (black).

Lips At first we detect the corners of lips (v1,v2) as
extreme x-coordinates. Using these two points we detect
other 12 points. Some of them are on the border of lips
and some of them in the middle of the lips (see Figure 7).

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7: Detection of control points on lips. Features (red)
and control points (black).

Ear We detect 5 points on the ears (see Figure 8a) First
two points (v1,v2) have extreme z-coordinates. Other two
points (v3,v4) lie in the first quarter of the distance from v1
or v2 and has the minimal y-coordinate. The last point v5
lies in the middle of the ear.

Nose The detection on the nose is the most difficult task.
Some of the points have to be detected outside of the set of
features. The tip v1 of the nose is found by the maximal y-
coordinate, the nose root v2 have minimal y-coordinate on
the line of nose. The point v3 lies in the middle between v1
and v2. Other 5 points are detected in the features using the
already known points, details see [1]. The detection can be
seen in Figure 8b).

a) b)

Figure 8: Detection of control points: a) on ears, b) on
nose. Features (red) and control points (black).

4 Experiments and results

In this section we show results of the proposed methods.
The method was implemented in Microsoft Visual Studio
2010 using the programming language C# and .Net Fra-
mework version 4. The program, where the method from
Section 3.1.1 and morphological operators were imple-
mented, was taken from [2]. We added other methods de-
scribed in Section 3.1.2 and 3.1.3 and algorithms for auto-
matic detection, detection of important areas and detection
of control points.

We tested our proposed methods on 11 models. Each
method works on various areas of the head differently. The
choice of thresholds is important. First, we evaluate the re-
sults of curvature computation described in Section 3.1.1,
then our implemented methods.

4.1 Discrete mean and maximal curvature

As minimal and Gaussian curvature do not achieve good
results we present only results of mean and maximal cur-
vature (see Figure 9).

a) b)

Figure 9: Detection of features using: a) minimal curvature
from Section 3.1.1, b) Gaussian curvature from Section
3.1.2.

Mean curvature provides very good results on the area
of eyes and ears. We get the border of eyes and ears. On the
lips and nose the results of mean curvature are not very sa-
tisfactory. On a few models we get the border of the lips,
on the nose we get only features around nostrils (see Fi-
gure 10 a).

Results of maximal curvature are similar to the mean
curvature. On the eyes and ears we have also good results
and even on the lips are the results quite good. With nose
we have also problems and have only features around nos-
trils. The results can be seen in Figure 10 b).

a)

b)

Figure 10: Detection of features: a) mean curvature, b) ma-
ximal curvature.

4.2 Mean and maximal curvature computed
using MLS

Let us recall that evaluation computed by this method have
also negative values, therefore, the color of features in fi-
gures is different than before (blue for negative and red for
positive values).

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

The result of mean and maximal curvature are very sa-
tisfactory on the area of eyes and ears. On the lips the ma-
ximal curvature is better than the mean curvature. The area
of the nose is complicated. Using maximal curvature one
can detect the bridge of nose on some models. On other
models again only the nostrils are detected. The results can
be seen in Figure 11.

4.3 Cotangent Laplace-Beltrami operator

The definition of cotangent Laplace-Beltrami operator is
very similar to the mean curvature in 3.1.1. Therefore, the
results of these methods are not too different (see Figure
12).

a)

b)

Figure 11: Detection of features: a) mean curvature com-
puted using MLS, b) maximal curvature computed using
MLS.

Figure 12: Features using Laplace-Beltrami operator.

4.4 Detection of important areas

The detection of important areas works on all models very
well. In case that the important areas are too small for the
user’s needs, dilation can be applied (see Figure 13).

Next, we show the result of selection of important areas.
We can see the difference of two methods in Figure 14.
Using the first method, we do not get all necessary vertices
in the area of nose (see Figure 14b). The second method
fixes this failure and we get the whole area of nose in all
models (see Figure 14c,d). It is possible to apply dilation

or erosion on each important area if the user is not satisfied
with the result achieved so far.

a) b) c)

Figure 13: Detection of important areas: a,c) the dilation
is not used, b) dilation in 3-neighborhood.

a) b)

c) d)

Figure 14: Result of selection of important areas: a,b) the
first method, c,d) the second method.

4.5 Automatic detection

Our aim is the automatic detection of features, but for this
we need to know a suitable configuration of parameters. It
is impossible to determine an optimal threshold that will
work on all heads. Therefore, for each area we chose the
method that generally works well on this area for most
tested models.

Our proposed automatic detection is following:

• Eyes: Maximal curvature from MLS approximate

• Ears: Mean curvature from MLS approximate

• Lips: Mean curvature with 5% values truncated

• Nose: Maximal curvature

The results of automatic detection of features are shown
in Figure 15. The automatic detection is very good in 75
percent of models.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 15: Automatic detection

4.6 Detection of control points

The last group are results of the detection of control points.
Automatic detection of control points after the automatic
detection of features is shown in Figure 16. These results
are very good.

a) b)

Figure 16: Detection of control points.

5 Conclusion

In this paper we have presented methods to detect impor-
tant features on triangulated human head models. The aim
of this work was to propose automatic detection and de-
tection with manuall choice of parameters.

We used three methods. We detected important areas
using the method described in Section 3.1.1. To classif-
cation of vertices we then used Laplace-Beltrami operator
(Section 3.1.3) and estimation curvature computed using
MLS approximate (Section 3.1.2). Then we get the featu-
res by applying thresholding and we could use morpholo-
gical operator to modify the features. We can also detect
the features on each important area. In automatic detection
we used methods which have the best results on the impor-
tant area and the minimal threshold parameter is determi-
ned by an average of evaluation on this area.

The proposed method was tested on several models used
for 3D identikits. The automatic method achieves a good
result on most models. The worst results are in the area of
the nose. Future development should consider other me-
thods working well automatically also in the area of the
nose. Detection of control points has satisfactory results,
but there are based on results of the features.

6 Acknowledgement

I would like to thank Ivana Kolingerová for her sup-
port and excellent leadership in this project and to Petr
Martı́nek for his help and consultations.

References

[1] K. Kubásková, Feature recognition on triangulated
models of human head. Pilsen, 2015. Bachelor thesis,
Faculty of Applied Sciences, University of West Bo-
hemia (In Czech).

[2] L. Karlı́ček, Feature recognition on triangulated mo-
dels. Pilsen, 2014. Master thesis, Faculty of Applied
Sciences, University of West Bohemia (In Czech).

[3] A. Hubeli, K. Meyer, M. Gross, Mesh Edge De-
tection. CS Technical Report. ETH: Institute of Scien-
tific Computing, vcarsko, 2000.

[4] Ch. Rössl, L. Kobbelt, H.-P. Seidel, Extraction of Fe-
ature Lines on Triangulated Surface Using Morpho-
logical Operators. Smart Graphics, AAAI Technical
Report SS-00-04, 2000.

[5] A. Nealen, T. Igarishi, O. Sorkine, M. Alexa, Lapla-
cian Mesh Optimization. GRAPHITE ’06, p. 381-389,
ISBN:1-59593-564-9, 2006.

[6] O. Sorkine, Laplacian Mesh Processing. The Eurogra-
phics Association, p.53-70, 2005.

[7] Y. Ohtake, E. Belyaev, H.-P. Seidel, Ridge-Valley Li-
nes on Meshes via Implicit Surface Fitting. Journal
ACM Transactions on Graphics, 2004, vol. 23, no. 3,
p. 609-612.

[8] S. Yoshizawa, A. Belyaev, H.-P. Seidel, Fast and Ro-
bust Detection of Crest Lines on Meshes. ACM Sym-
posium on Solid and Physical Modeling, 2005, p.227-
232, ISBN: 1-59593-015-9.

[9] S.-K. Kim, Ch.-H. Kim, Finding ridges and valleys
in a discrete surface using a modified MLS approxi-
mation. Computer-Aided Design, 2006, vol. 38, no. 2,
p. 173-180.

[10] M. Meyer, M. Desbrun, P. Schrder, A. H. Barr, Dis-
crete Differential Geometry Operators for Triangula-
ted 2-Manifolds. Visualization and Mathematics III,
2003, p. 35-57, ISBN: 978-3-662-05105-4.

[11] H.S. Kim, H.K. CHoi, K.H. Lee, Feature Detection
of Triangular Meshes Based on Tensor Voting Theory.
Computed Aided Design, 2009, vol. 41, no. 1, p. 47-
58.

[12] M. Raussen, Elementary Differential Geometry:
Curves and Surfaces. Department of mathematical
sciences, 2008, Aalborg University, Denmark.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

