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Abstract

In this paper, we present a wavelet-based method for lossy
compression of heightmap terrain data. It keeps the re-
constructed data within a certain absolute per-sample er-
ror bound adjustable by the user. This method accepts
blocks of float samples of dimensions 2nx2n at the input,
for which it can perform progressive mip-maps decom-
pression. The compression of a 256x256 block takes about
30 ms and the decompression about 1 ms. Thanks to these
attributes, the method can be used in a real-time planet
renderer. It is able to achieve the compression ratio of
37:1 on the whole Earth 90m/sample terrain dataset trans-
formed and separated into square blocks, while respecting
the maximum error of 5m.

Keywords: heightmap, lossy compression, wavelet, lift-
ing, guaranteed maximum error bound, real-time planet
rendering, mip-map, progressive decompression, transfor-
mation, quantization, filtering

1 Introduction

Real-time rendering of the whole Earth requires work-
ing with large terrain data, their storage and distribution.
A multiresolution (LOD-ing1) approach is essential in or-
der to reach reasonable frame rates. In literature, a survey
paper summarizing the most common multiresolution ren-
dering methods exists [7]. Some of them also contain data
compression.

For example, in C-BDAM [5] and P-BDAM [2],
the compression takes place in the refinement of a node
of the LOD hierarchy. The values inside a child node are
predicted from the parent node as accurately as possible.
The differences between these predictions and the real val-
ues are called residuals. These residuals are then quantized
and compressed by an entropy codec - thus, the compres-
sion is lossy. Both these methods use a slight modifica-
tion of the wavelet lifting scheme, ensuring that the error
of the reconstructed data is kept within a maximum error
bound adjustable by the user [8].

1LOD is the abbreviation of level of detail - degradation of quality of
the displayed data with the growing distance in order to optimize the ren-
dering

Another paper [6] describes a method based on the same
principle - the residuals required to refine a square node of
the terrain hierarchy are compressed. The computation of
the residuals is based on the JPEG2000 standard, which is
again a wavelet scheme. However, this method does not
support an arbitrary maximum error adjustable by the user
and its rendering pipeline does not handle visual artifacts
between adjacent nodes of different LODs.

In practice, many applications handle the real-time ren-
dering well with LOD schemes tailored to their needs. In
such cases, a compression method tied to a concrete LOD
scheme (which is the case of the mentioned methods) is
not feasible. This method handles only the compression,
so it can be used as a plug & play component in an existing
real-time renderer. Its only job is to compress a block of
terrain height samples sized 2nx2n and to provide fast pro-
gressive decompression of its mip-maps, while respecting
the maximum error bound at every mip-map. The source
code of the method is written modularly, so that any rep-
resentation of the height samples can be compressed -
doubles, floats or even arbitrary structures. It is inspired
by C-BDAM - the compression method is extracted from
the LOD scheme and simplified.

As a case study we have implemented this method as a
plugin into an application, which transforms the heights on
the planet surface into 256x256 blocks of 32-bit float sam-
ples in the unit of meters, which are then stored separately
and during the run fetched into a quadtree-based LOD hi-
erarchy. The mip-maps of the blocks are used while look-
ing at them from a side.

This approach introduces heavy redundancy of the data
- a block corresponding to a certain quadtree node con-
tains simplified blocks of its children and all these blocks
are stored separately. To the contrary, in C-BDAM only
the residuals needed to reconstruct the children from
the parent node are stored.2 However, the reason why this
approach is used is that the user can navigate to any area al-
most immediately - only the data needed for the scene has
to be fetched, without having to reconstruct it by travers-
ing from the root. Moreover, this approach enables the
user to flexibly extend the terrain data by high-resolution
insets. The mentioned redundancy of the data emphasizes
the need for as efficient compression method as possi-

2The LOD structure in C-BDAM is not a quadtree, though
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ble, doing only what is required - providing the mip-maps
while respecting the maximum-error bound of the samples
inside each one of them.

In Section 2, we briefly describe the basic theory of
wavelets and link C-BDAM and this method to it, in Sec-
tion 3, we briefly describe the basic outline of the method.
In Section 4, we describe the details of the method. In
Section 5, we compare the core algorithm of this method
to the algorithm of C-BDAM. We present the results in
Section 6 and then discuss them in Section 7.

2 The introduction to wavelets

Basically, two generations of wavelets exist - the first one
which is based on computation with dilated and translated
wavelet function [1] and the second one which is based on
filter banks - high-pass and low-pass filtering [3]. It has
been proven that these two approaches are computation-
ally equivalent [4].

We will describe the second generation of discrete
wavelet transform which is relevant for this work. The ba-
sic step of such transform is called lifting - a decompo-
sition of the input signal samples the count of which is
a power of two into two equally sized parts - low-pass
(the low frequency information) and high-pass (the high
frequency information). This step is then recursively ap-
plied to the produced low-pass part until its length is 1.
The opposite of lifting is reconstruction - enriching low-
pass samples by high-pass information to obtain twice as
detailed set of samples. It is the exact inverse of lifting.
This transform is widely used for compression of data
which can be achieved by quantizing the produced high-
pass parts (often called residuals).

The lifting is performed in the following way: the in-
put samples xk are split into the even ones: x2k = xe and
the odd ones: x2k+1 = xo. Then two operators are intro-
duced: the prediction operator P which is used to produce
the final high-pass part d (residuals) from xo and the up-
date operator U which is used to produce the final low-pass
part s from xe.

The prediction-first methods firstly apply the prediction
operator and then the update operator:

d = xo−P(xe)

s = xe +U(d)

The reconstruction is then the exact inverse:

xe = s−U(d)

xo = d +P(xe)

To the contrary, the update-first methods firstly apply
the update operator and then the prediction operator:

s = xe +U(xo)

d = xo−P(s)

Figure 1: Lifting in C-BDAM - the samples x are separated
into the even ones xe which will become s - low-pass and
the odd ones xo which will become d - high-pass.
Source: C-BDAM [5] (edited)

The reconstruction then looks like this:

xo = d +P(s)

xe = s−U(xo)

C-BDAM uses a slight variation of update-first lifting
when constructing the coarser LOD s from the finer LOD
x. It uses not only xo, but the whole x as the input to
the first update. Moreover, the computation of s cannot
be written as the summation of the product of U and xe
anymore, because xe is multiplied inside U(x):

s =U(x)

d = xo−P(s)

The corresponding reconstruction is:

xo = d +P(s)

xe =U−1(x)

Besides, the samples x are regularly distributed in
the plane, so the decomposition into xe and xo depends
on the position of the samples, no longer on their indices
(Fig. 1). However, the count of xe is still half the count
of x. Note that if the residuals d were simply quantized
after lifting, each step of the reconstruction would make
the maximum absolute deviation from the original values
larger. To ensure the maximum-error bound at each level,
the residuals computed during the lifting are corrected ac-
cording to the actual values in another top-bottom pass
which then turns out to be identical to the reconstruction
(decompression).

The proposed method uses the same main lifting princi-
ple as C-BDAM (update-first and use the whole x as the in-
put of U), but introduces several differences: the count of
xe and thus s is not half the count of x, but one fourth of
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it, as each four neighboring pixels inside x are collapsed
into one inside s (Fig. 2). In addition, the lifting is not
complete, as no prediction and computation of residuals is
performed there. These are let to be performed in the sec-
ond top-bottom pass where also the maximum-error bound
is ensured. Just like in C-BDAM, this pass is identical
to the reconstruction of the data. The prediction operator
is applied more times in the reconstruction which is ex-
plained in Section 4. The reasons for all these differences
are explained in Sec. 5.

3 The outline of the method

Here is how the compression works. We perform two
passes on the input heightmap. In the first bottom-top
pass, we compute the target mip-maps - from the largest
one to the smallest one. In the second top-bottom pass,
we construct the compressed mip-maps from the smallest
one to the largest one with respect to the target mip-maps
in order to preserve the maximum-error bound. For each
constructed mip-map, we store the residuals needed to pro-
duce it from the previous decompressed mip-map.

In more detail, given the input square block of float
height samples Ln sized 2nx2n, n mip-maps L...n− are
constructed from it. The dimension of Li is half the di-
mension of Li+ and Li is computed from Li+ by aver-
aging of pixels - see the details in the next section.

In the second top-bottom pass, with L..n at hand, we
compute L•..n - the final decompressed mip-maps. Li and
L•i are of the same size and the maximum absolute devi-
ation between their corresponding samples is not greater
than D - the parameter set by the user. We will denote this
by:

maxdev(Li,L
•
i)≤D,

where

maxdev(A,B) = argmax
x,y
|A[x][y]−B[x][y]|

We construct these mip-maps with the help of a uniform
quantizer QD respecting this error bound:

maxdev(QD(x),x)≤D,

where x is an arbitrary float sample or block of samples.
L• contains just the quantized sole sample of L

L• =QD(L),

and L•i+ is computed from L•i by quantizing the differ-
ences between the target values Li+ and the predictions
from L•i :

Ei+ =Li+−P(L•i)

E•i+ = QD(Ei+)

L•i+ = P(L•i)+E•i+ (1)

where P is a prediction operator, Ei+ are the differ-
ences and E•i+ are the quantized differences. Note that
thanks to the fact that the quantizer keeps the maximum
absolute error within the bound D and the residuals Ei+

are computed with respect to the target mip-map Li+,
maxdev(L•i+,Li+) ≤D, no matter what values are in
L•i and what is the form of the prediction operator P. All
the quantized residuals E•..n are then compressed with
the help of an entropy codec (Zlib) and saved (E• = L•),
so the more accurate P is, the better the compression ra-
tio is. The details of the prediction operator used in this
method are described in the next section.

During the decompression, the quantized residuals are
read and used to progressively reconstruct the mip-map
levels L•..n (eq. 1).

4 Details of the method

In this section, we describe the details of the method,
namely how the target mip-maps are constructed and what
the prediction operator P looks like.

The down-sampling of the mip-maps can be performed
by any form of averaging. As we saw in the previous chap-
ter, the maximum absolute error does not depend on how
the mip-maps look, as long as they contain valid values.
However, the way the mip-maps are constructed affects
the compression ratio. Moreover, various mip-map con-
structions produce different visual artifacts. In terms of
the visual artifacts, the best way to down-sample a mip-
map is to just average the four neighboring pixels [2n,
2n+1], [2n, 2n+1] at Li+ into [n][n] at Li.

In the previous section, we made a simplification claim-
ing that a decompressed mip-map L•i+ is constructed
from the previous L•i in just one step (eq. 1). We did that in
order to emphasize the fact, that maxdev(L•i+,Li+) <
D. In fact, three such steps happen. Nevertheless,
the residuals are checked after each of these steps and all
the predictions are made from the decompressed values, so
the maximum error bound is still kept. So, when we con-
struct the following decompressed mip-map, every pixel p
from L•i is substituted by four pixels in L•i+ as shown in
Fig. 2.

The first one of them, labeled a, is predicted directly
from L•i by a simple prediction operator Pa(L

•
i) = p. Fol-

lowing this, the residuals Ea and E•a are computed ac-
cording to the target value at in Li+ and a is assigned
the final value a• (eq. 2). It holds that maxdev(a•,at) ≤
D.

Ea = at − p

E•a = QD(Ea)

a•= p+E•a (2)

The second one of them, labeled b, is predicted from
the pixels a• in L•i+ by the straight-oriented order 2
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p Li•

Li+1•

Figure 2: Substitution of a pixel p from L•i by four chil-
dren in L•i+

b

a•

a• a•

a•

Figure 3: The prediction of b - Pb(L
•
i+) - is the average

of all the displayed a•

Neville interpolating filter (fig. 3), just like the border val-
ues are predicted in C-BDAM. A similar computation of
residuals Eb and E•b then follows according to the target
value bt from Li+ and b is assigned the final value b•
(eq. 3).

Eb = bt −Pb(L
•
i+)

E•b = QD(Eb)

b•= Pb(L
•
i+)+E•b (3)

The cases when the filter comes out of the image are
handled by a specific mirror extension (fig. 4). Unlike C-
BDAM, where the order 4 Neville filter is used for the in-
terior values, in this method, the order 2 filter is used even
for the interior values in order to increase the speed. As
an additional optimization, the interpolation with the order
2 filter can be easily cached during horizontal traversal.
Moreover, using the order 4 filter made the compression
ratio slightly better - probably because it predicts hills and
walleys more accurately, but made the quality of the recon-
structed heightmap worse - it produced sharper artifacts on
the borders of smooth gradient terrain blocks (Fig. 5) and
near sharp terrain changes (Fig. 6).

The reason for these artifacts is that while the predic-
tions are close enough to the real terrain (their quantized
residuals are zeroes), the reconstructed values might be

a1• a2• a2•

b1 b3

b2 b4

a3• a4• a4•

a4•a4•a3•

Figure 4: Handling of border cases in the computation of
Pb(L

•
i+) - the red line represents the border.

Original

Order 2

Order 4

Figure 5: Two examples of different artifacts caused by
order 2 and order 4 filters at the border of smooth gra-
dient terrain - the first row shows the target heightmaps,
the second row shows the same heightmaps compressed
with the order 2 filter, the third row with the order 4 filter.
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Original

Order 2

Order 4

Figure 6: Two examples of different artifacts caused by or-
der 2 and order 4 filters at a sharp terrain change - the first
row shows the target heightmaps, the second row shows
the same heightmaps compressed with the order 2 filter,
the third row with the order 4 filter. The values in the orig-
inal images range from 0 to 16 and the maximum deviation
of the compression is 9.

D

P

Figure 7: The illustration of how an artifact occurs -
the black predictions are within the maximum-error bound
D, so they are equal to the reconstructed values, but
the blue one is not. Because a uniform quantizer is used,
the blue prediction is shifted by 2D−1 to the top, creating
an artifact.

D

P

Figure 8: Another illustration of an artifact - the black
predictions are within the maximum-error bound D, but
the blue one is not. The blue prediction is shifted by 2D−1
to the bottom, creating an artifact.

systematically above/under the terrain. But as soon as one
prediction is a bit further from the terrain than those at
the adjacent pixels, its residual is quantized to a non-zero
value and the reconstructed value might flip to the other
side of the terrain, producing a visual artifact. This of-
ten happens when smooth terrain is followed by a sharp
change. The prediction operator might then predict differ-
ent values near this change, as it reaches out to the area
behind the change (Fig. 7, 8). This spike is then propa-
gated to the next levels, but still within the maximum error
bound. The mirroring at the borders produces such sharp
changes, too, in a different, more complex way. However,
some better form of mirroring might sort this out.

While the prediction of the order 2 filter is the average
of the four neighboring values, the prediction of the order
4 filter tends to differ from the neighboring values more,
so this filter has the tendency to produce more disturbing
artifacts.

The remaining pixels labeled c are predicted from
the pixels a• and b• in L•i+ by the diagonally-oriented
order 2 Neville interpolating filter (fig. 9). The compu-
tation of residuals Ec and E•c then follows according to
the target value ct from Li+ and c is assigned the final
value c• (eq. 3).

Ec = ct −Pc(L
•
i+)

E•c = QD(Ec)
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c

•

•

•

•

Figure 9: The prediction of c - Pc(L
•
i+) - is the average

of all the pixels marked with a dot - •.

a1• a2•

a4• a4•a3•

b1• b1• b2•

b2•b1•

a2•

b1• b2•

Figure 10: Handling of border cases in the computation of
Pc(L

•
i+) - the red line represents the border.

c•= Pc(L
•
i+)+E•c (4)

The cases when the filter comes out of the image are
handled by a specific mirror extension (fig. 10). For
the same reasons as in the prediction of b pixels, the or-
der 2 filter is used for the prediction of all c pixels - both
interior and exterior ones. Similarly, the interpolation with
such filter can be cached during diagonal traversal.

The residuals E•a, E•b and E•c are then encoded by
an entropy codec and stored. The decompression is done
in a similar manner with the only difference that the resid-
uals are not computed anymore, but just decoded and read.
So, we substitute every pixel from L•i by four pixels in
L•i+, the value of which is computed in three passes of
prediction followed by adding the read residual (the last
lines of eq. 2, 3, 4).

5 Functional comparison to C-BDAM
and wavelets

As we already mentioned, C-BDAM contains the whole
rendering pipeline, whereas our method does not. How-
ever, it can be compared to C-BDAM in terms of how lift-
ing is performed. As we already mentioned in the end of
Section 2, C-BDAM omits a half of the samples while con-

structing a coarser LOD, whereas our method omits three
fourths of the samples. This is spatially equivalent to two
steps of lifting in C-BDAM (Fig. 1). The first step removes
the pixels b and the second step removes the pixels c as
seen in Fig. 2. Nevertheless, this equality is only spatial.

In our method, an analogy of the update operator of
lifting is used to construct Li from Li+ (the averaging
of four neighboring pixels - Sec. 4). However, the lift-
ing is not complete in our method as it does not contain
the prediction operator - no residuals are computed there
yet. In C-BDAM, also a prediction operator is used in
the lifting to produce intermediate residuals. However, us-
ing just these residuals would not guarantee any maximum
error bound, so C-BDAM makes another top-bottom pass
to correct the residuals against the real values of samples
produced in the first bottom-top pass. To make this cor-
rection fit into the original wavelet framework, several in-
tricate computations need to be performed, including divi-
sion, which is quite a large performance hit.

Our vision was that once it is needed to perform an ex-
tra top-bottom pass to correct the residuals so that the max-
imum error bound is guaranteed, it is not neccessary to
compute any temporary values of the residuals during
the lifting steps (the construction of the LOD pyramid).
This is why we perform just an analogy of the update
(the averaging of pixels) in the update-first scheme and
let the following top-bottom pass compute suitable val-
ues of residuals. This is obviosly a major deviation from
the wavelet scheme. In the top-bottom pass, we just pre-
dict the values in the finer LOD as accurately as possi-
ble, but these predictions have no linkage to the previous
bottom-top pass, as they have not been used there at all.
Then we directly compute the residuals with respect to
the original values computed in the first bottom-top pass
at the corresponding levels.

All in all, it can be said that the way the residuals are
computed in this method is an extreme simplification of
the way they are computed in C-BDAM. This way of com-
putation does not even conform to the second-generation
wavelet scheme - the lifting is not complete and the recon-
struction is not the inverse of lifting. We think that with-
out the residuals quantization or the per-level correction
of residuals, respecting the wavelet scheme makes sense,
as it ensures computational equivalency with the first-
generation wavelets. However, in case the residuals need
to be corrected at each level, we think that conforming
to a wavelet scheme makes no sense, because this cor-
rection immediatelly destroys the mentioned equivalence
- once a residual is cropped in order to get the resulting
value closer to the actual data, it cannot be said that any
of the following reconstruction is the inverse to the lifting
performed before. Moreover, thanks to the mentioned de-
viation of C-BDAM from the classical update-first second-
generation wavelet discussed in Section 2, we question
its computational equivalency with the first-generation
wavelet even with no residuals quantization or cropping
performed. Because of this, we think that the computa-
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tions made in the second top-bottom pass can be optimized
this way without any cost. Thus, this method would prob-
ably better be called wavelet-inspired than wavelet-based.

6 Results

This method has been applied in the real-time planet ren-
derer mentioned in the introduction on height data of
the whole Earth with the resolution of 90m (SRTM). Due
to the redundancy of data in the applied LOD hierarchy,
the size of the original data was 260GB. With the max-
imum error bound set to 5m, the size of the compressed
data is 7GB, which yields the compression ratio of 37:1.

For a comparison, C-BDAM reached the compression
ratio of 64:1 on the same dataset, but with the maximum
error bound set to 16m. Thanks to the fact that the LOD
hierarchy of C-BDAM contains no redundancy, the size of
the original data was just 29GB and the size of the com-
pressed data just 870MB. Under such circumstances, only
the comparison in terms of the compression ratio is rele-
vant.

In Fig. 11, you can see a part of a heightmap com-
pressed by this method, together with the differences from
the original.

7 Conclusions

In this paper, we described a heightmap compression
method designed to be a plugin into an existing real-
time planet renderer with its own rendering pipeline.
The method proved to be convenient for the purpose, pro-
viding fast decompression (only about 1ms per block of
data). Its compression ratio is comparable to C-BDAM,
which is the method with the best compression ratio
among the methods for the terrain compression, which
guarantee a maximum error bound adjustable by the user.
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