
Towards Interactive Rendering for Lighting Design

Mariusz Pasinski and Michał Chwesiuk∗

Supervised by: Radoslaw Mantiuk†

Institute of Computer Science
West Pomeranian University of Technology

Szczecin / Poland

Abstract

We introduce an interactive method for computing illumi-
nance for lighting design purposes, focusing on photomet-
ric quantities. The main goal of lighting design rendering
is to achieve accurate photometric quantities on the desired
calculation planes. The vast majority of lighting design ap-
plications are based on unbiased global illumination ren-
dering techniques, which are executed entirely on CPU.
The performance of those techniques is limited and makes
it difficult to work interactively with the lighting project.
We evaluate whether a renderer based on instant radiosity
implemented in OpenGL guarantees the accuracy of light-
ing calculations comparable to the lighting design industry
standards. Our renderer exploits photometric light sources
defined by the IES standard and physically based materials
to ensure the correct calculation of the illuminance. The
results are compared with the Radiance renderer, which is
considered to be a standard for the lighting design calcula-
tions. As it is work in progress, the results are tested using
a simple scene, an isotropic light source and perfectly dif-
fuse materials.

Keywords: rendering for lighting design, interactive ren-
dering, GPU rendering, global illumination, lighting de-
sign, photometric rendering.

1 Introduction

Lighting design is concerned with the design of lighting
systems that provide comfort to people [4]. A good light-
ing system provides interiors or exteriors where people can
see clearly, easily and without discomfort. Such designs
have rigid illumination constraints, some of which might
be enforced by law. This raised a need for specialized light
visualization applications that are powered by a photomet-
ric renderer, in which physically based and unbiased ren-
dering [10] delivers data on the physical illuminance (ex-
pressed in lux) in certain locations in virtual scenes.

A recognized standard in the lighting design applica-
tion is the Radiance renderer [11]. However, Radiance is
performing all the computations exclusively on the CPU.

∗mchwesiuk@wi.zut.edu.pl
†rmantiuk@wi.zut.edu.pl

Thus, despite the high accuracy of calculations, the ren-
dering performance is limited and Radiance is hard to use
in interactive systems.

In this paper we propose an algorithm tailored for light-
ing design applications, based on instant radiosity [8],
which can exploit heterogeneous platforms and massive
parallel architectures such as modern GPUs. Instant ra-
diosity is a two phase rendering method. The first prepro-
cessing phase creates virtual point lights (VPLs) by trac-
ing photons in random directions starting at the position
of each primary light source. The fact that each traced
light path is independent makes this phase fully paralleliz-
able and suitable for execution on GPUs. In addition, this
phase can also be performed offline reducing the render
times even further. The second phase is used to light the
scene using previously created VPLs.

We compare the accuracy of our renderer with the
ground-truth data obtained from Radiance. Three basic
scenes sharing a single IES photometric light source are
used in the tests. All materials are modeled using a Lam-
bertian material (Lambertian BRDF).

In Section 2, we briefly introduce the basic concepts and
theory related to photometric rendering. In Section 3, we
describe our implementation of the instant radiosity algo-
rithm. Section 4 presents the testing methodology used
to measure the quality of this implementation in terms of
accuracy and performance. Finally, in Section 5, we con-
clude the paper and point out some of the possible im-
provements that could be applied to our algorithm.

2 Background

Radiometry is a branch of physics, which concerns with
measurements of the electromagnetic radiation [2]. Since
visible light is a specific subset of the electromagnetic
spectrum, with wavelengths ranging from 380nm (ultra-
violet radiation) up to 780nm (infrared radiation), it can be
described using basic radiometric quantities.

However, as shown in Figure 1, the sensitivity of the hu-
man visual system is not uniform across the whole electro-
magnetic spectrum. This observation led to the introduc-
tion of CIE luminous efficiency functions linking radiome-
try and photometry, which is used to study the perception
of radiation by the human eye.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

400 450 500 550 600 650 700 750

Wavelength λ [nm]

0.0

0.2

0.4

0.6

0.8

1.0
E
f
f
ic
ie
n
cy

ȳ M
(λ

)

Figure 1: 1988 CIE Photopic Luminous Efficiency Func-
tion yM(λ) (with Judd and Vos modifications). This plot
was drawn based on data delivered by CIE.

Each radiometric quantity, like radiant intensity or irra-
diance, can be converted to its corresponding photometric
counterpart by integrating against the CIE luminous effi-
ciency function y(λ). The integration is necessary because
the measured light can be a combination of wavelengths in
a spectral power distribution.

While luminance is the most useful quantity in many
areas in computer graphics, in lighting design communi-
ties the most important quantity is illuminance E. It is
a measure of luminous flux Φ [lm] incident on a surface
area A [m2]. The SI unit of illuminance is lux [lx].

Photometric rendering besides focusing on physically
based simulation of light, is heavily relying on data mea-
sured from real light sources. One of the most popular file
formats describing photometric light sources are IES files
(Illumination Engineering Society file format [4]). Such
files are published online by most luminaire manufactur-
ers. They provide a luminous intensity distribution mea-
sured in an Ulbricht Integrating Sphere or using a Gonio-
photometer.

2.1 Photometric rendering

Photometric rendering is a term used to describe unbiased
rendering algorithms, which focus on computing the illu-
minance of the physical light delivered to certain regions
in the scene. Since the rendering equation [6] has no ana-
lytic solution, in order to solve it, a Monte Carlo integra-
tion must be used. The difference between the expected
value of used Monte Carlo estimator and the actual value
of the integral is called bias. If this bias is equal to 0, then
such an estimator is called unbiased. In this case the only
error is due to the estimator variance which can be reduced
by simply increasing the number of samples taken.

Biased renderers have many interesting properties, like
faster convergence speed, but they usually introduce sys-
tematic errors. However, all unbiased renderers that at-
tempt to solve the rendering equation might be still consid-

ered as biased to some degree since this equation is an ap-
proximation that ignores, for example wave phenomena
like diffraction, polarization, or interference.

2.2 Rendering frameworks

There is a number of available renderers suitable for light-
ning design computations. This subsection briefly evalu-
ates those rendering frameworks.

Radiance1 is a collection of small, open-source, and
cross-platform applications that follow the Unix philos-
ophy. Such approach makes the whole rendering pack-
age unique and very versatile. It uses Monte Carlo tech-
niques to estimate the lighting distribution. Authors claim,
that the accuracy of their renderer has been scientifically
validated. Although Radiance lacks GPU acceleration.
Mitsuba2 is an open-source, research-oriented, physically
based modular rendering framework in the style of Physi-
cally Based Rendering book3. It supports both biased and
unbiased algorithms, which are implemented in portable
C++. One of the supported integration algorithms is In-
stant Radiosity. LuxRender4 is an open-source physically
based renderer derived from PBRTv25. The GPU accel-
eration is currently experimental but gives very promising
results. LuxRender has unique Light Groups feature that
allows users to edit light properties without re-rendering
the scene. OctaneRender6 is an unbiased physically cor-
rect renderer. It has been implemented to exploit parallel
compute capabilities of modern CUDA-powered GPUs.
It supports custom shaders written in Open Shader Lan-
guage and uses OpenVDB for particle simulation. Arion7

is a stand-alone unbiased physically-based renderer with
hybrid CPU and CUDA-GPU acceleration. It comes with
a pre-made BSDF material library. Indigo Renderer8 is
an unbiased photorealistic renderer. It supports CUDA and
OpenCL-enabled devices for rendering acceleration.

3 Instant Radiosity Renderer

3.1 Renderer architecture

Figure 2 shows the high-level diagram of our renderer ar-
chitecture. At the beginning, the XML scene description
and all referenced IES and 3D mesh files are being im-
ported. The XML document contains camera properties,
placement and orientation of IES light sources and de-
scription of triangulated mesh instances. This description
also contains the material parameters needed for the BRDF
used by each mesh.

1https://www.radiance-online.org/
2http://www.mitsuba-renderer.org/
3http://www.pbrt.org/
4http://www.luxrender.net/
5https://github.com/mmp/pbrt-v2
6https://home.otoy.com/render/octane-render/
7http://www.randomcontrol.com/arion
8http://www.indigorenderer.com

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Schematic diagram of our instant radiosity ren-
derer.

Then, quasi-random light paths are being generated for
each primary light source (see Sections 3.3 and 3.5). Once
the light paths are generated, the energy of each light
source is distributed across the scene. At each light path
vertex, a virtual point light is created with the intensity
proportional to the energy carried by the corresponding
ray.

Once all the light paths are exhausted, the optional VPL
filtering step takes place. This phase was introduced to re-
move all VPLs with zero intensity from further processing.
Our benchmarks showed that this step greatly reduces the
rendering times without introducing any bias.

At this moment, it is possible to start the rendering pro-
cess. Forward shading is used to gather the contribution
of IES and VPL lights and calculate the illuminance based
on the used physical material model. In our case this is
a perfectly diffuse model using Lambertian BRDF (see
Section 3.4). At the end the image is added to the accu-
mulation buffer.

We utilize the RadeonRays library (previously known
as AMD FireRays) for ray casting on GPU compute units.
It is heavily used during the VPL generation phase to cal-
culate the ray intersection points, but also in our reference
ray tracing render back-end for determining visibility us-
ing occlusion queries.

3.2 Rendering equations

Our algorithm calculates the direct and indirect illumi-
nation terms separately exploiting the linearity of light.
This allows to directly accumulate the contribution of pho-
tometric light sources without approximating them with
VPLs. This approach greatly increases the accuracy of di-
rect illumination. We use the following equation to com-

pute the illuminance originated from photometric light
source:

E =
I cosθ

r2 [lx], (1)

where I is the luminous intensity of the light source, r de-
picts distance from the light source to surface, and θ is the
angle between the light ray and surface normal (see Fig-
ure 3).

Figure 3: Simplified notation for rendering equation from
Section 3.2.

The indirect term is approximated using VPLs. The
Equation 2 is used to calculate the luminous power Φvpl
of each VPL created at vertices of each traced light path:

Φvpl =
ρ Φ |l̂ · n̂|
p(ω̂o) N

[lm], (2)

where

• ρ ∈ [0;1] is the reflectivity of the surface,

• l̂ is a unit vector towards the light source,

• n̂ is the surface normal vector,

• p(ω̂o) is the probability of emitting in direction ω̂o,

• N is the total number of light samples taken.

The probability p(ω̂o) is received from the light’s lumi-
nous intensity distribution after normalizing it by the total
power of the light source Φ. Such power Φ is computed
by integrating the luminous intensities I over all possible
directions, as shown in the following equation:

Φ =
∫

Ω

I(ω̂o) dω̂o [lm]. (3)

Illumination of the surface originated from VPLs is cal-
culated using the following equation:

E =
N

∑
i=0

Li(x, ω̂i)
|ω̂i · n̂| |− ω̂i · n̂i|
||x− y||2

V (x,y) [lx], (4)

where

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

• E is the illumination at shaded point x,

• N is the number of VPLs,

• ω̂i represents the direction towards the ith VPL,

• Li(x, ω̂i) is the luminance from ith VPL,

• n̂ is the normal at the shading point x,

• n̂i is the normal at the surface on which the ith VPL
lies on,

• y is the position of ith VPL.

The binary mutual visibility function V (x,y) has been im-
plemented using shadow mapping techniques.

3.3 IES-based light sources

We use the IES standard to describe the physical prop-
erties of light sources. The first version of this standard
(defined by the LM-63 file format specification) was pro-
posed in 1986 by the IESNA9 and quickly became the in-
dustry standard for luminaire photometry. Later, in 1991
a new version replaced label lines with predefined set of
keywords. The standard was revised again in 1995 to in-
troduce new keywords, add support for near-field photo-
metric data and deprecate the “ballast lamp factor” [1].

[cd]
0°

45°

90°

135°

180°

225°

270°

315°

1000
2000
3000
4000
5000
6000
7000
[cd]

Figure 4: Example rendering of Philips MASTERline ES
20W 8D IES light source and the corresponding polar plot.

Such files are simple ASCII text files with ies exten-
sion. They contain a short description of the luminaire,
a set of angles which describe the photometric web used
for measurements (see example in Figure 4), and the val-
ues of luminous intensities in those directions. However,
this format treats all light fixtures as point light sources,
which might introduce errors. In order to minimize this
error down to 1% it is highly recommended to use Lam-
bert’s five times rule, which says, that the distance to the
light source should be greater than five times the largest
dimension of the source [9]. This rule also helps to avoid
the singularity in Equation 4, preventing the denominator
approaching zero.

Our implementation parses such IES files and builds
a floating-point lookup texture, which will be used in frag-
ment shaders to perform Hermite interpolation using GPU

9Illumination Engineering Society of North America

texture samplers. This approach enables us to express the
luminous intensity distribution function I(ω̂o) by mapping
the spherical coordinates of outgoing direction ω̂o(θo,φo)
as two dimensional texture coordinate (~u,~v).

3.4 Physical materials

Since our algorithm supports only fully opaque materials,
we can use Bidirectional Reflectance Distribution Func-
tion [12]. From energy conservation, it follows that such
functions must have values only in the [0,1] interval. In ad-
dition, such functions must satisfy the Stokes-Helmholtz
reciprocity principle [5].

Since all surfaces in our scenes exhibit diffuse reflec-
tions only, we use a Lambertian BRDF to model the mate-
rial response:

fr(ω̂i, ω̂o) = fr(ω̂o, ω̂i) =
ρ

π
, (5)

where ω̂i is the direction of the incoming light, ω̂o is the
direction of the light reflected from the surface and ρ de-
picts the surface reflectance coefficient.

3.5 Implementation

As shown in Figure 5, our implementation is split into
smaller command-line utilities following Radiance’s ar-
chitecture. This approach enabled us to validate each func-
tionality in isolation and reduce code duplication. Further-
more, it gives more advanced users the scripting abilities
and allows them to insert or replace any application in the
rendering pipeline.

Nearly all utilities are implemented using C++, follow-
ing the Orthodox C++ guidelines [7]. However, we also
maintain Python scripts for less compute intensive tasks,
for example, for comparing rendered images and generat-
ing plots.

The VPL generation phase described in Subsection 3.1
is implemented as vplgen program. This program is
heavily relying on RadeonRays for accelerating the ray
tracing of light paths. All light paths are scheduled for
execution by RadeonRays’ kernels at the same time. In
order to hide the latency, we also implemented a batch-
ing mechanism using OpenMP, that takes advantage of all
available CPU cores. All generated VPLs are then written
to standard output, which can be redirected to file or to an-
other utility, like vplvis shown in Figure 6. If the VPL
output is redirected to a file, we call this file “VPL cache”.

To generate random light paths, we randomize a point
on an unit disk using a Low-discrepancy Hammersley se-
quence and map those points to an unit hemisphere. Re-
sulting sample distribution has been shown in Figure 7.

It is possible, that VPLs with zero intensity will be cre-
ated. This is the case when a given light path does not hit
any surface or the energy of such light path becomes zero.
Despite the fact, this side effect enables additional features

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: Data flow in our implementation. Green boxes are implemented in C++, blue boxes are Python scripts and red
boxes are C++ applications using RadeonRays. Dashed lines represent optional data flow.

Figure 6: Screenshot from vplvis utility showing the
distribution of 6803 generated VPLs.

- such as editing light intensities without the need for up-
dating the light paths. In order to avoid wasting CPU and
GPU cycles on processing such VPLs, an optional thresh-
olding mechanism was introduced. If used carefully, it can
filter out those VPLs without introducing any bias.

The OpenGL renderer irgl is running in a forward-
compatible OpenGL 4 Core Profile. In order to fulfill
the interactivity requirement, the illuminance is integrated
across multiple frames. This iterative approach allows for
faster inspection without waiting for the rendering process
to complete. Shadow mapping has been utilized for com-
puting the occlusion, where for each VPL we write the
linear depth into a cubemap render target. This technique
is commonly used in real-time game engines for casting

Figure 7: Example distribution of 1000 cosine weighted
samples used for sampling IES light sources. The density
of samples depends on the number of traced light paths.

shadows from point light sources [3].

4 Accuracy and Performance Tests

Our main goal is to provide an reasonable alternative algo-
rithm for lighting design applications. It should be as ac-
curate as possible, while still maintaining interactive frame
rates. In order to test the quality of our renderings, we will
compare both the accuracy, and the performance of our
renderer with Radiance.

4.1 Testbed and stimuli

Both accuracy and performance tests were executed on
a personal computer running Arch Linux distribution. This
unit was equipped with a quad-core, Intel Core i7-2600K

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

CPU with 32 GB of system memory and an AMD Radeon
HD 6950 GPU.

We prepared an automated testing framework in the
form of a simple collection of Bash and Python scripts.
This framework takes care of measuring the average ex-
ecution time with the help of the time command. All
tested applications were measured 10 times, while delet-
ing all temporary and generated files between runs to make
sure that each measurement is taken in the same initial
conditions. We stored copies of the rendered images, in
order to compare the rendering quality in different config-
urations. They will be compared using the mean squared
error (MSE) metric.

We used the rad utility from Radiance to acquire the all
reference images. It was invoked with a rif file, translated
with xml2rif ahead of time from our XML scene file,
with quality set to high. The resulting image was gener-
ated as a HDR file which contains irradiance values. Since
our renderer uses only photometric units, we preprocessed
the HDR files with a Python script that loaded the output
image, converted irradiance to illuminance and saved the
converted results to a mat file.

The accuracy tests were performed on two different
scenes, that focus on different aspects of rendering. All
of them share a single photometric IES light source and
a pin-hole camera with 45◦ horizontal field of view. The
first scene (see Figure 8, left) was used to test the accuracy
of direct illumination without the surface inter-reflections.
The camera has been placed in the shadow volume to make
sure that the light source is not visible. The second scene
(see Figure 8, right) was used to test the accuracy of in-
direct illumination calculated on the P2 plane located in
the shadow. This plane was illuminated exclusively by the
light reflected from the plane P1.

Figure 8: The layouts of the test scenes. Black lines repre-
sent 2m2 planes. Dashed blue arrows depicts directions of
the normal vectors.

4.2 Accuracy tests

We noticed that the accuracy of the illuminance calcula-
tion is much worse at the edges of the polygons. In lighting
design applications, the light intensity is not computed for
the whole scene, but on specified calculation planes con-
sisting of a set of points. Generally, these points are not
located at the edges of the objects (e.g. interior of the desk
surface is more important than its edges). Therefore, we
crop the resulting renderings to focus only on the region
of interest and do not exaggerate the mean error.

The results presented in Figure 9 show that our renderer
computes illumination values for the direct illumination
with accuracy very close to Radiance. The average mean-
squared-error (MSE) for the selected region (see Figure 9,
bottom) is less than 0.004 lx.

Figure 9: Top: rendering of the scene with the direct
illumination generated by irgl using shadow map of
a 128x128 pixel resolution (without VPLs). The red rect-
angle depicts the cropped region for which the MSE was
calculated. Bottom: MSE difference between results ob-
tained in rad and irgl.

In Figure 10 the results for indirect illumination are pre-
sented. The maximum MSE difference is below 6 lx and
average error equal to 0.55 lx. The difference map in Fig-
ure 11 reveals the local difference between the instant ra-
diosity and rendering technique used in Radiance.

Using Monte Carlo estimation, the MSE difference
should decrease with increasing number of VPLs. To test
this issue we analyzed the irgl results generated for var-
ious numbers of VPLs. The results presented in Figure 12
show that for more than 1000 VPLs there are no significant
increase of the accuracy. The plot in Figure 12 also reveals
that shadow maps of higher resolution than 128x128 pixels
do not improve the results.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 10: Results for indirect illumination computed in
Radiance (top) and irgl (bottom) (for 1000 VPLs and
a 128x128 pixel shadow map).

Figure 11: The MSE difference between Radiance and
irgl for indirect illumination (see renderings in Fig-
ure 10).

In the irgl renderer we do not create VPLs for the sec-
ond and further light bounces from the surfaces. This issue
seems to cause the main inaccuracies in the surface illumi-
nation computations. The P2 plane from Fig. 8 should be
additionally illuminated by the light reflected from the bot-
tom of the P0 plane, which is not the case in the current
version of our renderer. We plan to add this feature in the
future work.

4.3 Performance tests

The performance was tested based on another scene - Cor-
nell Box with two cubes (see Figure 13). We could not
test the accuracy based on this more complex scene, be-
cause the current version of the instant radiosity renderer
generates VPLs only after first reflection. As a result the
Cornell Box image is much darker than results generated
in Radiance (compare images in Figure 13). On the other

128x128 shadow map

512x512 shadow map

Figure 12: MSE difference for increasing numbers of
VLPs and different size of the shadow map.

hand, the performance measurement for Cornell Box are
more representative than for simple scenes presented in
Figure 8. Cornell Box scene enforces more complex ray
paths comparable to that used in the lighting design appli-
cations. We are aware that the presented results have only
illustrative meaning but we include them because they al-
low to estimate a possible performance boost.

As we develop the renderer for the lighting design ap-
plications, the main goal is to calculate illuminance on se-
lected surfaces. The renderer should allow to recalculate
the results after light source modification (changing inten-
sity and/or location) as fast as possible. In Table 1 we
summarize the performance of the renderer modules. The
total rendering time below 20 ms is significant, however,
RadeonRays needs additional 193 ms to read the scene
and IES light source, and 462 ms for initialization. irgl
also must be initialize by reading the scene, which takes
187 ms.

Rendering phase Time
vplgen
light rays tracing and VPL generation 17.00 ms
irgl
shadow maping 1.39 ms
shading 1.07 ms
accumulation and blending 0.19 ms
total 19.65 ms

Table 1: The instant radiosity renderer performance mea-
sured for different phases of rendering using shadow maps
of 128x128 pixel resolution and 1000 VPLs.

Radiance requires 1625.68 ms to initialize and render
the Cornell Box scene. Our renderer even including initial-
izations is twice faster than Radiance. We plan to speed-
up the setup phases of our renderer and advantage of re-
peating calculations without costly preprocessing. Inter-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 13: The rendering of Cornell Box generated by Ra-
diance (top) and irgl (bottom).

estingly, shadow mapping for a large number of VLPs can
be more costly than the ray tracing technique. We plan to
investigate this approach in the future work.

5 Conclusions and Future Work

In this work we present implementation of a renderer
based on the instant radiosity technique. The goal of this
renderer is to calculate the physically correct illumination
levels on the selected calculation planes rather than ren-
der images covering the whole light field visible from the
camera. We compare the illuminance levels calculated by
our renderer with Radiance, which is the industry standard
for the lighting design applications. The results for a sim-
ple scene reveal the MSE difference of about 40%, which
indicate the need for further improvements. The results of
the performance tests have rather informative meaning but
show that using the instant radiosity technique a significant
speed-up of the illuminance calculation can be achieved.

In future work we plan to implement the full version
of the instant radiosity algorithm with the VPL genera-
tion after second and further bounces. We will test vari-
ous, not only regular, distribution of light intensity from
the light sources using the IES format. These modification
should improve the accuracy of the illuminance calcula-
tion. Then, we plan to speed-up the rendering replacing
the shadow map generation with the ray tracing technique.

References

[1] Ian Ashdown. Parsing the iesna lm-63 photometric
data file. http://lumen.iee.put.poznan.
pl/kw/iesna.txt, March 1998.

[2] Ian Ashdown. Photometry and radiometry: A
tour guide for computer graphics enthusiasts.
http://www.helios32.com/Measuring%
20Light.pdf, October 2002.

[3] Philipp S. Gerasimov. Chapter 12. omnidirectional
shadow mapping. http://http.developer.
nvidia.com/GPUGems/gpugems_ch12.
html, 2004.

[4] Zumtobel Lighting GmbH. The Lighting Handbook.
Zumtobel Lighting GmbH, 2013.

[5] Naty Hoffman. Background: Physics and math of
shading. http://blog.selfshadow.com/
publications/s2013-shading-course/
hoffman/s2013_pbs_physics_math_
notes.pdf, 2013.

[6] James T. Kajiya. The rendering equation. SIG-
GRAPH Comput. Graph., 20(4):143–150, August
1986.

[7] Branimir Karadzic. Orthodox c++. https:
//gist.github.com/bkaradzic/
2e39896bc7d8c34e042b, January 2017.

[8] Alexander Keller. Instant radiosity. In Proceed-
ings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’97, pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[9] J.H. Lambert and E. Anding. Ostwalds Klassiker
der exakten Wissenschaften:. Lamberts Photometrie:
(Photometria, sive De mensura et gradibus luminis,
colorum et umbrae) (1760). W. Engelmann, 1892.

[10] Matt Pharr and Greg Humphreys. Physically Based
Rendering: from Theory to Implementation. Morgan
Kaufmann, first edition, 2004.

[11] Gregory J Ward. The radiance lighting simulation
and rendering system. In Proceedings of the 21st an-
nual conference on Computer graphics and interac-
tive techniques, pages 459–472. ACM, 1994.

[12] Chris Wynn. An introduction to brdf-based light-
ing. http://www.cs.princeton.edu/
courses/archive/fall06/cos526/tmp/
wynn.pdf, 2006.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

